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Abstract

Background: Associations between haplotypes and quantitative traits provide valuable information about the
genetic basis of complex human diseases. Haplotypes also provide an effective way to deal with untyped SNPs. Two
major challenges arise in haplotype-based association analysis of family data. First, haplotypes may not be inferred
with certainty from genotype data. Second, the trait values within a family tend to be correlated because of common
genetic and environmental factors.

Results: To address these challenges, we present an efficient likelihood-based approach to analyzing associations of
quantitative traits with haplotypes or untyped SNPs. This approach properly accounts for within-family trait
correlations and can handle general pedigrees with arbitrary patterns of missing genotypes. We characterize the
genetic effects on the quantitative trait by a linear regression model with random effects and develop efficient
likelihood-based inference procedures. Extensive simulation studies are conducted to examine the performance of
the proposed methods. An application to family data from the Childhood Asthma Management Program Ancillary
Genetic Study is provided. A computer program is freely available.

Conclusions: Results from extensive simulation studies show that the proposed methods for testing the haplotype
effects on quantitative traits have correct type I error rates and are more powerful than some existing methods.

Keywords: Complex diseases, EM algorithm, Gene-environment interactions, Haplotype analysis, Hardy-Weinberg
equilibrium, Unphased genotype, Variance-component models

Background
With the advances in high-throughput genotyping tech-
nologies and the availability of dense SNPmaps across the
human genome [1], haplotype-based association analysis
plays an increasingly important role inmapping genes that
influence complex human diseases. Haplotypes, which are
specific combinations of alleles at several tightly linked
SNPs on a chromosome, incorporate the linkage disequi-
librium information and pertain to the functional prop-
erties of proteins through the amino acids sequences.
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Association analysis based on haplotypes tends to bemore
powerful than the analysis of individual SNPs, especially
when the causal SNPs are not directly typed or when
multiple mutations occur in the cis position [2–6].
Standard genotyping procedures only measure

unphased genotypes rather than haplotypes. Haplotypes
are ambiguous if the genotypes of a subject are heterozy-
gous at more than one marker locus. The ambiguity of
the gametic phase information poses a major challenge in
the haplotype analysis. For population-based studies with
unrelated individuals, a number of methods have been
developed to estimate haplotype frequencies or infer indi-
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vidual haplotypes from unphased genotype data [7–12]
and to make inference about the effects of haplotypes on
disease phenotypes [13–22].
Family studies are more attractive than population-

based studies because family data reduce the ambiguity
of haplotypes and are less prone to spurious associations
caused by population admixture and stratification. Sev-
eral methods have been developed to estimate haplotype
frequencies or infer individual haplotypes from unphased
genotype data for general pedigrees, including HAPLORE
[23], GENEHUNTER [24], PedPhase [25], and MERLIN
[26]. Zhang and Zhao [27] demonstrated through sim-
ulation studies that HAPLORE and MERLIN had com-
parable performance and outperformed the other two
methods.
Several methods have been developed for the haplo-

type association analysis in family studies. Horvath et
al. [28] extended the method of Rabinowitz and Laird
[29] to multiple markers and proposed a haplotype ver-
sion of family-based association tests (FBAT). The hap-
lotype FBAT estimates the haplotype frequencies by
the expectation-maximization (EM) algorithm [30] under
Hardy-Weinberg equilibrium. A score statistic is then
constructed in the same manner as the original FBAT
except that the genotype score is coded as a weighted
sum of haplotype scores, the weight being the condi-
tional probability of a particular haplotype configuration
given that it is compatible with the unphased genotype.
The haplotype FBAT is computationally simple and can
provide either haplotype-specific tests or multi-haplotype
tests. However, this method is limited to nuclear fami-
lies without covariates, does not account for within-family
trait correlations, and does not estimate genetic effects.
Furthermore, it discards the parental phenotype informa-
tion and thus may cause substantial loss of power. Dud-
bridge [31] proposed a retrospective likelihood approach
for the association analysis for nuclear families and unre-
lated subjects with missing genotype data. The retrospec-
tive likelihood is based on the probability of observing
the parental and offspring genotypes, given the trait val-
ues of the all the children in a nuclear family. Other
related work includes the family-based association test for
dichotomous traits [32], the extension of haplotype FBAT
to multiple phenotypes [33], and a Bayesian regression
method [34].
Missing genotype data are inevitable in genetic associ-

ation studies. For example, some study subjects may have
missing genotypes at certain SNP loci due to assay failures.
Another form of missing data arises when the investiga-
tors are interested in untyped SNPs, i.e., the SNPs that are
not on the genotyping platform used in the study and thus
missing on all study subjects. Haplotypes provide an effec-
tive way of inferring the missing genotypes at a particular
SNP from the observed genotypes of neighboring SNPs.

Lin et al. [35] developed efficient likelihood-based meth-
ods to deal with missing genotype data in case-control
studies. For family studies, Burdick et al. [36] and Chen
and Abecasis [37] imputed the missing genotype values by
their expected values via the Elston-Steward or Lander-
Green algorithm. Both methods require that at least some
members of a family have non-missing genotype data so
that they can be used to estimate the conditional distri-
bution of the missing genotypes for other members of the
family. These methods cannot be used when the geno-
type data of the entire family are missing and thus cannot
handle untyped SNPs.
In this paper, we present an efficient likelihood-based

approach to studying the associations between haplo-
types and quantitative traits. This approach estimates the
haplotype frequencies and the haplotype effects on the
quantitative trait simultaneously. It is very efficient in
dealing with missing genotype data. In addition, it allows
departures from Hardy-Weinberg equilibrium, accounts
for within-family trait correlations, and accommodates
general pedigrees with arbitrary patterns of missing data.
We characterize the effects of haplotypes on the quan-
titative trait by a linear regression model with random
effects and derive the corresponding likelihood function.
We develop efficient likelihood-based estimation and test-
ing procedures. Extensive simulation studies show that
the new methods perform well in realistic scenarios. An
application to family data from the Childhood Asthma
Management Program (CAMP) Ancillary Genetic Study
[38] is provided.

Results
Simulation studies
We conducted extensive simulation studies to assess
the performance of the new methods in realistic set-
tings. We simulated SNP genotypes according to the
haplotype distribution observed in the CEU sample
of the HapMap. The inbreeding coefficient ρ was
set to 0.02. We generated the quantitative trait val-
ues from model (2) in the Methods section with a
potentially causal haplotype or SNP. For each scenario,
we generated 10,000 data sets, each of which con-
tains 100 nuclear families with two parents and two
children.
In the first set of simulation studies, we evaluated the

performance of the newmethod for haplotype association
analysis. We were particularly interested in SNPs 20-24
on chromosome 18 of the CEU sample in the HapMap
genomewide data. This set of SNPs was previously con-
sidered by Lin et al. [35]. The LD among the 5 SNPs is not
particularly strong. The five most common haplotypes are
00000, 00011, 00100, 01000, and 01011, with frequencies
0.1431, 0.1312, 0.1941, 0.1756, and 0.1579, respectively.
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We generated trait values from the additive model

Yij = α + β1{I(Hij1 = h∗) + I(Hij2 = h∗)} + β2Xij

+β3{I(Hij1 = h∗) + I(Hij2 = h∗)}Xij + gij + eij, (1)
where the target haplotype h∗ is 00100 and the environ-
mental variable Xij is a Bernoulli random variable with 0.3
success probability. The parameters β1, β2, and β3 corre-
spond to the effect of the target haplotype, the effect of the
environmental variable, and the haplotype-environment
interaction, respectively. We set α, σ 2

g , and σ 2
e to 1, 0.5,

and 1.0, respectively. For making inference on β1, we set
β3 = 0.4 and varied β1 from 0 to 0.4; for making infer-
ence on β3, we set β1 = 0.4 and varied β3 from 0 to 0.4.
For each setting, we considered both the situation of no
missing genotypes and the situation with 10% randomly
missing genotypes.
Tables 1 and 2 summarize the results for estimating the

haplotype effect and haplotype-environment interaction,
respectively, while Table 3 presents the results for esti-
mating the haplotype frequencies under β1 = β3 = 0.4.
The estimators of the haplotype effect and haplotype-
environment interaction are virtually unbiased, and so
are the estimators of the haplotype frequencies. The vari-
ance estimators accurately reflect the true variations of the
parameter estimators, and the confidence intervals have
correct coverage probabilities. The results of the haplo-
type frequencies estimates are similar to those obtained
from HAPLORE. However, our main objective is to con-
duct haplotype association analysis and the proposed
full information maximum likelihood approach typically
yields statistically efficient parameter estimators by the
parametric likelihood theory.
We also compared the new method to the Haplotype

FBAT. Since the latter cannot handle covariates, we set

Table 1 Summary statistics for the estimation of the haplotype
effect

Effect size Missing rate Bias SE SEE CP

0 0.0 0.001 0.137 0.136 0.949

0.1 0.000 0.138 0.139 0.949

0.1 0.0 0.001 0.136 0.136 0.950

0.1 -0.003 0.140 0.139 0.949

0.2 0.0 -0.002 0.136 0.136 0.950

0.1 -0.002 0.139 0.139 0.949

0.3 0.0 0.002 0.133 0.136 0.955

0.1 -0.002 0.139 0.139 0.946

0.4 0.0 -0.002 0.136 0.136 0.950

0.1 -0.002 0.139 0.139 0.945

SE is the sampling standard error of the parameter estimator, SEE is the mean of the
standard error estimator, and CP is the coverage probability of the 95% confidence
interval

Table 2 Summary statistics for the estimation of the
haplotype-environment interaction

Effect Missing

size rate Bias SE SEE CP

0 0.0 0.003 0.237 0.234 0.946

0.1 0.002 0.241 0.238 0.942

0.1 0.0 0.003 0.237 0.234 0.946

0.1 0.003 0.241 0.238 0.942

0.2 0.0 0.003 0.237 0.234 0.947

0.1 0.006 0.241 0.238 0.946

0.3 0.0 0.003 0.237 0.234 0.947

0.1 0.003 0.241 0.238 0.946

0.4 0.0 0.003 0.237 0.234 0.947

0.1 0.003 0.241 0.238 0.946

SE is the sampling standard error of the parameter estimator, SEE is the mean of the
standard error estimator, and CP is the coverage probability of the 95% confidence
interval

β2 = β3 = 0 in model (1). Figures 1 and 2 display the
type I error and power of the association tests for the
haplotype effect at the nominal significance level of 0.01
without missing data and with 10% missing data, respec-
tively. The new method has the correct type I error and is
more powerful than the Haplotype FBAT. The power dif-
ferences are particularly strong when parental phenotype
data are available. The power gain of the newmethod over
the Haplotype FBAT is expected to be even more substan-
tial in the presence of covariate effects. Without missing
data, the new method has almost the same power as the
ideal case of known haplotypes. The loss of power for the
new method caused by missing genotypes is rather mod-
erate, even when there is substantial missingness. These
results suggest that the new method can effectively infer
the haplotype configuration and is efficient in dealing with
missing genotype data.
We next studied the problem of missing genotype data.

We considered the samemodel as before but set SNP 20 to
be causal with an additive effect. We let the genotypes of
the 5 SNPs be missing independently with a 10% missing

Table 3 Summary statistics for the estimation of haplotype
frequencies

Haplotype Bias SE SEE CP

00000 -0.0004 0.0181 0.0178 0.943

00011 0.0003 0.0173 0.0172 0.945

00100 0.0000 0.0202 0.0200 0.947

01000 0.0001 0.0197 0.0193 0.943

01011 -0.0003 0.0186 0.0185 0.945

SE is the sampling standard error of the parameter estimator, SEE is the mean of the
standard error estimator, and CP is the coverage probability of the 95% confidence
interval
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Fig. 1 Type I error and power of association tests on haplotype 00100 at the 1% nominal significance level when there are no missing genotype data

Fig. 2 Type I error and power of association tests on haplotype 00100 at the 1% nominal significance level when there are 10%missing genotype data
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rate and performed multi-SNP analysis by including all 5
SNPs in the model. Figure 3 displays the type I error of the
association tests at SNP 21, which is null, and the power of
the association tests at SNP 20, which is causal. The new
method provides accurate control of the type I error. The
improvement of the new method over the complete-case
analysis is substantial. Compared to the full-data analysis,
the new method has little loss of power. We also per-
formed single-SNP analysis by including only the causal
SNP in the model and compared the new method to the
imputation method by Chen and Abecasis [37]. Figures 4
and 5 show the size/power curves of the association tests
at SNP 20 with missing genotype rates of 10% and 20%,
respectively. The new method is substantially more pow-
erful than the imputation approach, especially when the
missing rate is high.
We finally studied the problem of untyped SNPs. We

considered the same model as in the above simulation
studies with missing genotype data.We set the causal SNP
20 to be untyped and performed single-SNP analysis on
SNP 20. In addition to the study sample, we generated a
reference panel with 30 or 60 nuclear families. As shown
in Fig. 6, the new method has proper type I error and rea-
sonable power compared to the ideal full-data analysis.

The reference panel of 30 families is almost as informative
as that of 60 families.

CAMP study
We used the new method to study associations between
asthma phenotypes and eight SNPs in the Beta2-
Adrenergic Receptor (β2AR) with data from the CAMP
Ancillary Genetic Study and compared the results to those
of the haplotype FBAT. The CAMP study was a clini-
cal trial of asthmatic children (mild to moderate asthma)
who were randomized to three different treatments. The
CAMP data set consists of 2,011 individuals in 652 nuclear
families. Four percent of the genotypes at eight β2AR
SNPs were missing. Polymorphisms in β2AR were found
to be associated with several asthma phenotypes in pre-
vious studies [39, 40]. In this paper, we considered the
standardizedmean asthma symptom score. Only 573 indi-
viduals had non-missing asthma symptom score data, but
genotype data for all individuals were used in the model to
infer the haplotype configurations. The same data set was
previously analyzed in [28].
As shown in Table 4, the new method and the hap-

lotype FBAT identified the same eight haplotypes with
frequencies greater than 0.01. The inbreeding coefficient

Fig. 3 Type I error and power of association tests at SNP 20, which has a causal additive effect on the phenotype, and SNP 21, which is null, at the 1%
nominal significance level when there are 10% missing genotype data. For complete-data analysis, all subjects with missing data are removed. For
full-data analysis, the missing genotypes are replaced by their true values
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Fig. 4 Type I error and power of single-SNP association tests at SNP 20, which has a causal additive effect on the phenotype, at the 1% nominal
significance level when there are 10% missing genotype data. For complete-data analysis, all subjects with missing data are removed. For full-data
analysis, the missing genotypes are replaced by their true values

was estimated at 0.04, with a p-value 0.005. The Hap-
lotype FBAT did not detect any significant associations,
whereas the new method detected significant associa-
tions of haplotypes “12211211” and “11211211” with the
mean asthma symptom score, the p-values being 0.017
and 0.023, respectively. Note that the Haplotype FBAT
does not estimate haplotype effects.
The results presented in Table 4 pertain to the com-

parison of a target haplotype with all other haplotypes.
We also performed an overall test by comparing six most
frequent haplotypes to all other haplotypes within the
same model. The resultant LR was 11.66 with 6 degrees of
freedom, the corresponding p-value being 0.07. The chi-
square test statistic from the haplotype FBAT was 6.98,
with a p-value of 0.32.

Conclusion
Haplotype-based association analysis of quantitative traits
in family studies is an important tool to identify genes that
influence complex human diseases. The existing methods
have severe limitations. In this article, we provide an effi-
cient likelihood-based approach to investigating the asso-
ciations between haplotypes and quantitative traits. Our
approach acknowledges the ambiguities of haplotypes in
the association analysis by integrating the construction of

haplotypes and the estimation of haplotype effects into
a single likelihood framework. In addition, our approach
accommodates environmental factors, properly accounts
for familiar correlations of trait values, and allows depar-
tures from Hardy-Weinberg equilibrium.
The proposed method appears to be more powerful

than Haplotype FBAT, which is a conditional test. The
haplotype FBAT, however, would be more robust to popu-
lation stratification than the proposed method. To control
for spurious association due to population stratification,
one may partition the haplotype effect into between- and
within-family components, as in [41, 42]. The between-
family component accounts for all the spurious associa-
tion and the within-family component provides a direct
measure of the haplotype effect.
In this paper, we use the algorithm described in Zhang

et al. [23] to identify the set of all possible haplotype con-
figurations compatible with the observed genotype data.
This set can be large for large pedigrees or when the
number of SNPs under consideration is large. Although
our theory applies to arbitrarily large pedigrees and large
number of SNPs, the proposedmethod is computationally
fast and numerically stable when both the pedigrees and
the number of SNPs are small. To overcome the compu-
tational limitation, one can use the alternative haplotype
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Fig. 5 Type I error and power of single-SNP association tests at SNP 20, which has a causal additive effect on the phenotype, at the 1% nominal
significance level when there are 20% missing genotype data. For complete-data analysis, all subjects with missing data are removed. For full-data
analysis, the missing genotypes are replaced by their true values

Fig. 6 Type I error and power of association tests of untyped SNP 20 at the 1% nominal significance level. For full-data analysis, the missing
genotypes are replaced by their true values
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Table 4 Haplotype-specific association analysis of the asthma
symptom score in the CAMP study

New Method Haplotype FBAT

Haplotype Freq. Effect LRT p-value Freq. Z-stat p-value

11122211 0.369 -0.052 0.739 0.390 0.357 0.904 0.366

12211211 0.345 0.144 5.743 0.017 0.352 -0.308 0.758

11221112 0.183 -0.034 0.182 0.669 0.180 -0.879 0.379

11211211 0.038 -0.377 5.153 0.023 0.037 -1.525 0.127

11221111 0.032 -0.052 0.056 0.813 0.029 1.432 0.152

11221122 0.011 0.223 0.782 0.376 0.011 0.998 0.318

reconstruction programs such as MERLIN, which only
computes the most likely haplotype configuration. Future
research is warranted to compare the statistical effi-
ciency and computational efficiency of different haplotype
reconstruction programs.
Some studies involve both families and unrelated indi-

viduals. Epstein et al. [43] proposed a likelihood-based
approach to single-marker association analysis of binary
traits using data from triads and unrelated subjects. For
the haplotype-based association analysis of quantitative
traits, our approach is applicable to arbitrary pedigrees
and therefore can combine information from families and
unrelated individuals in a single combined analysis. In
fact, we can treat unrelated individuals as unrelated fam-
ilies but with just one individual in each family. This nice
feature allows us to extract all available information and
further improve the power of association tests.
Under model (2), the quantitative traits within a fam-

ily follow a multivariate normal distribution. This model
may not be appropriate for non-normal traits or traits
with outliers. We are currently developing robust semi-
parametric variance-components models [44] for study-
ing associations between haplotypes and non-normally
distributed quantitative traits.
It is desirable to adjust for the effects of multiple test-

ing when considering several haplotype configurations in
the same study, especially in genomewide studies. The
Bonferroni correction would be overly conservative and
permutation would be computationally intensive. Huang
et al. [45] proposed an efficient Monte-Carlo approach to
adjusting for multiple testing for the haplotype analysis
in case-control studies. It would be worthwhile to extend
their approach to family studies.
In a haplotype association analysis, the set of all possible

haplotype configurations can be large, even for a mod-
erately large number of SNPs. Consequently, the number
of parameters included in the model can be huge if we
include all possible haplotype configurations in the phe-
notype model, and numerical computations may not be
stable. We suggest specifying one or a few haplotypes of

interest in the association test. We may consider a two-
step procedure to identify a set of “risk" haplotypes. In the
first step, for each possible haplotype configuration with
the frequency above a certain threshold (e.g., 0.01), we fit
the proposed model and estimate the haplotype effect. In
the second step, we include those haplotypes with signif-
icant effects (e.g., with p-values <0.05) in the phenotype
model. This procedure is similar to some methods in
the variable selection literature. It would be interesting
to investigate the properties of such a procedure in the
future.
In the presence of missing genotype data, one can

carry out the single-SNP analysis by using the imputation
method, in particular, the multiple imputation procedure
[46]. In contrast, the proposed method is based on the
full informationmaximum likelihood, which tends to have
more efficient parameter estimators than the multiple
imputation method when the model assumptions are sat-
isfied. Additionally, multiple imputation method requires
repeated runs of the model, and special care is needed
to estimate the standard errors of the parameter estima-
tors. On the other hand, the multiple imputation method
is more flexible than the full information maximum likeli-
hood approach.
One limitation of the proposed method is that it is

developed for common variant analysis. With the avail-
ability of high-throughput sequencing data, it would be
interesting to develop rare variance analysis methods for
family studies with missing data. This is a topic for future
research.

Methods
Suppose that the study contains n families or general pedi-
grees, with ni individuals in the ith pedigree. Let Yij be the
quantitative trait of interest and xij be a set of environ-
mental variables for the jth member of the ith pedigree.
Assume that each individual is genotyped at M tightly
linked diallelic SNPs. At each SNP locus, the two possi-
ble alleles are denoted by 0 and 1. The total number of
possible haplotypes is K = 2M. For example, the possible
haplotypes for three SNPs are 000, 001, 010, 011, 100, 101,
110, and 111. For k = 1, · · · ,K , let hk denote the kth pos-
sible haplotype. The distribution of the diplotype (i.e., the
pair of haplotypes on the two homologous chromosomes)
is often assumed to satisfy Hardy-Weinberg equilibrium
such that

πkl = πkπl, k, l = 1, · · · ,K ,

where πkl is the probability that the diplotype H con-
sists of hk and hl, and πk is the population frequency
of haplotype hk . We consider the following extension of
Hardy-Weinberg equilibrium:
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πkl =
{

π2
k /(1 − ρ + ρ

∑K
j=1 π2

j ), k = l,
(1 − ρ)πkπl/(1 − ρ + ρ

∑K
j=1 π2

j ), k �= l,

where 0 ≤ πk ≤ 1,
∑K

k=1 πk = 1, and ρ is the inbreed-
ing coefficient [47, p. 93]. Excessive homozygosity and
excessive heterozygosity arise under ρ > 0 and ρ < 0,
respectively. The special case of ρ = 0 corresponds to
Hardy-Weinberg equilibrium.
For i = 1, . . . , n and j = 1, . . . , ni, let Hij ≡ (Hij1,Hij2)

denote the diplotype of the jth member of the ith family,
and Gij denote the corresponding multi-locus genotype.
Note that Gij codes the number of the “1” allele at each
locus such thatGij = Hij1+Hij2. We cannot determineHij
from Gij with certainty if the individual is heterozygous at
more than one SNP site or if any SNP genotype is missing.
In association studies, we are interested in estimating

the effects of Hij and xij and possibly their interactions on
Yij. However, we observe Gij instead of Hij. We denote the
probability distribution of Hij by P(Hij; γ ), where γ con-
sists of πk (k = 1, · · · ,K) and ρ. By using a haplotype
reconstruction program, such as HAPLORE [23], we can
identify the set of all possible haplotype configurations,
denoted by S(Gi), which are compatible with (possibly
missing) genotype Gi ≡ (Gi1, · · · ,Gini).
We specify the following linear regression model with

random effects

Yij = α + βTZ(Hij1,Hij2, xij) + gij + eij, (2)

where α is the intercept, Z(Hij1,Hij2, xij) is a vector func-
tion of (Hij1,Hij2) and xij, β is the corresponding set of
regression parameters, gij is a random effect due to genes
at unlinked loci, and eij is an individual-specific residual
environmental effect. Note that gij is used to capture the
correlations of the quantitative trait values within the fam-
ily. The random variables gij and eij are assumed to be
independent zero-mean normal with variances σ 2

g and σ 2
e ,

respectively. The phenotypic covariance matrix of Yi ≡
(Yi1, · · · ,Yini)T can be expressed as

Vi = 2σ 2
g �gi + σ 2

e Ii,

where �gi is the matrix of kinship coefficients, and Ii is an
identity matrix.
We define Z(Hij1,Hij2, xij) according to the genetic

mode of inheritance. For example, the choice of

Z(Hij1,Hij2, xij) =
⎡
⎣ I(Hij1 = h∗) + I(Hij2 = h∗)

xij
{I(Hij1 = h∗) + I(Hij2 = h∗)}xij

⎤
⎦

corresponds to an additive model for the haplotype effect,
environmental effects and haplotype-environment inter-
actions, where h∗ is the target haplotype of interest, and
I(·) is the indicator function. If we are interested in the
recessive or dominant effect of h∗, then we set the geno-
type score in Z(Hij1,Hij2, xij) to I(Hij1 = Hij2 = h∗) or

I(Hij1 = h∗ or Hij2 = h∗), respectively. We may include
additional terms in Z so as to assess the effects of several
haplotype configurations and to test for multi-haplotype
effects.
Write θ = (α,βT, σ 2

g , σ 2
e )T. Let P(Yi|xi,Hi; θ) denote

the multivariate normal density function of Yi condi-
tional on xi and Hi, where xi = (xi1, · · · , xini), and
Hi = (Hi1, · · · ,Hini). Let P(Hi; γ ) denote the probability
distribution ofHi. Note that P(Hi; γ ) is proportional to∏

j∈{founders}
P(Hij; γ ).

The complete-data likelihood function for parameters θ

and γ given (Yi, xi,Hi,Gi) (i = 1, · · · , n) is proportional
to

n∏
i=1

P(Yi|xi,Hi; θ)P(Hi; γ ),

and the likelihood function based on the observed data
(Yi, xi,Gi) (i = 1, · · · , n) is proportional to

L(θ , γ ) =
n∏

i=1

∑
Hi∈S(Gi)

P(Yi|xi,Hi; θ)P(Hi; γ ). (3)

It is worth noting, although we use the algorithm in
HAPLORE to identify the set S(Gi), we maximize the
likelihood in (3) to obtain the estimators of all unknown
parameters simultaneously, including haplotype frequen-
cies, regression coefficients, and variance parameters.
Treating the Hij’s as missing data, we maximize (3)

through the EM algorithm. In the (t+ 1)th E-step, we cal-
culate the conditional expectation of the logarithm of (3)
given the observed data and current parameter estimates
θ̂

(t) and γ̂ (t) as follows:

n∑
i=1

∑
Hi∈S(Gi)

ω
(t)
Hi

{
logP(Yi|xi,Hi; θ) + logP(Hi; γ )

}
,

(4)

where

ω
(t)
Hi

= P(Yi|xi,Hi; θ̂
(t)

)P(Hi; γ̂ (t))∑
H∗

i ∈S(Gi) P(Yi|xi,H∗
i ; θ̂

(t)
)P(H∗

i ; γ̂
(t))

,

which is the conditional probability that the haplotype
configuration for the ith family is Hi given the observed
data and current parameter estimates. In the (t + 1)th
M-step, we maximize (4) to update parameter estimates.
We iterate the E-step and the M-step until convergence.
One can alsomaximize the observed-data likelihood func-
tion (3) directly by using an optimization algorithm [48].
The resultant maximum likelihood estimator (MLE) is
denoted by (̂θ , γ̂ ). By extending the arguments of Lin
and Zeng [21] and Diao and Lin [44], we can show that



Diao and Lin BMCGenetics           (2020) 21:99 Page 10 of 11

(̂θ , γ̂ ) is consistent, asymptotically normal and asymptot-
ically efficient. In addition, the covariance matrix of (̂θ , γ̂ )

can be estimated by the inverse of the observed informa-
tion matrix. To test the haplotype effects or haplotype-
environment interactions, we calculate the likelihood ratio
test statistic

LR = −2[ log L(̃θ , γ̃ ) − log L(̂θ , γ̂ )] ,

where (̃θ , γ̃ ) is the restricted MLE under the null hypoth-
esis. The null distribution of LR is asymptotically χ2 with
the degrees of freedom equal to the number of the regres-
sion parameters in the null hypothesis. (Note that we are
testing the regression effects, not the variance compo-
nents.) The Wald statistic can also be used to perform
hypothesis testing and construct confidence intervals.
Analysis of single SNPs with missing genotypes can be

treated as a special case of the proposed haplotype analy-
sis. If we are interested in the additive effect of a particular
SNP, then we set the genotype score in Z(Hij1,Hij2, xij)
in model (2) to be the value of (Hij1 + Hij2) at that SNP
position; recessive and dominant effects can be similarly
modeled. We can also define Z(Hij1,Hij2, xij) to formulate
the joint effects of allM SNPs or any subset of them.
When one of the M SNPs is untyped, there is no infor-

mation in the study data to estimate the joint distribution
of theM SNPs. We can infer the joint distribution from an
external reference database, such as the HapMap. Natu-
rally, the family study and the reference panel are assumed
to come from a common population. Let LR(γ ) denote
the likelihood for γ based on the reference database. Then
the likelihood for (θ , γ ) that combines the study data and
reference database is

LC(θ , γ ) = L(θ , γ )LR(γ ).

The EM algorithm described earlier can be used to maxi-
mize the likelihood LC(θ , γ ). The resultant MLE of (θ , γ )

preserves the desired asymptotic properties.
We have developed a stand-alone computer program

that implements the new methods. The program is rea-
sonably efficient in terms of computation. It takes about
0.8 seconds to analyze one data set in the simulation stud-
ies presented in the next section on an iMac with a 3 GHz
Intel Core i5 processor. This program is freely available on
the website: https://sites.google.com/view/guoqingdiao-
homepage.
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