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R E N A L H I S T O P A T H O L O G Y

Examination of a kidney biopsy is frequently required to diag-
nose the type and stage of a kidney disease or to determine the
cause of kidney transplant dysfunction. Using various (immu-
no)histochemical stainings, biopsy slides are visually assessed
by the pathologist for the recognition of distinctive patterns
leading to a diagnosis. In addition, grading systems are used to
express the severity of pathological changes, e.g. the extent of
inflammation in (un)scarred renal parenchyma [1]. Although
pathologists are very well trained in this type of pattern
recognition and quantification, the resulting scores remain
semi-quantitative, are not always reproducible and have limited
predictive value in clinical practice. Moreover, the scoring of tis-
sue slides in large research settings can be a tedious task. As a
result, there is a need for tools that facilitate objective, quantita-
tive scoring in renal pathology, possibly leading to the discovery
of hallmarks that can (better) predict the course of the renal dis-
ease or evaluate the response to treatment. Artificial intelligence
(AI) has the potential to yield such tools [2, 3].

A I I N H I S T O P A T H O L O G Y

The field of AI, originating in the 1950s, witnessed several so-
called ‘AI winters’ (periods of strongly reduced interest) before
it reached its current wide applicability. Today’s AI is mostly
based on machine learning (ML), which can be described as the
fully automatic discovery of patterns in large datasets by com-
puters. Two branches of ML are distinguished: supervised and
unsupervised ML [4]. Unsupervised ML is used in cases where
no outcome or ground truth annotations are available, aiming
to detect inherent structure in the data. It was, for instance,
shown that, using electronic health record data, unsupervised
ML could identify subgroups of patients with an increased risk
of developing conditions like diabetes and schizophrenia [5].

More widely used is supervised ML, where a computer learns
to predict the correct label of a sample by being trained on a
large number of training samples with accompanying ‘ground
truth’ labels [6]. The most important innovation in ML in the

last decade is the possibility to train multilayered (‘deep’) neural
networks [‘deep learning’ (DL)] [4]. A specific subtype of deep
neural networks, convolutional neural networks (CNNs), is es-
pecially powerful for the analysis of (medical) images [4].
Combined with the possibilities of scanning entire histopatho-
logical slides at high resolution [yielding whole-slide images
(WSIs)], the use of CNNs creates entirely new opportunities for
analysing tissue sections.

Development of CNNs typically requires a large, annotated
data set. In histopathology, we distinguish between pixel-level
(‘strong’) labels (for instance, by manually delineating glomeruli
in renal biopsy WSIs) and ‘weak’ image-level labels (e.g. by la-
belling an entire renal transplant biopsy WSI positive for rejec-
tion). In AI development, the set of available WSIs is typically
subdivided in (non-overlapping) training, validation and test
sets. The CNN is trained using the training set, while the train-
ing process is monitored using the CNN performance on the
validation set. After achieving the optimal CNN, the test set is
used to yield unbiased performance data (Figure 1).

C U R R E N T S T A T U S

In general, the use of DL in histopathology is still in a research
stage. Studies have shown that for certain well-described tasks
the DL algorithms can perform as well as trained humans. Also,
for some applications, the performance of a pathologist can be
improved (either in efficiency or accuracy) by DL [7]. The ex-
tent of DL research for renal pathology is still relatively limited,
mostly relying on supervised techniques using strongly labelled
data sets. CNNs have been developed for the detection, classifi-
cation and segmentation of renal structures (e.g. glomeruli,
tubuli and interstitium), tubular atrophy and glomerular lesions
[2, 8]. Comparing the output of CNNs to existing grading sys-
tems showed encouraging preliminary results. Although less
frequent, CNNs have been trained using weakly labelled data
sets as well, for instance, for predicting renal dysfunction, pro-
teinuria and renal survival [9].
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The current DL techniques in renal histopathology mainly
focus on single slide, bright field microscopy. This makes them
very suitable for applications in renal transplant pathology, e.g.
for quality assessment through glomerular counting and for the
scoring of (peri)tubular or interstitial inflammation. The recent
installation of the Banff Digital Pathology Working Group
underlines the interest of the field in AI and will foster the ap-
plication of DL in transplant pathology [10].

C H A L L E N G E S

One of the largest limitations for AI development is the lack of
publicly available large data sets with accompanying clinical
metadata. Even though abundant numbers of biopsies exist,
they reside in archives all over the world, are mostly not digi-
tized and meta-data (if readily available) are not standardized.
To further complicate matters, development of robust

algorithms (insensitive to inter-laboratory variations) requires
multicentre data sets. Moreover, in case of supervised ML, the
requirement for pathologists’ involvement to annotate cases
may limit progress considerably.

Many clinicians and medical researchers do not fully under-
stand how CNNs works, resulting in an inability to recognize
the opportunities and pitfalls. While understandable, this might
result in underestimation as well as overestimation of the po-
tential of AI. AI training programmes specifically tailored for
people working in medicine are therefore advised.

While current applications of AI are largely focused on eval-
uation of kidney transplant pathology, its use in the diagnosis of
native kidney diseases lags behind. For the precise diagnosis of
glomerular diseases, immunofluorescence (IF) and electron mi-
croscopy (EM) are usually required in addition to bright field
microscopy. Use of AI here requires CNNs that are specifically
trained for the analysis of IF and EM images, potentially even
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FIGURE 1: Overview of the CNN development pathway. Data collection: a large amount of data is required, preferably covering (colour and
morphologic) variations that also occur in daily practice. Ground truth generation: generate labels accompanying the data set elements, either
providing strong (e.g. annotating individual glomeruli and assigning the ‘glomerulus’ class to all pixels within these annotations) or weak labels
(labelling the entire image with a single class, e.g. TCMR positive or negative). Subdivide the fully labelled data set: the set is divided in a repre-
sentative training, validation and test set. CNN: the neural network is trained using the training set, while regularly checking its performance
on the validation set to prevent the network from memorizing the training set (‘overtraining’). CNN performance: once the CNN achieves its
optimal performance on the validation set, unbiased performance metrics are determined using the (so-far unused) test set.
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combining multimodal data. An additional challenge in this
field is posed by the rarity of most glomerular diseases, hamper-
ing the collection of large data sets that are generally needed for
training a CNN. A joined effort of renal pathologists, nephrolo-
gists and computer scientists from different centres is required
to address and solve this matter.

C O N C L U S I O N

Currently developed DL algorithms were shown to yield objec-
tive and reproducible data from kidney WSIs. Deployed in a
clinical setting, this may result in increased accuracy and repro-
ducibility of diagnostics. The availability of accurate quantita-
tive descriptors can help tailor treatment for individual patients.
In research settings, the potential of AI to analyse large numbers
of WSIs in a highly standardized manner will aid the develop-
ment of novel biomarkers. For both clinical use and research,
DL may increase efficiency by taking away certain tedious tasks
from pathologists. To fully exploit these opportunities, estab-
lishment of large, well-curated multicentre data sets is required,
as well as training and involvement of clinicians.
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