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Purpose: Develop and test a deep learning (DL) algorithm for detecting referable glaucoma.
Design: Retrospective cohort study.
Participants: A total of 6116 patients from the Los Angeles County (LAC) Department of Health Services (DHS)

were included.
Methods: Fundus photographs and patient-level labels of referable glaucoma (cup-to-disc ratio �0.6) provided by

21 certified optometrists. A DL algorithm based on the Visual Geometry Group-19 architecture was trained using
patient-level labels generalized to images from both eyes. Area under the receiver operating curve (AUROC), sensitivity,
and specificity were calculated to assess algorithm performance using an independent test set that was also graded by
13 clinicians with 0 to 10 years of experience. Algorithm performance was tested using reference labels provided by
either LAC DHS optometrists or an expert panel of 3 glaucoma specialists.

Main Outcome Measures: Area under the receiver operating curve, sensitivity, and specificity.
Results: The DL algorithm was trained using 12 998 images from 5616 patients (2086 referable glaucoma, 3530

nonglaucoma). In this data set, the mean age was 56.8 � 10.5 years with 54.8% women, 68.2% Latinos, 8.9% Blacks,
6.0% Asians, and 2.7% Whites. One thousand images from 500 patients (250 referable glaucoma, 250 nonglaucoma)
with similar demographics (P � 0.57) were used to test the algorithm. Algorithm performance matched or exceeded
that of all independent clinician graders in detecting patient-level referable glaucoma based on LAC DHS optometrist
(AUROC ¼ 0.92) or expert panel (AUROC ¼ 0.93) reference labels. Clinician grader sensitivity (range, 0.33e0.99) and
specificity (range, 0.68e0.98) ranged widely and did not correlate with years of experience (P� 0.49). Algorithm per-
formance (AUROC ¼ 0.93) also matched or exceeded the sensitivity (range, 0.78e1.00) and specificity (range,
0.32e0.87) of 6 certified LAC DHS optometrists in the subsets of the test data set they graded.

Conclusions: A DL algorithm for detecting referable glaucoma trained using patient-level data provided by
certified LAC DHS optometrists approximates or exceeds performance by ophthalmologists and optometrists, who
exhibit variable sensitivity and specificity unrelated to experience level. Implementation of this algorithm in screening
workflows could help reallocate resources and provide more reproducible and timely glaucoma care.
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Glaucoma is the leading cause of irreversible blindness
worldwide, with prevalence growing from 64.3 million in
2013 to 111.8 million in 2040.1,2 In the United States,
glaucoma is projected to affect 7.3 million people by 2050
with the majority being racial minorities.2 The rising
burden of glaucoma in the United States is exacerbated by
a critical shortage of eye care providers; the total supply
of ophthalmologists is projected to decrease by 12%,
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although demand for eye care services is projected to
increase by 24% by 2035.3 Underserved racial minorities
and individuals living in nonmetro areas who already
experience difficulty accessing care will likely be
disproportionately affected, thereby exacerbating ongoing
disparities in glaucoma care.4 For example, Blacks and
Hispanics in the United States have significantly lower
utilization of eye care services and higher risk of
1https://doi.org/10.1016/j.xops.2025.100751
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glaucoma-related blindness and need for glaucoma surgery
compared with non-Hispanic Whites.4e11 Therefore, there is
an urgent need to develop and implement novel in-
terventions that address the impending eye care crisis by
ensuring timely and equitable detection of at-risk
individuals.

The Los Angeles County Department of Health Services
(LAC DHS), the second largest municipal health system in
the United States, has operated a teleretinal screening pro-
gram for patients with diabetes since 2013.12 Although the
program primarily focuses on detecting diabetic
retinopathy, it also screens for other ocular conditions,
including cataracts and referable glaucoma. The referable
glaucoma component of the program has been effective:
between 2016 and 2018, 817 patients were referred for
glaucoma evaluations, 534 (65.4%) patients successfully
completed in-person evaluations, and 131 (24.5%) patients
were diagnosed with glaucoma by LAC DHS clinicians.13

Despite its success, the program is hindered by key
workflow limitations. Reliance on certified optometrists to
manually grade fundus photographs contributes to referral
delays and takes time away from direct patient care.
Manual grading by >20 LAC DHS optometrists also
potentially introduces intergrader variability in disease
detection.14 Therefore, it is critical to consider alternative
approaches for standardizing and streamlining referrals to
ensure reproducibility and equity of care.

Artificial intelligence (AI), specifically deep learning
(DL), is an emerging technology in health care that could
enhance the reproducibility and efficiency of glaucoma
screening, thereby enabling earlier detection and interven-
tion. In this study, we develop a DL algorithm for detecting
referable glaucoma from optic nerve photographs of patients
in the LAC DHS teleretinal screening program. We also
perform a rigorous validation of the algorithm by comparing
its performance to a panel of 13 clinicians, including 4
fellowship-trained glaucoma specialists. This type of algo-
rithm, once rigorously validated against the standard-of-care
human grading, could be implemented to address the critical
need for reproducible and scalable solutions in glaucoma
screening, especially among vulnerable, safety net
populations.

Methods

This study was approved by the University of Southern California
Institutional Review Board. The study adhered to the tenets of the
Declaration of Helsinki and complied with the Health Insurance
Portability and Accountability Act. Informed consent was not ob-
tained because this was a retrospective study utilizing deidentified
patient data. All patient information used in the study was ano-
nymized, ensuring that no identifiable personal information was
accessed or used. As a result, the study posed minimal risk to
participants, and the need for informed consent was waived by the
Institutional Review Board in accordance with applicable ethical
guidelines.

Data Source

The LAC DHS health system administers a primary care-based
teleretinal screening program across 17 hospital- and community-
2

based sites throughout LAC.12 The program serves around 1750
diabetics per month. The LAC DHS patients participating in the
program receive dilation and fundus photography by trained staff
(medical assistants or licensed vocational nurses) using the
Topcon NW400 and NW8 (Topcon Corporation) and Canon CR-
2 AF Digital (Canon U.S.A. Inc) cameras. These photographs
are evaluated primarily for diabetic retinopathy and secondarily for
other ocular conditions such as referable glaucoma, defined as cup-
to-disc ratio (CDR) �0.6, by 21 certified LAC DHS optometrists.
Disease diagnoses, including for referable glaucoma, are recorded
on the patient level. All patients �18 years of age with �1 fundus
photograph taken between January 4, 2016 and December 2, 2022
were eligible for analysis.

A segmentation-free approach to detecting referable glaucoma
was selected given: (1) generally superior diagnostic performance
compared with segmentation-reliant approaches; and (2) lack of
access to CDR and segmentation data in the LAC DHS data set.15

Fundus photographs centered on the optic nerve from all patients
diagnosed with referable glaucoma and a comparable number of
patients diagnosed as nonglaucoma were retrieved for purposes
of the AI algorithm development. All photographs underwent
manual review. The photographs of low quality (e.g., blurry,
underexposed or overexposed, or media opacities partially
obscuring the optic nerve) were included to ensure the
generalizability of algorithms to clinical screening environments.
However, photographs were excluded if they could not be graded
for glaucoma (e.g., media opacities totally obscuring the optic
nerve, so out of focus that the optic nerve could not be delineated,
or if the optic nerve was not in the field of view).

Fundus photographs were cropped and centered around the
optic nerve head for analysis in a 2-step process that was pro-
grammed in Python. First, the program cropped each raw fundus
image to the image region by removing any black or extraneous
regions. Then, the program scanned the image using a sliding
window approach that attempted to match the cropped image to the
pattern of an optic disc. Once a potential match was found, the
section of the image was saved as the final cropped image. If the
program failed to locate or confirm an optic disc after multiple
attempts, the entire uncropped image was saved. All images were
manually reviewed to ensure cropping and centration were effec-
tive. Images where the optic disc was present but difficult to
visualize due to occlusion or exposure issues were retained in the
data set to represent clinical scenarios. Images without an optic disc
were excluded. Images were resized to 224 by 224 pixels to reduce
hardware demands during training. Images were preprocessed by
normalizing red, green, blue channels and augmented through
random rotation, translation, and perturbations to balance and
contrast.

Algorithm Development and Validation

The LAC DHS data set was divided into development (80%) and
test (20%) data sets. The development data set was further split into
training (75%) and validation (25%) data sets. Some patients with
multiple teleretinal screening visits were represented multiple times
in the training and validation data sets, although reference labels by
LAC DHS optometrists were unique for each visit. The test data set
was used to derive a sample of 1000 test images from the latest
observation of 500 patients (2 images per patient) with no overlap
of patients with the training or validation data sets.

Twenty-one certified LAC DHS optometrists analyzed the
photographs of both eyes; if �1 eye was referable for glaucoma, it
was generalized to both eyes to create patient-level labels of
referable glaucoma. These patient-level labels were used to train
DL algorithms for detecting referable glaucoma at the eye level. A
convolutional neural network was developed based on the Visual
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Geometry Group-19 (VGG-19) architecture using the training and
validation data sets labeled in this manner. The VGG-19 archi-
tecture was chosen due to its efficiency with image-based data
while providing similar performance to other architectures,
including InceptionV3, MobileNetV3, EfficientNetV2, and
ResNet50V2. The average pooling layer was replaced by an
adaptive pooling layer where bin size is proportional to input image
size, enabling the convolutional neural network to be applied to
input images of arbitrary sizes. Softmax regression was used to
calculate the multinomial probability of the 2 classes with a cross-
entropy loss used during training. All layers of the convolutional
neural network were fine-tuned using backpropagation; optimiza-
tion was performed using stochastic gradient descent with warm
restarts. The code for data preprocessing and model training is
linked: https://github.com/informatics-isi-edu/eye-ai-exec/blob/main/
notebooks/VGG19/VGG19_Diagnosis_Train.ipynb. The hyper-
parameters for training are available in Table S1 (available at
www.ophthalmologyscience.org).

The DL algorithm was tested using the 1000-image test data set,
which was also graded by 13 clinicians (1 optometrist [K.N.], 7
general ophthalmologists [A.B., R.D., A.T.D., K.H., A.J., J.L.,
H.R.] 1 neuro-ophthalmologist [J.G.], and 4 glaucoma specialists
[J.D., V.N., B.J.W., B.Y.X.]) with 0 to 15 full years of clinical
experience as medical school or optometry school graduation.
Before grading, each clinician was provided with a reference data
set comprised of 20 images per CDR between 0.2 and 0.9 in 0.1-
unit increments to establish a baseline degree of standardization
among human graders. As one objective of the study was to assess
the effect of clinician experience, the size of the sample data set
was limited to avoid strongly biasing clinicians with less
experience.

Three sets of reference labels (2 patient-level sets and 1 eye-
level set) of the independent test set were used to assess algo-
rithm performance. One patient-level set of reference labels was
provided by the 21 certified LAC DHS optometrists who originally
graded the photos in the test data set. Two sets of reference labels,
1 patient level and 1 eye level, were provided by 3 fellowship-
trained glaucoma specialists (V.N., B.J.W., and B.Y.X.) who
were among the 13 clinician graders. The majority diagnosis of
referable glaucoma or nonglaucoma by the 3 glaucoma specialists
(at least 2 of 3) determined the eye-level reference label for each
individual image. These eye-level reference labels were combined
to generate patient-level reference labels; a patient was positive for
referable glaucoma if �1 eye was labeled as such.
Table 2. Baseline Demographics Stratified by

Parameter Training and Validation

Age 56.8 � 10.5
Sex
Female 55.0% (N ¼ 3091)
Male 42.8% (N ¼ 2401)

Race
Latino 68.1% (N ¼ 3826)
Black 8.9% (N ¼ 501)
White 2.7% (N ¼ 153)
Asian 6.0% (N ¼ 338)
Other or not specified 14.2% (N ¼ 798)

Glaucoma status
Referable 37.1% (N ¼ 2086)
Nonreferable 62.9% (N ¼ 3530)

Statistical significance tested by 2-tailed Student t test or chi-square test.
Data Analysis

Demographic characteristics between the training and validation
and test sets were compared using a 2-tailed Student t test or a chi-
square test. The study cohort was stratified by glaucoma status
based on LAC DHS optometrist labels to compare demographic
and clinical characteristics. Continuous measures were summarized
by means and standard deviations, and categorical measures were
summarized by proportions and percentages. The area under the
receiver operating characteristic curve (AUROC), area under the
precisionerecall curve (AUPRC), calibration curve, accuracy,
precision, sensitivity, and specificity were calculated to assess al-
gorithm performance compared with the sensitivity and specificity
of individual clinician graders using all 3 sets of reference labels.
Optimal algorithm probability thresholds for referable glaucoma
detection were determined through Youden’s index, which maxi-
mizes the sum of sensitivity and specificity. A subanalysis
comparing LAC DHS optometrist and algorithm performance was
performed for 6 LAC DHS optometrists who graded �70 test set
images using the expert panel reference labels. A linear regression
was performed to assess the association between grader sensitivity
or specificity and years of clinical experience. Statistical tests were
considered statistically significant when the P value < 0.05. Sta-
tistical analyses were performed using Python’s SciPy statistics
library.
Results

A total of 13 098 images were retrieved, and 12 998 images
were included in the analysis after excluding 100 cropped
images (0.76%) without visible optic nerves. The training
data set had 8996 images from 4212 patients, the validation
data set had 3002 images from 1404 patients, and the test
data set had 1000 images from 500 patients. The 5616 pa-
tients (2086 referable glaucoma, 3530 nonglaucoma) in the
training and validation data sets had a mean age of 56.8 �
10.5 years, and there were 54.8% (N ¼ 3091) women,
68.2% (N ¼ 3826) Latino, 8.9% (N ¼ 501) Black, 6.0%
(N ¼ 338) Asian, 2.7% (N ¼ 153) White, and 14.2% (N ¼
798) Other or not specified race. The 500 patients (250
referable glaucoma, 250 nonglaucoma) in the test data set
had a mean age of 57.3 � 10.3 years, and there were 52.4%
Training and Validation or Test Data Set

Test P Value

57.3 � 10.3 0.30
0.57

52.4% (N ¼ 262)
44.8% (N ¼ 224)

0.78
69.2% (N ¼ 346)
8.6% (N ¼ 43)
2.6% (N ¼ 13)
5.2% (N ¼ 26)

15.0% (N ¼ 75)
<0.001

50.0% (N ¼ 250)
50.0% (N ¼ 250)
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Figure 1. Patient-level algorithm and independent clinician performance with full years of experience (left) and precisionerecall curve (right) when using
patient-level expert panel reference labels. AUPRC ¼ area under the precisionerecall curve; PR ¼ precisionerecall; ROC ¼ receiver operating charac-
teristic; Sn ¼ sensitivity; Sp ¼ specificity.
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(N ¼ 262) women, 69.2% (N ¼ 346) Latino, 8.6% (N ¼ 43)
Black, 5.2% (N ¼ 26) Asian, 2.6% (N ¼ 13) White, and
15.0% (N ¼ 75) Other or not specified race. There was no
difference in age (P ¼ 0.295), race (P ¼ 0.781), or sex (P ¼
0.569) between patients in the training and validation and
test data sets (Table 2).

Algorithm performance for detecting referable glaucoma
on the patient level based on expert panel labels of the test
data set had an AUROC of 0.93 (95% confidence interval
[CI], 0.91e0.95) and AUPRC of 0.93 (95% CI,
0.908e0.952), with optimal sensitivity of 0.89 and speci-
ficity of 0.83 (probability threshold ¼ 0.50) (Fig 1). The
calibration curve for this model is shown in Figure S2
(available at www.ophthalmologyscience.org). Individual
graders had a sensitivity ranging from 0.33 to 0.99 and a
specificity ranging from 0.68 to 0.98, including a
sensitivity of 0.98 and specificity of 0.79 by a fourth
glaucoma specialist (Fig 1). There was no association
between full years of clinical experience and grader
sensitivity (P ¼ 0.491) or specificity (P ¼ 0.56) (Fig 3).

Algorithm performance for detecting referable glaucoma
on the patient level based on LAC DHS optometrist labels of
the test data set had an AUROC of 0.92 (95% CI, 0.90e0.94)
and AUPRC of 0.92 (95% CI, 0.899e0.948), with optimal
sensitivity of 0.86 and specificity of 0.83 (probability
threshold ¼ 0.50) (Fig 4). Individual graders, including a
fourth glaucoma specialist, had a sensitivity ranging from
0.32 to 0.91 and a specificity ranging from 0.61 to 0.98
(Fig 4).

Algorithm performance on the eye level based on expert
panel labels of the test data set had an AUROC of 0.92 (95%
CI, 0.90e0.93) and AUPRC of 0.88 (95% CI,
0.857e0.908), with optimal sensitivity of 0.88 and speci-
ficity of 0.82 (probability threshold ¼ 0.49) (Fig S5,
4

available at www.ophthalmologyscience.org). Individual
graders had a sensitivity ranging from 0.28 to 0.99 and a
specificity ranging from 0.74 to 0.99, including a
sensitivity of 0.90 and specificity of 0.82 by a fourth
glaucoma specialist (Fig S5). A summary of the
classification metrics can be found in Table 3.

In the subanalysis of the 6 most frequent LAC DHS
optometrist graders (N ¼ 70e150 images), the DL algo-
rithm (AUROC of 0.93) approximated or exceeded
optometrist sensitivity (range, 0.78e1.0) and specificity
(range, 0.32e0.87) for all 6 graders (Fig 6).
Discussion

In this study, we developed a DL algorithm for detecting
referable glaucoma from fundus photographs of LAC DHS
teleretinal screening patients that matched or exceeded
performance by clinicians with a range of clinical expertise.
The algorithm, trained on patient-level labels provided by
21 certified LAC DHS optometrists, demonstrated robust
performance across 3 sets of reference labels. In addition,
LAC DHS optometrists and independent ophthalmologists
exhibited wide ranges of sensitivity and specificity that raise
concerns about variability associated with human grading of
fundus photographs. Our findings highlight potential bene-
fits of adopting AI-based strategies to improve the repro-
ducibility, timeliness, and scalability of glaucoma care,
which could facilitate earlier glaucoma detection and
intervention.

Although several DL algorithms for detecting referable
or manifest glaucoma from fundus photographs have pre-
viously been reported, none have been as rigorously vali-
dated against the standard-of-care human grading as in the

http://www.ophthalmologyscience.org
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Figure 3. Correlation between sensitivity (left) or specificity (right) in detecting referable glaucoma and full years of clinical experience among independent
clinician graders.
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current study.16e19 Our algorithm’s performance (AUROC
>0.9 and AUPRC >0.9) falls within the general range of
performance demonstrated by these previous algo-
rithms.15e20 However, it is difficult to evaluate algorithm
performance based solely on comparisons with previous
algorithms due to interstudy differences in disease defini-
tions, study populations, and AI methodology. Therefore,
we focused on producing a higher level of evidence to instill
confidence in LAC DHS clinicians, patients, and health care
Figure 4. Patient-level algorithm and independent clinician performance with f
patient-level LAC DHS optometrist reference labels. AUPRC¼ area under the
Angeles County; PR ¼ precisionerecall; ROC ¼ receiver operating characteri
administrators, especially given our plan to implement the
algorithm in a clinical teleretinal screening environment. In
a rigorous comparison with human graders, our algorithm
demonstrated excellent performance, matching or exceeding
the sensitivity and specificity of 13 clinicians with a range of
clinical experience. In a separate subanalysis, the algorithm
also matched or outperformed 6 certified LAC DHS op-
tometrists. This robust performance compared with current
standard-of-care human grading provides evidence
ull years of experience (left) and precisionerecall curve (right) when using
precisionerecall curve; DHS ¼ Department of Health Services; LAC ¼ Los
stic; Sn ¼ sensitivity; Sp ¼ specificity.
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Table 3. Summary of Classification Metrics at a Classification Threshold of 0.50

Parameter
Patient-Level Expert

Panel Labels
Patient-Level LAC DHS

Optometrist Labels
Eye-Level Expert
Panel Labels

AUROC 0.930 0.920 0.920
AUPRC 0.930 0.920 0.880
Accuracy 0.858 0.846 0.838
Precision 0.835 0.831 0.754
Sensitivity (recall) 0.886 0.868 0.853
Specificity 0.831 0.824 0.829
F1 score 0.860 0.849 0.800

AUPRC ¼ area under the precisionerecall curve; AUROC ¼ area under the receiver operating characteristic curve; DHS ¼ Department of Health
Services; LAC ¼ Los Angeles County.

Ophthalmology Science Volume 5, Number 4, August 2025
supporting algorithm integration into existing LAC DHS
teleretinal screening workflows to improve the timeliness of
referable glaucoma detection and reallocate optometrist time
for direct eye care.

We tested our DL algorithm using 3 different sets of
reference labels to assess the robustness of its performance. It
is somewhat unsurprising that the algorithm matched or
outperformed independent human graders when test labels
were provided by the same LAC DHS optometrists who
provided the training labels. However, it is interesting that the
Figure 6. Subanalysis comparing the performance of the patient-level algorithm
when using patient-level expert panel reference labels. AUC ¼ area under the c
ROC ¼ receiver operating characteristic; Sn ¼ sensitivity; Sp ¼ specificity.

6

algorithm matched or outperformed independent human
graders even when using test labels provided by an expert
panel of 3 glaucoma specialists. The robust performance
observed across test labels may partially stem from the di-
versity of training labels by 21 LAC DHS optometrists,
which is likely advantageous when automating a task that is
inherently variable on the individual grader level.21 It may
also partially stem from using reference labels provided by
LAC DHS optometrists rather than specially trained study
graders. Using training labels obtained in a clinical
with that of 6 certified LAC DHS optometrists in subsets of the test data set
urve; DHS ¼ Department of Health Services; LAC ¼ Los Angeles County;



Nguyen et al � Automated Referable Glaucoma Detection
environment as opposed to those obtained in a study envi-
ronment could help minimize the Hawthorne effect, by which
individuals modify their behaviors in response to being
observed or scrutinized, thereby making the labels more
applicable in clinical settings.22 In contrast, graders of the test
data set had a higher likelihood of being affected by the
Hawthorne effect; performance observed among individual
clinicians likely represents their best efforts. It is also
interesting that our algorithm demonstrated robust and
consistent performance across all 3 test sets despite being
trained using patient-level labels generalized to images
from both eyes. This labeling strategy was necessary due to
LAC DHS optometrists diagnosing referable glaucoma on
the patient level rather than eye level. Fortunately, any noise
in the training labels resulting from intereye differences (e.g.,
1 eye referable and the other not) did not seem to affect al-
gorithm performance, which matched or exceeded both pa-
tient- and eye-level performance by the human graders.

The high degree of variability among clinicians in refer-
able glaucoma detection regardless of experience level pre-
sents a significant barrier for teleglaucoma screening
programs. Our finding is consistent with previous studies that
reported high variability among optometrists and ophthal-
mologists in grading CDR or detecting manifest glaucoma
from fundus photographs.14,23 This highlights an important
issue associated with human grading in teleretinal screening
workflows: systematic biases by graders can lead to large-
scale over- or underdetection of disease, making it difficult
to standardize disease detection and limiting the scalability of
teleglaucoma screening overall. This variability was also not
correlated with experience level, which suggests that it may
be an intrinsic property of graders that is not easily modifi-
able, even with extensive training. We are currently investi-
gating the interhuman variability of CDR grading in a
separate study. In contrast to human graders, AI algorithms
can be trained using collective labels provided by many
graders, potentially mitigating systematic biases associated
with a small number of undercallers (high specificity) or
overcallers (high sensitivity). Furthermore, AI algorithms
also provide consistent and reproducible image analysis, and
sensitivity and specificity can be tailored to suit the specific
needs and capacities of individual health care systems. In
addition, recalibration techniques may be used to ensure that
predicted probabilities remain well-calibrated when applied
to new patient populations. Therefore, the relatively unbi-
ased, reproducible, and adaptable nature of certain AI algo-
rithms may make them better suited for large-scale, high-
throughput teleglaucoma screening.

Our study has some limitations. First, our training data
reflects the unique demographics of the communities served
by LAC DHS, which may limit algorithm generalizability in
other populations.2,6 This concern is mitigated by our
primary intention to implement the algorithm locally in
the LAC DHS teleretinal screening program. However, if
the algorithm is implemented more widely in the future, it
may benefit from retuning using data from local pop-
ulations. Second, the test set was deliberately balanced with
equal proportions of referable glaucoma and nonreferable
glaucoma cases. Although this approach ensures that per-
formance metrics such as sensitivity and specificity are not
disproportionately influenced by class imbalance, it may
lead to higher precision than would be observed in clinical
settings where referable glaucoma is less prevalent. Third,
the utility of glaucoma screening in the general population
remains unclear, which calls into question the role of al-
gorithms for detecting referable glaucoma.24 However, LAC
DHS serves a high-risk population that is predominantly
Hispanic, which may explain why glaucoma referrals at a
CDR cutoff of 0.6 are high yield, though the optimal cutoff
may vary between different populations; around a quarter of
LAC DHS teleretinal patients detected with referable glau-
coma were diagnosed with manifest glaucoma after in-office
evaluation.13,25e27 Finally, our algorithm only evaluates
single fundus photographs, which is simplistic compared
with the comprehensive glaucoma evaluation.13 However, it
is important to point out that we plan to implement this
algorithm in resource-constrained screening environments,
where the cost of expensive diagnostic tests is prohibitive
and the effectiveness of fundus photography alone has been
demonstrated. Nevertheless, it is important to consider
future opportunities to incorporate accessible factors, such
as age and race, that could improve the predictive accuracy
of glaucoma referrals and minimize the burden of false
positives on the LAC DHS health system.28

In conclusion, the performance of our DL algorithm for
detecting referable glaucoma matched or exceeded LAC
DHS optometrists and independent clinicians with a range
of clinical experience. The implementation of validated AI
algorithms that approximate expert-level performance into
existing clinical workflows could enhance the timeliness and
quality of care while also conserving clinician time for direct
patient care, which is a valuable commodity in resource-
constrained health care systems providing care to under-
served, safety net populations.29e31 Artificial intelligence
can also provide more reproducible and adaptable diagnostic
capabilities, ensuring that more patients have consistent
access to a higher standard of care.32 However, further work
is needed to address technical, ethical, and legal questions
surrounding AI for glaucoma care before wide-spread
implementation.33e35
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