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Functional lung avoidance radiation therapy aims to minimize dose delivery to the normal lung
tissue while favoring dose deposition in the defective lung tissue based on the regional
function information. However, the clinical acquisition of pulmonary functional images is
resource-demanding, inconvenient, and technically challenging. This study aims to investigate
the deep learning-based lung functional image synthesis from the CT domain. Forty-two
pulmonary macro-aggregated albumin SPECT/CT perfusion scans were retrospectively
collected from the hospital. A deep learning-based framework (including image preparation,
image processing, and proposed convolutional neural network) was adopted to extract
features from 3DCT images and synthesize perfusion as estimations of regional lung function.
Ablation experiments were performed to assess the effects of each framework component by
removing each element of the framework and analyzing the testing performances. Major
results showed that the removal of the CT contrast enhancement component in the image
processing resulted in the largest drop in framework performance, compared to the optimal
performance (~12%). In the CNN part, all the three components (residual module, ROI
attention, and skip attention) were approximately equally important to the framework
performance; removing one of them resulted in a 3–5% decline in performance. The
proposed CNN improved ~4% overall performance and ~350% computational efficiency,
compared to the U-Net model. The deep convolutional neural network, in conjunction with
image processing for feature enhancement, is capable of feature extraction from CT images
for pulmonary perfusion synthesis. In the proposed framework, image processing, especially
CT contrast enhancement, plays a crucial role in the perfusion synthesis. This CTPM
framework provides insights for relevant research studies in the future and enables other
researchers to leverage for the development of optimized CNN models for functional lung
avoidance radiation therapy.

Keywords: perfusion imaging, lung function imaging, deep learning, perfusion synthesis, CT based image analysis,
functional lung avoidance radiation therapy
March 2021 | Volume 11 | Article 6447031

https://www.frontiersin.org/articles/10.3389/fonc.2021.644703/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.644703/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.644703/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.644703/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.644703/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jing.cai@polyu.edu.hk
https://doi.org/10.3389/fonc.2021.644703
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.644703
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.644703&domain=pdf&date_stamp=2021-03-24


Ren et al. Computed Tomography Perfusion Mapping Framework
INTRODUCTION

Perfusion sustains the normal pulmonary gas exchange and is
one of the main functions of the lungs (1). Lung perfusion
imaging measures the blood circulation within the lung and is
commonly used in the clinic to present the regional functional
information (2). In radiation therapy of lung cancer, lung
perfusion images can be utilized as a predictor of regional lung
function to guide functional lung avoidance radiotherapy
(FLART) (3, 4). FLART is a developing technique that avoids
irradiating highly functional lung regions based on the regional
function information, holding great promises to reduce
radiation-induced lung injury and improve the toxicity
outcomes of lung cancer radiation therapy (RT) (5–7).

Several imaging modalities have been developed to generate
pulmonary perfusion images. Nuclear medicine based SPECT
perfusion is most commonly employed in clinical practice (8).
Radioactive albumin, such as Technetium-99m-labeled macro-
aggregated albumin (99m Tc MAA), is injected into the patients
prior to image acquisition. The signal delivered by the
radioactive particles reflects the blood flow within the lung and
is measured by a single-photon emission computed tomography
(SPECT) scanner. However, SPECT perfusion requires the
injection of radioactive particles and provides limited temporal
resolution, rendering it less popular in most medical institutions.
With the advancement of multi-voltages X-ray tubes, the dual-
energy CT (DECT) also showed the ability to detect embolic
pulmonary arterial vessel occlusion based on the material
spectral property (9, 10). Although DECT offers an improved
spatial resolution compared with the SPECT perfusion (11), it is
of low accessibility in most hospitals worldwide. More
importantly, it increases the amount the radiation exposure
to patients.

In view of this, we proposed a novel deep learning-based
framework for CT perfusion mapping (CTPM) to overcome
these limitations based on the previous study (12). There are
several rationales behind this CTPM-dedicated framework. First
of all, CT scans contain high-resolution information and are
widely accessible in most clinics, as it is routinely utilized for
radiological assessment of diseases and RT treatment planning
worldwide. Secondly, a variety of pulmonary diseases are
generally manifested as intensity alterations in the lung
parenchyma. For instance, the interstitial lung diseases related
to inflammation and fibrosis of lung tissue can be interpreted
from CT patterns, including reticulation, honeycombing,
ground-glass opacity, consolidation, and micronodules (13).
Thirdly, the multi-layered convolutional models have shown
promising capability in various medical image synthesis tasks,
such as medical image quality improvement (14, 15), MR-to-CT
translation (16, 17), and super-resolution MRI images (18).
These rationales have led to the hypothesis that deep learning-
based features extracted from anatomic CT images contain a
myriad of concealed physiologic and biologic information in
relation to lung function, and hence it is feasible to convert
anatomic CT scans into functional images for pulmonary
perfusion. The benefit of deep learning-based CTPM can be
further magnified when it comes to implementing FLART,
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because (i) it protects patients from receiving additional
radiation dose, since no extra image tests would be required
and (ii) it prevents patients from delaying commencement of RT
treatment due to either the extra time or financial difficulties to
take additional tests, since the deep-learning based methods are
considered to be more time-efficient.

To the best of our knowledge, we were the first to demonstrate
the feasibility of CT to perfusion translation. In our previous
work, we concluded that our deep learning-based CTPMmethod
yielded a moderate-to-high approximation to SPECT perfusion
images. However, the principles of this CTPM method was not
explored yet. The current study aims to comprehensively
investigate and compare the impacts of different components
of the deep learning-based framework through a series of
ablation experiments, in which individual tested components
were removed to study its impact on the framework
performance. Our overarching purpose is to provide insights
for relevant research studies in the future and enable scientists to
be able to leverage the results of this study for the development of
optimized deep learning models for CTPM.
MATERIALS AND METHODS

Dataset and Study Design
In this study, 42 pulmonary perfusion MAA SPECT/CT scans
were retrospectively collected from Queen Mary Hospital. The
detailed patient characteristics are listed in Table 1. The use of
the image data was approved by the Institutional Review Boards
(IRB) of the University of Hong Kong/Hospital Authority Hong
Kong West Cluster. Each CT slice was collected as a 512 × 512
matrix with a pixel spacing of 0.977 × 0.977 mm2, and the axial
spacing is 1.25 mm. Each SPECT volume was constructed as a
128 × 128 × 128 matrix with 4.42 × 4.42 × 4.42 mm3 voxel size.
For consistency, all the image pairs were resampled to a voxel
size of 1 × 1 × 1 mm3 for the following study.

These patients were randomly split into a training group (31
patients) and a testing group (11 patients). The CT and SPECT
images of each patient went through image preparation and
image processing prior to model training and testing. In image
preparation, the left and right lungs were separated to augment
TABLE 1 | Patient characteristics.

Number Percent

Sex Male 15 35.7%
Female 27 64.3%

Age Mean ± SD 67 ± 14
Diagnosis Pulmonary hypertension 14 33.3%

Lung carcinoma 10 23.8%
Pulmonary embolism 5 11.9%
Systemic lupus erythematosus 2 4.7%
Chest pain 2 4.7%
Others 9 21.4%
March 2021 | Vo
lume 11 | Articl
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the dataset size to 84 (62 for training and 22 for testing).
The effectiveness of different components and parameters
of this framework were analyzed using a series of ablation
experiments (Figure 1). The CTPM generated perfusion images
were compared with the processed SPECT perfusion label images
using the structural similarity (SSIM) and correlation coefficient
(R). After deciding the final framework, the generated CTPM
perfusion images were recovered to the original size with post-
processing and compared with the SPECT perfusion in the
original size using the Dice similarity coefficient (DSC) in
clinical relevance.
Image Preparation
Image preparation consists of a series of morphological
operations to decrease computational consumption and
remove noise. Firstly, a parenchyma mask was automatically
generated in CT images using the Chest Imaging Platform, which
is an open-source library for quantitative chest imaging (19). The
trachea and tumor regions were excluded from the mask. This
mask was subsequently applied to the SPECT and CT images to
segment the parenchyma volume. In order to reduce the memory
cost of 3D image calculation, the left and right lungs were
separately analyzed in our study, enabling mitigation of the
image complexity and doubling the sample size. To further
minimize the consumption of the computational power, the
separated parenchyma volumes were cropped to include only
the lung and resized to 128 × 64 × 64 voxels.

Image Processing
Image processing aims to enhance the robustness of CT extracted
features and standardize SPECT perfusion images to be suitable
labels for CNN mapping. The down-sampled CT and SPECT
Frontiers in Oncology | www.frontiersin.org 3
images were standardized using CT enhancement, SPECT
normalization/discretization, respectively.
SPECT Normalization and Discretization
The signal intensity of pulmonary SPECT perfusion is strongly
affected by both the breathing pattern and blood flow condition
of an individual. As a result, the SPECT value may vary
significantly from patient to patient, which decreases the
supervision function of the SPECT. To address this problem,
SPECT image normalization was commonly used to reduce the
influence of individual conditions (20–22). In this study, the
SPECT image was first normalized using the values in normal
functional regions, and then discretized into 11 uniform values
ranging from 0 to 1 to reduce the fluctuation noise in SPECT.
Data discretization is another commonly used technique for
machine learnings (23). This technique is used to decrease the
noise-induced variance of the extracted features and speeding up
the modeling convergence. Image discretization has been used in
PET ventilation images of lung functional imaging to mitigate
small noise fluctuations (24). In this study, the processed SPECT
images were used as the label for model training. The
normalization and discretization procedures are described by
Eq. 1:

SPECT(x, y, z) 0 = discritize
SPECT(x, y, z)

HIR

� �
(1)

where SPECT(x,y,z) is the SPECT value at the location of (x,y,z).
SPECT(x,y,z)' is the processed SPECT value. HIR is the high-
intensity region value, which was set as the 75th percentile of the
pixel values in this study since this is close to the normal lung
perfusion (25). discretize indicates the above described
SPECT discretization.
FIGURE 1 | The workflow of this framework. The effects of the components in the dashed outlined box were evaluated using ablation experiments.
March 2021 | Volume 11 | Article 644703
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CT Enhancement
This enhancement aims to improve the intensity difference
between low/high functional regions on CT images, including
CT contrast enhancement and CT defect enhancement. CT
contrast enhancement is achieved based on histogram
equalization, which can effectively display different regions of
pulmonary CT images (26). The down-sampled CT images were
equalized within Hounsfield Unit (HU) values from −1,000
to −300. Contrast enhancement is followed by applying filters,
which has been proven to improve the correlation between CT
and lung functional images (21). A median filter with a kernel
size of 10 pixels was subsequently applied to enhance the signal
in low functional regions and to reduce the noise fluctuation.
This was followed by using a uniform filter with a kernel size of
five pixels for further noise reduction. These CT enhancement
procedures were formulated by Eq. 2:

CT(x, y, z) 0 = filtering(
chf ½CT(x, y, z)� − chf−1000

chf−300 − chf−1000
) (2)

where CT(x,y,z) is the original HU value of (x,y,z). CT(x,y,z)' is
the enhanced CT image. The cumulative histogram function
(chf) calculates the cumulative counts for each HU bin. chf−1000 is
the chf in value of −1000 and chf−300 is for −300. The value of
outliers was replaced with the threshold value. filtering indicates
the above-described filters.
CNN Architecture
A 3D CNN model usually generates an exceeding number of
parameters, which cause high memory consumption and
increased likelihood of model overfitting. Since the mapping
correlation between CT and SPECT perfusion have not been
explored before this study, we proposed and constructed an
adjustable CNN model for CT-to-perfusion translations. The
proposed CNN follows a 3D encoding-decoding structure. Two
skip attention modules similar to attention U-Net (27) were used
to translate the local details captured in the feature maps from
the contraction path into the expansion path. The convolution
layers capture the hierarchical texture features of the input. To
increase the size of the receptive field, three 2 × 2 × 2 stride
convolutions and convolution layers with a filter size of 5 × 5 × 5
were used. Each convolution is followed by batch normalization,
parametric rectified linear unit (PReLU), and a dropout layer. At
the last layer, a Sigmoid function sums up the results of the
previous layers and maps them to the range of [0,1] as the final
prediction values. In order to determine the optimal architecture,
the significance of the following components and configurations
on framework performance was tested with a series
of experiments.
CNN Components
The impacts of three components (residual module, ROI
attention, and skip attention) were tested using ablation
experiments. Residual modules have shown to be capable of
speeding up the convergence (28). In our model, eight residual
Frontiers in Oncology | www.frontiersin.org 4
modules were designed in the middle of the network (Figure 2).
The ROI attention module was configurated on the first layer to
steer the data learning process focusing on the parenchyma
volumes, avoiding degraded coverage of loss function owing to
the meaningless learning on the image background (i.e., non-
parenchyma region). The skip attention module has been found
to benefit target structure attention (29). Because low functional
regions normally are smaller than functional regions, two skip
attention connections were used to help focus on the low
functional region.
CNN Configuration
Multiple elements were particularly designed to minimize the
risk of model overfitting. Our proposed model uses dropout
layers and early stop to alleviate the likelihood of overfitting.
Each convolution and activation function are followed by a
dropout layer with a dropout rate in the range of [0, 0.1, 0.2,
0.3, 0.4, 0.5].

Although a large filter size can facilitate global texture feature
extraction in the receptive field, it simultaneously increases the
number of parameters and decreases the learning ability of the
model. In order to explore the effect of filter size on the learning
ability, 5 × 5 × 5 convolution filters and 3 × 3 × 3 convolution
filters were tested. The number of CNN parameters was
controlled by the CNN width. In this study, a series of CNN
widths (3 × 32, 4 × 32 and 5 × 32) were also tested to optimize the
fitting power of the CNN model.

ReLU activation functions have been proven to speed up the
training process compared to classic sigmoid alternatives. In this
study, a parametric ReLU (PReLU) (30) was also developed from
ReLU, as formulated in Eq. 3:

PReLU(x) =
 x, x > 0

ax, x ≤ 0

(
(3)

where a is a learnable parameter. This loss function does not zero
out the negative input so that a small gradient is allowed when
the unit is not active. For the encoding and decoding structure,
the PReLU was used after each convolution layer. LeakyReLU is
PReLU with a fixed slop. The performances of PReLU,
LeakyReLU (slope = 0.5), and ReLU were tested in the
validation group.
Evaluation Metrics
In the tuning of the model, the framework performance of each
experiment was evaluated using an analysis metric between the
CT perfusion mapping (CTPM) perfusion and processed SPECT
perfusion. The analysis metric was the sum-up of R and SSIM,
accounting for stassssstistical and perceptual image similarity,
respectively. The Spearman correlation coefficient was defined
using the following equation:

R =
SN
i=1½(yi − �y) · (pi − �p)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SN
i=1(yi − �y)2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN
i=1(pi − �p)2

p (4)
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where pi and yi indicate the predicted and ground-truth
perfusion value at voxel i. N denotes the total number of non-
zero voxels. R is within the range of [−1,1] and represents the
intensity monotonicity of spatially correlated voxels.

The SSIM is based on the comparison of luminance term,
contrast term, and structural term between the samples of
generated perfusion and SPECT perfusion (31). The overall
SSIM is a multiplicative combination of the three terms:

SSIM =
2mymp + C1

m2
y + m2

p + C1
·

2syp + C2

s 2
y + s 2

p + C2
(5)

where µy, µp, sy, sp, and syp are the local means, standard
deviations, and cross-variance for ground-truth image y and
predicted image p C1 = (k1L)

2, C2 = (k2L)
2 are the two variables

that stabilize the divisions when the denominators are too small.
L is the dynamic range of the pixel values. By default, k1 is set to
0.01, and k2 is set to 0.03.

Overall Performance Analysis
After deciding the final framework, the potential applicability in
FLART was evaluated. In FLART, the lung will be divided into
different functional regions based on the functional image
information. In this study, the generated CTPM perfusion
images were firstly resampled to the original SPECT perfusion
size and divided into low and high functional lung regions.
These two regions in CTPM were compared with that
in original SPECT perfusion using the Dice similarity
coefficient (Equation 6). This approach was used in the earlier
Frontiers in Oncology | www.frontiersin.org 5
ventilation/perfusion-SPECT study (20) and Galligas-positron
emission tomography study (32). The low/high functional
threshold was set to 0.66, which has been used in a lung
ventilation study (33) and suggested for FLART plan
optimization (34).

DSC =
2 ∗ p ∩ yj j
pj j + yj j (6)

where p is low/high functional regions in the resampled CTPM
perfusion and y is the normalized SPECT perfusion.
Implementation
All the framework and analysis were coded in python. The CNNs
worked based on the Pytorch 1.1 framework. The initialization of
the convolutional layers of the CNNs was configurated using the
Kaiming Uniform method (35). each layer was updated using
error backpropagation with an adaptive moment estimation
optimizer (ADAM), which is a first-order gradient-based
algorithm designed for the optimization of stochastic objective
functions with adaptive weight up with adaptive weight updates
based on lower-order moments. The binary cross-entropy (BCE)
was used as the loss function to evaluate the performance. The
number of training epochs was set as 500, where the loss function
changed less than 0.2% for continued five epochs in the pilot
study. All the experiments were performed using a workstation
with CPU Intel Core i7-8700 @ 3.2GHz, GPU NVIDIA GTX
2080 TI with 11GB memory, and 32 GB of RAM.
FIGURE 2 | The architecture of the proposed CNN model. The 3D blocks indicate the feature map. StrideConv was short for stride convolution. ResConv is short
for residual convolution. ConvT is short for convolution transpose. Sigmoid is short for the sigmoid layer. Skip Att is short for the skip attention module. ROI Att is
short for ROI attention.
March 2021 | Volume 11 | Article 644703
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RESULTS

Effects of Image Processing
The effects of image processing were firstly analyzed by removing
different processing procedures using the proposed CNN model
in Table 2. Removing the CT contrast enhancement step, the
overall performance of the framework was jeopardized by ~11%.
Removing the median filter degraded the overall performance by
~5%, and removing the uniform filter affected the overall
performance by ~2% reduct ion. Removing SPECT
discretization decreased the correlation by 3% and increased
the SSIM by ~4%, resulting in an approximately equal
overall performance.

To further explore the effects on images, two representing
cases with a sharp changing defect and a gradient changing
defect were visualized for qualitative analysis (Figure 3). For the
sharp changing case, predicted perfusions of all the scenarios
have a relatively high value (~0.7) on the upper lobe. The
scenario of CTPM-med. generates the largest low functional
region in this group. For the gradient changing case, the
scenario CTPM generates the largest low functional region. For
both cases, removing the CT contrast enhancement causes an
overestimation of the value in the low functional region.
Frontiers in Oncology | www.frontiersin.org 6
Effects of CNN Structures
The proposed components and configurations, presented in bold
in Table 3, yielded a performance score of 1.3703. By altering the
maximum layer width of CNN, we can infer that optimal
architecture has 128 filters (max CNN width 4 × 32) in the
middle of the network. Increasing the kernel size from 3 × 3 × 3
to 5 × 5 × 5 resulted in a 3% improvement in performance. Using
the dropout layer with a parameter of 0.1 increased
the performance by 4.3% compared with the model without
the dropout layer. Compared with ReLU or LeakyReLU (0.5), the
performance with PReLU increased by 5.9 and 2.4%,
respectively. The ROI attention, skip attention, and the
residual module increased the performance by 4.4, 3.1, and
5.4%, respectively. In the visualization analysis, predicted
perfusions of all CTPM scenarios are able to predict the low
functional region (Figure 4).
Overall Performance Analysis
The performance of the final CTPM framework was illustrated
in Figure 5. For the testing group, the proposed CTPM
framework achieved an average DSC value of 0.8120 ± 0.0789
for high functional lung, average DSC value of 0.6682 ± 0.0867
TABLE 2 | The effects of steps in the image processing pipeline.

Ablation experiments R SSIM SSIM+R Percent difference

Average SD Average SD

CTPM 0.6655 0.1351 0.7077 0.0740 1.3732 /
CTPM-disc. 0.6468 0.1697 0.7327 0.0899 1.3795 0.46%
CTPM-contr. 0.5702 0.2157 0.6520 0.0850 1.2222 −11.00%
CTPM-med. 0.6158 0.1869 0.6869 0.0798 1.3027 −5.13%
CTPM-uni. 0.6473 0.1535 0.6939 0.0662 1.3412 −2.33%
March 2021 | Volume
FIGURE 3 | Illustration of the effects of different image processing steps in coronal view. Two representative cases with the sharp low functional and gradient low
functional were visualized for comparison. The SPECT perfusion was normalized using the approach described in the method section. The color means the perfusion
level. SPECT-disc. was the discretized label. CTPM was generated using the proposed setting. The following CTPMs were generated with five ablation scenarios:
disc.—remove label discretization; contr.—remove CT contrast enhancement; med. —remove the median filter in CT low functional enhancement; uni.—remove the
uniform filter in CT low functional enhancement.
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for low functional lung, the average R value of 0.6534 ± 0.1432,
and average SSIM value of 0.7437 ± 0.0739. The normalized
SPECT perfusion and CTPM perfusion of representative cases
in the testing group were visualized in coronal views in Figure 6
for qualitative evaluations. In the 22 testing cases, 10 cases
(45.5%) have correlation values larger than 0.7; six cases
(27.3%) have correlation values between 0.6 and 0.7; six
cases (27.3%) have correlation values less than 0.6.

Compared with the widely used U-Net using identical image
processing procedures. The proposed perfusion mapping CNN
model outperformed the U-Net by 0.5% (average DSC value of
high functional lung), 4.8% (average DSC value of low functional
lung), 6.3% (average R value), and 3.0% (average SSIM value).
The proposed CNN model can significantly reduce the
computational time (2.5 h) compared with U-Net (11.3 h).
Frontiers in Oncology | www.frontiersin.org 7
Additionally, removing the image processing procedures in the
framework decreased the four metrics by 2.8, 12.4, 12.2, and
4.2%, respectively.
DISCUSSION

In this study, we analyzed the impact of the main components
and configurations in a deep learning-based framework that
estimates the 3D lung perfusion from the CT domain. The
proposed deep convolutional neural network, in conjunction
with a series of image preparation and image processing, is
capable of feature extraction from the CT domain for perfusion
synthesis. In the proposed framework, image processing,
TABLE 3 | Performance of the proposed network with different CNN components and configurations.

CNN Width Kernel Size Dropout Rate ROI
Attention

Skip Attention Residual Module Activation Function SSIM R SSIM+R Percent Difference

3 × 32 5 × 5 ×5 0.1 1 1 1 PReLU 0.6757 0.6305 1.3062 -4.68
4 × 32 5 × 5 × 5 0.1 1 1 1 PReLU 0.7052 0.6651 1.3703 0
5 × 32 5 × 5 × 5 0.1 1 1 1 PReLU 0.6831 0.6272 1.3103 -4.38
4 × 32 5 × 5 × 5 0 1 1 1 PReLU 0.6884 0.6236 1.3120 -4.25
4 × 32 5 × 5 × 5 0.2 1 1 1 PReLU 0.7014 0.6634 1.3648 -0.40
4 × 32 5 × 5 × 5 0.3 1 1 1 PReLU 0.7006 0.6519 1.3525 -1.30
4 × 32 3 × 3 × 3 0.1 1 1 1 PReLU 0.6867 0.6361 1.3228 -3.47
4 × 32 5 × 5 × 5 0.1 1 1 1 LReLU 0.6911 0.6458 1.3369 -2.44
4 × 32 5 × 5 × 5 0.1 1 1 1 ReLU 0.6882 0.6012 1.2894 -5.90
4×32 5×5×5 0.1 / 1 1 PReLU 0.6819 0.6276 1.3095 -4.44
4×32 5×5×5 0.1 1 / 1 PReLU 0.6879 0.6400 1.3279 -3.09
4×32 5×5×5 0.1 1 1 / PReLU 0.6877 0.6085 1.2962 -5.41
M
arch 202
1 | Volume
The bold values indicates the optimal configurations.
FIGURE 4 | Illustration of the effect of varying CNN components and configurations of the representing case in coronal view. CTPM was generated using the
proposed setting. The following CTPMs were generated in different CNN components and configurations: ROI.—remove ROI attention module, Skip.—remove skip
attention module; Res.—remove residual module; ReL. – use ReLU instead of PReLU; LRe. – use LReLU instead of PReLU; wid.—with CNN width of 3, 4, or 5
times; dro—with a dropout rate of 0, 0.2, or 0.3; ker 3×—use kernel size of 3 × 3 × 3 install of 5 × 5 × 5.
11 | Article 644703
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especially CT contrast enhancement, plays a crucial role in the
perfusion synthesis. Before our study, most of the existing CT
based pulmonary function studies used (24, 36, 37) deformable
image registration (DIR) algorithms to derive ventilation in
view of that both pulmonary ventilation and perfusion are
correlated with the radiotherapy-induced pneumonitis (38).
However, the accuracy of DIR based lung function mapping
methods may be variable in different DIR algorithms and
settings (39). Another HU number-based method estimates
air and tissue densities from average CT, and then calculates the
physiological ventilation in terms of the regional product of
the densities, reaching a correlation score of 0.50 ± 0.17 with
the ground-truth (32). Our optimized CNN model can achieve
a voxel-wise agreement (R value of 0.6534 ± 0.1432, and SSIM
value of 0.7437 ± 0.0739) and a regional similarity (DSC value
of 0.8120 ± 0.0789 for high functional lung, DSC value of
0.6682 ± 0.0867 for low functional lung) with the
corresponding reference SPECT perfusion. The regional
information holds great promise for functional lung
avoidance radiation therapy.

In the CTPM framework, the removal of the CT contrast
enhancement in the image processing part has the largest
impact on perfusion prediction. In quantitative analysis, the
Frontiers in Oncology | www.frontiersin.org 8
framework performance dropped by ~11% as compared to the
optimal performance. In the visualization analysis, the scenario
without CT contrast enhancement results in all predictions as a
high functional region. One possible explanation is that the low
functional lung locates in a small range of HU values, in which
the features are hard to be extracted by the CNN models. After
contrast enhancement, the difference between high/low
functional regions was improved (Figure 7) and became
more “prominent” to the CNN models. As a result, CT
contrast enhancement plays a critically important role in this
translation. In the contrast enhancement, the setting of some
parameters, such as the filter size, still relies on the model
tunning on the validation set. In the future, it would be better to
integrate these filters into the neural network to eliminate the
bias caused by humans. This is feasible in principle because
CNN is also composed of multi-layers of filters for feature
extraction and signal transformation (40). However, this
integration should be under the premise of a large cohort of
patients since a CNN with more functions indicates more
parameters to train.

Interestingly, SPECT discretization can improve R but
decrease SSIM. Here we still recommend the SPECT
discretization. In qualitative analysis, higher SSIM links to
A B

C D

FIGURE 5 | Overall performance analysis of the CTPM framework for the testing group. (A) DSC of the high functional lung. (B) DSC of the low functional lung.
(C) Correlation coefficient. (D) Structural similarity. CTPM-w/o pro indicates prediction without image processing. CTPM-U-Net indicates prediction using U-Net.
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improved accuracy of the normal cases while higher R
corresponds to enhanced accuracy of low functional cases
(Figure 8). For the normal case, three high-value regions can
be observed on one coronal slice of both continuous and
discretized SPECT. The model trained with continuous labels
can successfully predict the three peak regions, while only two of
them can be observed on the prediction image from the
discretized model. However, for the low functional case, the
high function region in the upper lobe (red arrow) has much
higher signals in CTPM-disc. In contrast, the perfusion using
discretized label shares more similarity with the SPECT perfusion.

The CNN components and configurations also have
important effects on the framework performance. All the
three components (residual module, ROI attention, and skip
attention) were approximately equally important to the
framework performance; removing either one of them
resulted in a 3–5% decline in performance. The ROI attention
module can improve the performance by 5.7%, indicating the
importance of focusing on the foreground parenchyma region.
An ROI attention module can speed up coverage for the
background region since the lung volume is always smaller
than the rectangular image volume. The proposed deep
learning model is able to achieve a 4% higher overall
performance and 4.5 folds computational efficiency.

This study is the first attempt to investigate the requirement
for a CT to perfusion translation. The key elements for this
Frontiers in Oncology | www.frontiersin.org 9
translation were revealed in this study, which paves the way for
more studies on lung function analysis from CT images. In
clinical practice, CT based perfusion mapping is advantageous
since it has greater availability and does not bring in extra cost.
Given the performance of the proposed framework, our method
could hold significant values in the diagnosis and therapy of
respiratory diseases.

Although the optimized framework was able to estimate
the 3D lung perfusion from the CT domain, several factors
still need to be considered before clinical implementation.
The first consideration is the data heterogeneity. Different
medical institutions often have different imaging protocols
and equipment, which may affect the robustness of the
CT perfusion mapping method. To assess the impact of
different protocols, we evaluated the proposed model on
nine SPECT/CT scans acquired from a different hospital.
The preliminary results showed an average correlation value
of 0.6257 ± 0.1566 in the new dataset, decreasing the
performance by 4.4%. This indicates re-training on a new
dataset may still be necessary at this stage. Besides, different
CT scanners are also used in radiation therapy, such as the
simulation CT scanner, SPECT/CT scanner, or 4D-CT
scanner. Data heterogeneity caused by these scanners may
also influence the model performance. Further evaluations
on the different imaging protocols and scanners are still
warranted in the future.
FIGURE 6 | Comparison of the SPECT perfusion and CTPM perfusion of representative cases in the testing group. The arrows point to the primary low functional regions.
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FIGURE 7 | Illustration of the CT contrast enhancement of a representative case in coronal view. The CT image was visualized in the range of −1000 to 0. The
SPECT image was visualized in the range of 0 to 800. CT-w/o contr is the CT image after contrast enhancement.
FIGURE 8 | Effects of the SPECT discretization. CTPM-w/o disc indicates prediction without SPECT discretization procedure.
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Another consideration is limited prediction accuracy for
some cases. For cases with sharp changing defects, the
predicted defect region of CTPM perfusion has higher signals
than that in the SPECT perfusion. This phenomenon indicates
uncertainty in distinguishing these two kinds of defects. In the
following study, we plan to develop a CNN model with more
parameters and functional structures to learn features from the
sharp changing defect region. Meanwhile, we will collect
more SPECT/CT perfusion scans to improve the prediction
accuracy and integrate the proposed framework into a
computer-aided detection scheme to evaluate disease diagnosis
in a clinical setting.
CONCLUSIONS

Our study demonstrates that the deep learning-based CNN
model, in conjunction with image processing for feature
enhancement, can estimate the perfusion from the CT domain.
In the proposed framework, image processing, especially CT
contrast enhancement, plays a key role in the perfusion synthesis.
The modules and configurations of the CNN model (residual
module, ROI attention, skip attention, dropout out, activation
function) were also important to improve the prediction
performance. This CTPM framework provides insights for
relevant research studies in the future. It enables other
researchers to leverage the results of this study for the
development of optimized CNN models for CTPM.
Frontiers in Oncology | www.frontiersin.org 11
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