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Multiple lines of evidence suggest that the transcription factor
STAT3 is linked to a protective and reparative response in the
heart. Thus, increasing duration or intensity of STAT3 activation
ought to minimize damage and improve heart function under
conditions of stress. Two recent studies using genetic mouse
models, however, report findings that appear to refute this
proposition. Unfortunately, studies often approach the question
of the role of STAT3 in the heart from the perspective that all
STAT3 signaling is equivalent, particularly when it comes to
signaling by IL-6 type cytokines, which share the gp130 signal-
ing protein. Moreover, STAT3 activation is typically equated
with phosphorylation of a critical tyrosine residue. Yet, STAT3
transcriptional behavior is subject to modulation by serine
phosphorylation, acetylation, and redox status of the cell.
Unphosphorylated STAT3 is implicated in gene induction as
well. Thus, how STAT3 is activated and also what other signaling
events are occurring at the same time is likely to impact on the
outcome ultimately linked to STAT3. Notably STAT3may serve as
a scaffold protein allowing it to interact with other singling
pathways. In this context, canonical gp130 cytokine signaling
may function to integrate STAT3 signaling with a protective
PI3K/AKT signaling network via mutual involvement of JAK
tyrosine kinases. Differences in the extent of integration may
occur between those cytokines that signal through gp130
homodimers and those through heterodimers of gp130 with a
receptor a chain. Signal integration may have importance not
only for deciding the particular gene profile linked to STAT3,
but for the newly described mitochondrial stabilization role
of STAT3 as well. In addition, disruption of integrated gp130-
related STAT3 signaling may occur under conditions of oxidative
stress, which negatively impacts on JAK catalytic activity. For
these reasons, understanding the importance of STAT3 signal-
ing to heart function requires a greater appreciation of the
plasticity of this transcription factor in the context in which it is
investigated.

Introduction

Evidence suggests that overall the actions of the transcription
factor STAT3 in the heart are beneficial. Some key studies

involving genetic mouse models supporting a role for STAT3
in ischemic protection and preventing heart failure are listed
in Table 1.1-9 For a comprehensive overview of this rather com-
plicated topic, the reader is referred to several recent articles that
chronicle the significant contribution that STAT3 plays in cardiac
development, protection and remodeling.10-13 Of particular
significance, this transcription factor has been implicated in the
protection of cardiac myocytes that is provided by ischemic and
pharmacological pre- and postconditioning, delayed ischemic
preconditioning and post-infarct remodeling. Not surprisingly,
many of the beneficial actions of STAT3 in the heart are ascribed
to its transcriptional activity. STAT3 activation in the heart has
been implicated (often based on circumstantial evidence) in
the upregulation of anti-apoptotic (Bcl-xL),14,15 anti-oxidant
(MnSOD and metallothioneins)16,17 and pro-angiogenic (VEGF
and VE-cadherin)18 genes, as well as production of protective
paracrine factors by endothelial cells.19 Some studies have also
attributed anti-fibrotic and anti-inflammatory actions to STAT3
signaling in the heart through suppression of gene expression.20,21

STAT3 might suppress gene expression by well characterized
means such as by competing with other transcription factors or
cofactors. Alternatively, STAT3 might be linked to inhibition
or induction of miRNAs that in turn determine the mRNA
expression profile of cardiac cells.22

Involvement of STAT3 in both early preconditioning and
postconditioning would not by design involve gene expression.
In this regard, recent evidence suggests that STAT3 has direct
non-transcriptional actions at the level of the mitochondrion that
are protective of cardiac function by limiting excessive reactive
oxygen species (ROS) generation.23 These mitochondrial actions
of STAT3 are poorly understood, but may have significance not
only for both preconditioning and postconditioning, but heart
failure as well. The nontranscriptional role of STAT3 may be
related to the separate observations that STAT3 can serve as a
scaffold protein and is redox-sensitive.24-26 The latter attribute
of STAT3 may manifest itself by formation of higher order
complexes that conceivably could affect its association with other
proteins and subcellular distribution.

On the other hand, there is evidence that STAT3 activation
in cardiac myocytes may be harmful in certain cases. STAT3 has
been linked to pathological cardiac hypertrophy through both
canonical (phosphorylation on Y705)9,27,28 and noncanonical
(unphosphorylated STAT3 accumulation in the nucleus) means;29
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although, as noted by others, convincing evidence linking
STAT3 activation under normal levels of expression to actual
physical hypertrophy of cardiac myocytes is scant.13 However, a
recent study reported that uncontrolled STAT3 activation
downstream of a mutant intractable gp130, the common receptor
of interleukin-6 (IL-6) cytokines, is harmful to the heart in
myocardial infarction by causing excessive inflammation (upre-
gulation of IL-6 and complement-activating mannose-binding
lectin C), ventricular rupture, and heart failure.30 A genetic
reduction in cardiac myocyte STAT3 levels was able to rescue
the mutant gp130 phenotype. In addition, hearts of mice
with cardiac myocyte-targeted deletion of SOCS3, the STAT3-
induced inhibitor of gp130, were characterized by development
at about 25 weeks of age of cardiac contractile dysfunction,
various ventricular arrhythmias and signs of heart failure that
were preceded by abnormalities in Ca2+ handling and troponin I
hypophosphorylation.31 Given previous reports linking STAT3
signaling to cardiac remodeling, it is notable that only “minimal
histological abnormalities” were seen in SOCS3 cardiac knockout
(KO) failing hearts, although cardiac myocyte hypertrophy was
present. The SOCS3 KO phenotype was rescued by simultaneous
cardiac-specific gp130 KO.

How can STAT3 activation be both beneficial and harmful
to the heart? Unfortunately studies often approach the question
of the role of STAT3 in the heart from the perspective that
all STAT3 signaling is equivalent, particularly when it comes
to signaling by the IL-6 type cytokines, which share the gp130
signaling protein. However, we propose that the context of how
STAT3 is activated and also what other signaling events are
occurring at the same time will impact on the outcome ultimately
linked to STAT3 activation. As an extension of this proposition,
a better understanding of the events that regulate STAT3
activation and its transcriptional and nontranscriptional (mito-
chondrial) behaviors is imperative. To complicate matters further,
STAT3 “activation” for the purposes of transcription, and likely
for its mitochondrial actions, may involve either tyrosine (Y705)
or serine (S727) phosphorylation alone,32-36 both (more typically/
canonically)37 or neither,38 and is now known to be impacted as
well by acetylation and cellular redox status.13,39,40 In canonical
signaling, S727 phosphorylation occurs in either the cytoplasm
or nucleus on STAT3 that is likely already phosphorylated on

Y705, as prior S727 phosphorylation seems to block Y705
phosphorylation.41 Interestingly S727 phosphorylation may play
a critical role in the mitochondrial actions of STAT3.42 Thus,
STAT3 S727 phosphorylation in the cytoplasm may function
as a switch favoring the mitochondrial actions of STAT3 over
its canonical nuclear actions, although this is conjecture and will
need to be investigated.

Leukemia Inhibitory Factor (LIF) and LIF Receptor

A number of factors have been shown to induce STAT3 activation
in the heart, including prolactin, granulocyte colony-stimulating
factor (G-CSF), tumor necrosis factor-a (TNFa), erythropoietin
(Epo), opioids, leptin, angiotensin II and insulin.13,43-47 Pre- and
postconditioning-induced STAT3 activation is attributable to the
release of paracrine factors, such as TNFa and IL-6.10-13,48-50 The
increase in ROS that accompanies ischemia-reperfusion (IR) in
the heart is also associated with marked STAT3 activation;51

whether ROS activates STAT3 via an effect on upstream JAK
kinases, phosphatases or largely through the upregulation or
release of paracrine factors is not known.52

Notably, cardiac IR is associated with the production of IL-6
cytokines, which are prominent activators of STAT3 signal-
ing.10-13 The IL-6 family of cytokines signal through the com-
mon signaling subunit gp130.10-13 They can be further classified
according to those that signal through gp130 homodimers
(IL-6 and IL-11), gp130 heterodimers with the LIF receptor
[LIF, cardiotrophin-1 (CT-1), ciliary neurotrophic factor
(CNTF), cardiotrophin-like cytokine (CLC) and oncostatin M
(OSM) in humans], or gp130 heterodimers with the OSM
receptor (OSM). Additional ligand-binding proteins are needed
for IL-6, IL-11, CNTF, CLC and probably CT-1. LIF likely
binds first to the LIF receptor (LIFR/CD118), which then
dimerizes with gp130.53 LIFR is ubiquitously expressed in the
normal heart and unlike gp130 does not appear to be down-
regulated (at least appreciably) in human heart failure,54-57

although cardiac levels of LIF are increased in heart failure.58,59

The IL-6 family cytokines are frequently described as charac-
terized by functional redundancy, particularly with regard to
signaling in the heart.12 Although different actions among them
have been noted, the differences are commonly explained away as

Table 1. Key genetic mouse models supporting a role for STAT3 in cardiac ischemia-reperfusion and heart failure

Ischemia-reperfusion N Ischemic pre/post-conditioning lost in TNFa knockout,1 TNFa receptor knockout,2 IL-6 knockout3 or cardiac-myocyte
STAT3 knockout mice4

N Cardiac myocyte STAT3-deficient mice show enhanced sensitivity to ischemia-reperfusion injury5

Heart failure N Cardiac myocyte STAT3-deficient mice show reduced myocardial capillary density and increased interstitial fibrosis within
4 mo, followed by dilated cardiomyopathy with impaired cardiac function and premature death due to heart failure5

N Cardiac myocyte-targeted STAT3 knockout mice show greater sensitivity to inflammation, cardiac fibrosis
and heart failure with advanced age6

N Cardiac myocyte-specific gp130 knockout mice develop heart failure in response to pressure overload accompanied by
increased cardiac myocyte apoptosis7

N Mice with reduced STAT3 activity/levels have increased susceptibility to doxorubicin-induced heart failure and greater
susceptibility to LPS-induced toxicity8

N Mice with cardiac myocyte-targeted STAT3 overexpression develop cardiac hypertrophy but are resistant to
doxorubicin-induced cardiomyopathy9
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due to differences in expression levels of receptors or duration of
STAT3 activation. However, marked qualitative differences have
been noted among the gp130-related cytokines as far as gene
induction and functional impact, in particular between IL-6 and
LIF, which are not amenable to a straightforward explanation
based on the strength of their respective signaling responses. At
an early time, it was noted that IL-6 and LIF differ as far as the
induction of acute-phase genes.60 More recently, LIF and IL-6
have been shown to counter-regulate development of the T lym-
phocyte lineages with IL-6 coupling moreover to the activation of
a gene response that downregulates LIF signaling.61

How IL-6 and LIF might exert dissimilar actions is not known.
Based on conjecture, LIFR likely modifies the character of the
gp130 signal, but how this occurs is not known. LIFR and
gp130 are structurally very similar (Fig. 1).62,63 Both contain
three box regions with the two membrane proximal ones being
important for association with a JAK family kinase and the distal
one playing a role in STAT3 and Src-family kinase Hck activa-
tion (and possibly reinforcing ERK activation at least for
gp130).63,64 gp130 has four YXXQ motifs that upon tyrosine
phosphorylation by a JAK family kinase serve as docking sites
for STAT3 (and potentially STAT1); the cytoplasmic domain of
LIFR is shorter and has three YXXQ motifs.

Both gp130 and LIFR contain a more membrane proximal
YXXV motif that upon phosphorylation is important in signal
termination by recruiting SHP2 or SOCS3.65 SHP2 terminates
signaling through its tyrosine phosphatase activity, but also
serves as a scaffold protein linking gp130 and LIFR to additional
signaling pathways (Fig. 2).64,66-68 SOCS3 is induced by STAT3
and terminates LIF/IL-6 signaling by inhibiting JAK activity
directly through the N-terminal kinase inhibitory region (KIR)
or by facilitating ubiquitination and proteasomal degradation of
the JAKs, other signaling components, or receptors.37 A signifi-
cant difference between the YXXV site of LIFR and gp130 is that
the former shows little affinity for SOCS3, while the latter binds

both SOCS3 and SHP2.65 This might explain why LIF-induced
STAT3 signaling is in general sustained (although at a reduced
level from the initial increase), while IL-6 activation of STAT3 is
brief (personal observation).

In addition to JAK-STAT3 signaling, LIFR and gp130 couple
to the activation of 2 major signaling pathways: SHP2/MAPK
and phosphatidylinositol 3-kinase (PI3K)/AKT.10,12,69 Whether
LIFR and gp130 couple equally well to both of these pathways
is not known. The MAPK that have been best studied are
ERK1/2 and ERK5. Tyrosine phosphorylation of SHP2 leads to
its interaction with Grb2 (growth factor receptor bound protein)
and SOS (son of sevenless), which triggers the Ras/RAF/MEK/
ERK cascade (Fig. 2). Tyrosine phosphorylated SHP2 was linked
to ERK5 activation via Grb2-associated binder-1 (Gab1), a
scaffolding/docking protein which likely contributes to protective
signaling as well (Fig. 3).70-75 ERK5 activation is thought to be
responsible for the unique hypertrophic phenotype of longitudinal
elongation produced by the IL-6 type cytokines on cardiac
myocytes. Details on how LIFR and gp130 couple to PI3K/AKT
signaling is not known, although the PI3K regulatory subunit
p85 likely associates with SHP2 via Gab1 as well (Fig. 3). PI3K
in turn leads to activation of AKT and a diverse series of signal-
ing pathways. STAT3 appears to serve as a scaffold protein that
helps assemble an activation module with JAKs activating STAT3
and indirectly, PI3K and AKT, and in turn PI3K “activating”
STAT3 by phosphorylating S727.24,52,76

Notably, PI3K/AKT signaling is essential for conferring
cardioprotection in response to ischemic pre- and postcondition-
ing stimuli, being involved in both the trigger and mediator
phases.73 Its involvement in the latter forms part of the reper-
fusion injury salvage kinase (RISK) pathway that confers pro-
tection by attenuating opening of the mitochondrial permeability
transition pore (MPTP) through as yet undefined means (Fig. 3).
A second set of intracellular signaling events that operates
independently of the RISK pathway as a trigger for protection
and also confers protection during reperfusion by targeting
MPTP opening was recently identified and involves STAT3
activation. It was named the survivor activating factor enhance-
ment (SAFE) pathway.76-78 Details on how the SAFE pathway
works at the level of the mitochondrion are not known. Thus,
the IL-6 family of cytokines have in theory the potential of
conferring protection to cardiac myocytes from IR injury by
activating both the SAFE and RISK pathways (Fig. 3). Indeed,
the LIFR ligand CT-1 was shown to protect isolated cardiac
myocytes and the adult rat heart from injury when added either
just prior to ischemia or at reoxygenation/reperfusion.79,80 This
was not the case with human heart muscle preparations which
required longer exposure to CT-1 to confer protection indicating
that gene expression was involved.81

A carboxyl-terminal acidic domain of gp130 was shown to
couple to cellular proliferation and inhibition of stem cell
differentiation through the binding and activation of Src family
kinases, in particular Hck (Fig. 2).63,64 Hck represents an addi-
tional means by which gp130 may be linked to ERK activation.
The relevance of this signaling pathway in the heart has not been
explored. Neither is it known if Hck (or another Src family

Figure 1. Schematic of the cytoplasmic regions of human gp130 and
LIFR showing the relative locations of the three box motifs and the
STAT3 YXXQ binding motifs. The YXXV domain is important for linking
the receptors to PI3K/AKT and SHP2/MAPK signaling pathways and
for termination of signaling by recruiting either SHP2 or SOCS3. SHP2
terminates signaling through its tyrosine phosphatase activity. SOCS3
terminates signaling by inhibiting JAK activity directly through
the N-terminal kinase inhibitory region (KIR) or by facilitating the
ubiquitination and proteasomal degradation of signaling components.
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member) modulates gp130 signaling; however, such a scenario
might explain the increased tyrosine phosphorylation of gp130
in the face of reduced tyrosine phosphorylation of JAK2 in
hearts of patients with end-stage dilated cardiomyopathy.57

The focus of our research has been LIF, which has been shown
to be produced by cardiac myocytes and to have protective effects
on heart cells. Pretreatment of adult or neonatal cardiac myocytes
with LIF protected against hypoxia-reoxygenation or doxorubicin-
induced injury at a later (6–12 h) time point.15,16,82,83 LIF
treatment was also shown to protect the heart from IR injury
or myocardial infarction.84,85 These beneficial actions of LIF are
attributed in part to the stimulation of angiogenesis and
upregulation of MnSOD, Bcl-xl and VEGF.16,83-87 LIF was also
shown to have effects on the growth, metabolism, contractility
and Ca2+ handling of cardiac myocytes, which might overall
be considered disadvantageous; however, because these studies
mainly relied on cultured cells or isolated muscle the physiological
significance of these effects is uncertain.74,75,88-95

Several recent observations support the conclusion that pro-
duction of LIF by cardiac myocytes may have physiological
importance under stress conditions in myocardial repair and

regeneration beyond a protective action on the cells themselves.
In the mouse, LIF was found to contribute to the homing of
bone marrow-derived cardiac progenitors to the infarcted myo-
cardium and the differentiation of resident cardiac stem cells
into endothelial cells.96,97 Second, in a rat genetic model of heart
failure, myocardium-produced LIF was shown to cause choliner-
gic transdifferentiation of cardiac sympathetic nerves, which
might represent a means of protecting the heart from excessive
sympathetic drive.59

STAT3—Too Much of a Good Thing?

Two recent studies seem to provide evidence supporting the old
adage that too much of a good thing is harmful in the case of
STAT3 activation in the injured or aging myocardium. Or do
they? In one study, sustained activation of STAT3 in cardiac
myocytes following a stress stimulus (MI) was achieved by
expressing a mutant gp130 protein (Y757F) that does not bind
SOCS3 in mice that also have a heart targeted deletion of
gp130.30 Thus, the “rescued” gp130 signaling in cardiac myocytes
of these mice was refractory to inhibition by SOCS3. Of note, the

Figure 2. Basic signaling similarities and differences of gp130 (right, blue) and LIFR (left, orange). Gp130 has 4 STAT3 binding sites and LIFR has 3.
Both receptors couple to ERK1/2 activation through SHP2 functioning as a scaffold protein. The tyrosine phosphatase activity of SHP2 is thought
to contribute to termination of receptor signaling. The SHP2 site on gp130 also binds SOCS3, which terminates signaling by inhibiting JAK activity.
The tyrosine phosphatase SHP1 associates with JAK1 and contributes as well to termination of gp1320 and LIFR signaling. gp130 contains an acidic
domain (light blue) comprising amino acids 771 to 811 that binds the Src-family kinase Hck and couples to ERK1/2 and Pyk2 (not shown) activation.64

Phosphorylation of LIFR on S1044 by ERK1/2 was shown to promote receptor degradation.66 For gp130, S782 phosphorylation may regulate cell surface
expression.67 At least for gp130, other phosphorylation events have been reported. PKCd that is associated with STAT3 may phosphorylate gp130
on T890, helping to stabilize STAT3-gp130 association.68
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SOCS3 recruitment site is important for SHP2 binding and
thus coupling of gp130 to MAPK, and possibly to PI3K/AKT,
signaling would be expected to be impaired as well. Indeed, hearts
harboring the mutant gp130 protein showed no increase over
wild type mice in either ERK or AKT activation following
MI, although STAT3 pY levels were markedly enhanced. The
other study employed cardiac myocyte-targeted SOCS3 KO mice,
which not only showed increased STAT3 pY levels, but increased
AKT, ERK, and p38 MAPK activation.31 These signaling
pathways were enhanced under basal conditions. The fact that
STAT3 activation was enhanced under basal conditions in the
SOCS3 KO model, but not the gp130 Y757F model, indicates
that something was driving gp130 signaling (which could be
characterized as complete) in the SOCS3 KO model in a feed-
forward manner. Consequently, the SOCS3 KO mice developed
cardiac hypertrophy and heart failure with age without additional

stress. In these mice, imposition of stress by transverse aortic
constriction further enhanced gp130 signaling and caused cardiac
dysfunction. Together, both studies would seem to refute the
oft-cited supposition that sustained STAT3 activation is beneficial
and anti-inflammatory (as seen with IL-10), while brief STAT3
activation is harmful and pro-inflammatory (as seen with IL-6).98

STAT1 activation was not enhanced in either model. This is
somewhat surprising as the genetic reprogramming of IL-6
signaling in SOCS3 KO macrophages was attributed to enhanced
STAT1 activation, owing perhaps to enhanced recruitment of
the two more membrane distal YXXQ STAT binding sites
of gp130 that are capable of activating both STAT1 and
STAT3.99,100 However, increased STAT1 activation was not
found in the heart in either the SOCS3 KO (“preliminary
observation”; personal communication, Dr Yajima) or the gp130
Y757F model.30 This would have neatly explained deleterious

Figure 3. Coupling of gp130 (blue, right) to cardiac protective signaling. Similar events pertain to LIFR (orange, left), but for simplicity are not shown.
The scaffold protein Gab1 forms a central point of a signaling complex linking JAK1
The PI3K catalytic subunit p110 is activated resulting in creation of phosphorylated phosphatidylinositol binding sites for AKT. Once at the membrane,
AKT is activated by phosphorylation by phosphoinositide dependent protein kinase 1 (PDPK1) and mammalian target of rapamycin complex 2 (mTORC2).
AKT plays a role in both the trigger and mediator phases of pre- and postconditiong.70-73 The role of AKT in the mediator phase is illustrated here. AKT
and ERK1/2 comprise the reperfusion injury salvage kinase (RISK) pathway. Both kinases phosphorylate and inhibit glycogen synthase kinase 3 b (GSK3b)
leading to inhibition of mitochondrial permeability transition pore (MPTP) opening, which can cause cell death. ERK1/2 and AKT can inhibit GSK3b as well
via nitric oxide synthase 3 (NOS3) activation. AKT also prevents MPTP opening by activating hexokinase II (HKII). Activation of STAT3 constitutes
the survivor activating factor enhancement (SAFE) pathway for cardiac ischemic protection.71 Long-term STAT3 is thought to induce genes that are
protective. A mitochondrial role for STAT3 has been proposed to explain short-term actions and may preferentially involve STAT3 phosphorylated
on S727 (green circle). GAB1 and SHP2 are also linked to cardiac hypertrophy caused by the IL-6 type cytokines via ERK5 activation.
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consequences of enhanced gp130 signaling as several lines of
evidence have shown that STAT1 has pro-apoptotic actions in
cardiac myocytes, both as a transcription factor and as a signaling
molecule.101

Although both models were associated with increased STAT3
activation (tyrosine phosphorylation) there are marked differences
in the phenotypes of the two models that are illuminating and
indicate that prolonged STAT3 activation was not functionally
equivalent in both (Table 2). Of note, the gp130 Y757F model
was associated with enhanced cardiac inflammation, while the
SOCS3 KO model was not (although inflammation in the gp130
Y757F model was assessed in hearts subjected to MI, whereas in
the SOCS3 KO model inflammation was assessed under basal
conditions). Since inflammation was observed in the instance
where there was no concomitantly enhanced PI3K/AKT signal-
ing, enhanced STAT3 signaling may not be inflammatory perhaps
as long as it is balanced (both in magnitude and temporally) by
enhanced PI3K signaling. Consistent with this possibility is the
finding that cardiac myocyte-targeted STAT3 overexpression was
associated with cardiac hypertrophy, but was protective against
doxorubicin-induced heart failure.9

While STAT3 signaling is important for the anti-inflammatory
actions of IL-10, the basis for why IL-10-induced STAT3
signaling is anti-inflammatory is still unresolved; however,
evidence was recently presented that a subset of STAT3-induced
anti-inflammatory genes in macrophages in response to IL-10
treatment is dependent upon PI3K-mediated signaling.102 In this
scenario, cytokine-induced activation of inflammatory genes by
PI3K/AKT-mediated activation of NFkB (or by STAT3) may be
offset by the actions of PI3K/AKT on STAT3 signaling (as long
as the latter is sustained). Moreover, NFkB p65 and p50 are
known to physically interact with functional consequences regard-
less of whether STAT3 is tyrosine and/or serine phosphory-
lated.103 Conceivably, different phosphorylation (or acetylation)

profiles of STAT3 might be associated with different gene
expression profiles linked to STAT-NFkB association.

PI3K signaling and JAK-STAT signaling could converge at
multiple sites in both the cytoplasm and nucleus to affect
expression of a particular gene, but of note the PI3K/AKT
pathway also induces acetylation of lysine residues on STAT3 that
affect dimerization and transcriptional behavior.39,40,104-106 In this
regard, the gp130 Y757F model was associated with increased
levels of cardiac STAT3, which may have been due to STAT3-
induced STAT3 expression.38 Accumulating evidence shows
that accumulation of unphosphorylated STAT3 in the nucleus
can drive expression of a set of pro-inflammatory genes, includ-
ing IL-6, which was in fact increased in the gp130 Y757F
model.30,38,107 Thus, under certain conditions STAT3 activation
sets into play a series of events that lead to a sustained inflam-
matory response.

Redox Sensitivity

Coupling of LIF and the other IL-6 family cytokines to a balanced
PI3K-STAT3 response requires JAK activation. The increased
STAT3 “activation” (i.e., increased tyrosine phosphorylation) that
is observed with IR need not reflect a JAK-mediated event as
protein tyrosine phosphatases are known to be inactivated by
oxidative stress.108 In fact, we found that oxidative stress inhibits
LIF-induced JAK1 and JAK2 activity in cardiac myocytes.109

Since then site-directed mutagenesis experiments were performed
to demonstrate that two nearby cysteine residues in the amino-
teminus region of JAK2’s catalytic domain act together as a
redox-sensitive switch.110 The presence of this switch would thus
permit the catalytic activity of JAK2 to be directly regulated by
the redox state of the cell. Of note, these cysteine residues are
highly conserved in both JAK1 and JAK2 among mammalian
and most lower-order species.

Table 2. Comparison of two genetic mouse models of sustained cardiac STAT3 activation

MODEL

Y757F SOCS3 KO

Baseline* Stress (MI) Baseline Stress (TAC)

pY STAT3 ≅ ↑ (. . WT)** ↑ ↑ (. WT)

pS STAT3 nr nr nr nr

STAT3 ≅ ↑ (later times) ≅ ≅

pYSTAT1 ≅ ≅ ≅
(initial screening)

nr

STAT1 ≅ ≅ ≅ nr

PI3K/AKT ≅ ≅ (↓) ↑ (AKT)† ↑ (AKT) (. WT?)

SHP2/MAPK ≅ ≅ (modest ↑) ↑ (ERK, p38)† ↑ (ERK) (. WT?)

Phenotype
Normal cardiac function

and morphology

↑ mortality
↑ LV rupture

↑ cardiac Inflammation
Heart failure

Cardiac hypertrophy
Heart failure

(No cm disarray, necrosis, apoptosis,
inflammation or interstitial fibrosis)

Cardiac hypertrophy
Cardiac dysfunction

*At 3 mo; **Both level and duration; †At 15 weeks, but not 8 weeks. Symbols/abbreviations: ≅, no difference compared with wild type; cm, cardiac myocyte;
nr, not reported; WT, wild type; ↑, increase; ↓, decrease.
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STAT3 transcriptional response may also be directly affected
by oxidative stress due to the presence of redox-sensitive
cysteines.25,111 Oxidative stress undoubtedly impacts on STAT3
transcriptional signaling indirectly in multiple ways as well.
We recently presented evidence that oxidative stress may
attenuate LIF-induced gene expression in human microvascular
endothelial cells by causing serine phosphorylation and degrada-
tion of STAT3’s binding partner and transcriptional cofactor
p300/CBP.112

Mitochondrial STAT3

Recent studies demonstrate STAT3 localizes to mitochondria
of different cell types and regulates respiration.23,42,113,114 STAT3
deletion reduced respiration of cardiac myocyte mitochondria due
to 50% decrease in activities of complexes I and II.42 Loss of
mitochondrial STAT3 decreased ATP production and enhanced
ROS generation.115 These findings are consistent with reports of
increased ROS formation by complex I with decreased activity,
as seen in the heart with ischemia or age.116,117 Besides regulating
the electron transport chain, STAT3 associates with matrix-
localized cyclophilin D, the target of mitochondrial permeability
transition pore (MPTP) inhibitor cyclosporine.113 In fact, mito-
chondria from STAT32/2 hearts undergo MPTP opening at
lower calcium levels, which has significance for ischemia-
reperfusion injury.113 Recently, cardiac myocyte-specific over-
expression of mitochondria-targeted STAT3 was found to
partially block complexes I and II with no increased basal ROS
production; however, there was no ischemia-induced ROS release
from complex I and less reduction in complex I activity with
ischemia.118 How STAT3 regulates complexes I/II is unknown,
but some intermediary process is likely, since the ratio of
complexes I and II to mitochondrial STAT3 is ~105.113,114 S727
phosphorylation would seem to be important in STAT3’s
mitochondrial actions. Impaired activity of complexes I and II

of mitochondria from STAT3–/– pro-B cells could be restored by a
mimetic of constitutively serine phosphorylated STAT3 (STAT3
Y705F/S727D), while STAT3 Y705F/S727A was ineffective.42

Also, a number of studies report that STAT3 pS727 is enriched
in mitochondria compared with the cytoplasm;119-122 however,
this may not be the case for all species.123 The question of whether
ischemic pre- or post-conditioning dynamically regulate mito-
chondrial STAT3 levels or phosphorylation profile has not been
determined.124 Conceivably, translocation of STAT3 to mito-
chondria could function as part of a feedback loop to control
mitochondrial generation of ROS.

Conclusions and Future Directions

The transcription factor STAT3 has been implicated in a pro-
tective and reparative response in the heart. Thus, increasing
duration or intensity of STAT3 activation ought to minimize
damage and improve heart function under conditions of stress.
However, given the many ways that STAT3 is post-translationally
modified and its interaction with other signaling networks, the
assumption that enhanced STAT3 activity is solely a reflection of
increased tyrosine phosphorylation must be construed as a gross
over-simplification. Understanding the beneficial importance of
STAT3 signaling to heart function will require a greater
appreciation of the context in which it is activated. In this regard,
defining the differences in the impact on the heart between
gp130 homodimer and heterodimer STAT3 activation will be
illuminating.
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