
RESEARCH ARTICLE

Shifts in ovine cardiopulmonary microRNA

expression in late gestation and the perinatal

period

Ramona H. Krauss1,2, Belinda Phipson3, Alicia Oshlack2,3, Nikita Prasad-Gupta1,2, Michael

M. Cheung1,2,4, Joseph J. Smolich1,2, Salvatore PepeID
1,2,4*

1 Heart Research, Murdoch Children’s Research Institute, Melbourne, Australia, 2 Department of

Paediatrics, University of Melbourne, Melbourne, Australia, 3 Bioinformatics, Murdoch Children’s Research

Institute, Melbourne, Australia, 4 Department of Cardiology, Royal Children’s Hospital, Melbourne, Australia

* Salvatore.Pepe@mcri.edu.au

Abstract

Background

MicroRNAs (miRNAs) have been identified as important contributors to the regulation of

early fetal cardiopulmonary development. However, miRNA expression profiles during late

gestation and the early neonatal period are not fully elaborated in large mammals such as

sheep (ovis aries). The aim of this study was to sequence miRNA from cardiopulmonary tis-

sues in late gestation and neonate sheep to identify changes in miRNA expression.

Methods

Illumina HiSeq next-generation deep sequencing (NGS) was performed on ovine tissues

from the left (LV) and right ventricles (RV), lungs and pulmonary artery (PA) of preterm

fetuses (128 days), near-term fetuses (140 days) (term = 148 days) and neonatal lambs (5

days). NGS reads were mapped to the sheep genome (OviAri) and published miRNA

sequences.

Results

Of 1345 cardiopulmonary miRNAs that were sequenced, relatively few major shifts in

miRNA expression were detected with increased age from near term to neonates, and were

confirmed by quantitative real-time PCR: bta-miR-146a (lung), bta-miR-22-3p (lung, LV),

hsa-miR-335* (lung, PA), and miR-210 (lung, PA, LV).

Conclusions

Sequencing of miRNA led to identification of four predominant miRNA in ovine cardiopulmo-

nary tissues which alter expression during late gestation and the early neonatal period, con-

current with important functional changes in heart and lungs.
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Introduction

MicroRNAs (miRNA) are short noncoding RNAs (18–25 nucleotides) that exert intricate reg-

ulation of cellular processes by post-transcriptional inhibition of specific gene expression. Via

incorporation in the RNA-induced silencing complex (RISC), miRNAs repress RNA transla-

tion or promote mRNA degradation, preventing protein translation [1]. A critical role for

miRNAs in mammalian cardiac development has been identified by studies in mice with car-

diac-specific deficits of mature miRNAs that disrupt heart morphogenesis in early gestation

[2–4]. In addition, upregulation of the miR-15 family has been implicated in cardiomyocyte

binucleation and cessation of cardiomyocyte proliferation after birth [5], while a postnatal

switch from the slow (fetal) β-myosin heavy chain to the faster (mature) α–myosin heavy

chain in cardiomyocytes has been linked to expression shifts in the miR-208 family [6]. Fur-

thermore, a role for miRNAs in regulating lung development has been identified in rats [7–9],

and mice [10–12]. However, in part due to their short gestation, many temporal aspects of

heart and lung development in rodents differ from those of humans. For example, rats and

mice have no detectable alveoli in the lungs at birth, while development of the coronary circu-

lation in rats is not completed until after birth [13–15].

By contrast to rodents, the fetal and newborn cardiopulmonary physiology of sheep (ovis
aries) shares similar important features with humans [16,17]. However, apart from a recent

microarray study of left ventricular (LV) microRNA expression in fetal, neonatal and juvenile

sheep [18], there is a dearth of large animal studies examining changes in cardiac and pulmo-

nary miRNA expression between late-gestation and the early neonatal period. Altered expres-

sion patterns of miRNA are anticipated with key changes between the late gestation and

neonatal period such as: structural maturation of the fluid-filled lungs with emergence of sur-

factant production; a shift from right ventricular (RV) to LV functional dominance and aug-

mentation of cardiac pumping performance; a marked fall in pulmonary arterial blood

pressures; and the dramatic switch to air-breathing lungs at birth [16,17,19,20].

Accordingly, the aim of this study was to determine the late gestation changes in miRNA

expression occurring between preterm fetal, near-term fetal and neonatal sheep (ovis aries) in

LV and RV myocardium, main pulmonary artery (PA) and lungs. Due to the few ovine

miRNA entries available in databases such as miRBase [21], and the sizable limitations of

microarray profiling [22], which include insensitivity to detect single nucleotide differences

between species (thus limiting the capacity to detect a greater range of miRNA and previously

unidentified miRNAs), we therefore used next-generation deep sequencing (NGS) to expand

the cardiopulmonary sheep ‘miRNome’. Validation of shifts in expression of specific miRNAs

was performed by quantitative real time RT-PCR (qRT-PCR) using specific primers (TAQ-

MAN and custom designed) for both reverse transcription and qRT-PCR.

Methods

Animals

All animal study protocols were approved by the Murdoch Children’s Research Institute Ani-

mal Ethics Committee. Border-Leicester cross ewes with documented time-monitored mating

and pregnancies were purchased from a licensed supplier of sheep for scientific use (Victoria,

Australia). Sheep welfare, husbandry, accommodation, nutrition, transport and experimental

protocols were managed and performed according to the Australian Code of Practice for the

Care and Use of Animals for Scientific Purposes (National Health & Medical Research Council

of Australia, 8th edition). After transportation to the research facility, prior to experimental

use, ewes were acclimatised for 1–3 weeks under veterinary surveillance and daily monitoring.
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Sheep were penned individually but roomed with companions and conditioned to staff and

noise. Neonates were penned with their mother. Feed intake was divided into two portions. In

addition, lucerne hay was provided in hanging baskets to allow time for active foraging for

food. Cage floors were covered with rubber mats to ensure comfort of footing.

For the collection of fetal samples, pregnant Border-Leicester cross ewes at a gestation of

either 127–129 days (PT group) or 140–142 days (NT group) were anaesthetized with an intra-

muscular injection of ketamine (5mg/kg) and xylazine (0.1mg/kg), followed by inhalation of

isoflurane (5%) delivered by mask [23]. After tracheal intubation, anaesthesia was maintained

with 2–3% isoflurane and nitrous oxide (10–20%) in oxygen-enriched air delivered via a vol-

ume-controlled ventilator (900C Servo; Siemens-Elema, Solna, Sweden), supplemented by

intravenous infusion of ketamine (1–1.5mg/kg/h), midazolam (0.1–0.15mg/kg/h), and fenta-

nyl (2–2.5mg/kg/h). Fetuses were delivered via a midline laparotomy and hysterotomy and

euthanized with an overdose of sodium pentobarbitone (100 mg/kg) prior to collection of tis-

sue samples. Ewes and neonatal lambs (Neo, 5–7 days of age) were euthanized with an over-

dose of sodium pentobarbitone.

Processing of tissue samples and RNA extraction

Fetal and neonatal tissues were dissected on ice immediately after euthanasia, with samples

collected from the LV and RV free walls of the heart, the main PA arising from the RV, and

the right (mid-lobe) lung. All tissues samples were snap frozen and stored at -80˚C after

dissection.

Frozen tissue samples (50 mg) were ground into a fine powder using a mortar and pestle

immersed in liquid nitrogen. Total RNA extractions from tissues were performed with the

miRNeasy kit from Qiagen (catalog number 217004) according to the manufacturer’s recom-

mendations with the following modifications:

1) the incubation in Qiazol (step 4) was extended to 8 minutes to improve RNA quality;

and 2) the mixing time with chloroform (step 5) was extended to 30 seconds. For Illumina

HiSeq next-generation deep sequencing (NGS) samples, the optional on column DNase diges-

tion was performed using the DNase kit from Qiagen (catalog number 79254) according to the

manufacturer’s protocol after step 10. Total RNA was eluted in 35μl Nuclease-free water in the

last step.

Illumina HiSeq next-generation deep sequencing

Illumina HiSeq next-generation deep sequencing (NGS) was performed by the Australian

Genome Research Facility platform in the Walter and Eliza Hall Institute of Medical Research

in Melbourne, Australia. The TruSeq Small RNA Library Preparation Kit with a size selection

range of 145–160 nt (RNA selection 18–33 nt) was used for library preparation. The standard

protocol was run for 50 cycles.

Pre-processing and analysis of miRNA-Seq data. The first data processing step involved

adaptor trimming and size selection using the cutadapt tool [24]. First, N’s were removed from

the 5’ end of the sequences, and then the 5’ and 3’ adaptor sequences and their reverse comple-

ments were removed sequentially. In the final step, all sequences outside the 15-32nt range, the

common length for miRNAs, were excluded.

Next, NGS reads were mapped to the sheep genome, version OviAri3, from the UCSC web-

site (http://genome.ucsc.edu/). The bowtie aligner, which is designed for short reads, was used

for mapping the reads [25]. As the sheep reference genome may not be complete and sheep are

heterozygous with respect to genetic background, up to two mismatches were allowed, and the

“best” mapped reads were retained.
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The next step was to annotate the miRNAs and exclude small RNA species other than miR-

NAs from the analysis. As only a limited number of miRNAs have been cloned in sheep, all

miRNAs listed online in miRBase, version 21 (http://mirbase.org/), as well as recently pub-

lished sheep miRNAs [26–28] were used for annotating the miRNAs as follows. The sequences

of all the previously published sheep miRNAs, as well as known miRNAs across all species in

miRBase were mapped to the sheep genome, after converting U’s to T’s with the FAS-

TX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). The alignment was performed using

bowtie, specifying no mismatches and retaining the best alignment. Redundant miRNAs were

removed from the combined list such that all miRNAs are non-overlapping using a custom R

script. The result was a custom annotation file with a list of 2388 miRNAs mapping to Ovi-
sAri3, with chromosomal location for each miRNA. This was used for quantification of the

miRNAs in the sheep samples.

For statistical analysis, only miRNAs that mapped to the sheep genome and overlapped

with the custom annotated miRNAs were included. Reads were counted over the annotated

miRNAs using the featureCounts software [29]. Lowly expressed miRNAs were filtered out by

retaining only those miRNAs that had at least one count per million in at least three samples.

Thus, a list of 1345 miRNAs that are expressed in at least one condition and with the ‘best’

alignment was created, which we refer to as the ‘cardiopulmonary sheep miRNome’ in the

text. All miRNAs of the ‘cardiopulmonary sheep miRNome’ including their chromosomal

location, orientation and sequences are listed in S1 Table. Detailed information about miRNA

nomenclature is reported by Griffith-Jones, et al, [30] as well as in the miRBase, and as cited

above [26–28]. Species-specific prefixes are detailed in Fig 1.

The raw counts were analysed in the R statistical computing environment, using the edgeR

[25] and limma [31] Bioconductor [32] packages. The data was TMM normalized [24] to

account for composition bias; and cyclic loess normalization applied in the voom transforma-

tion step [27]. Differential expression for the comparisons of interest was assessed using mod-

erated t-statistics in each tissue separately, using the ‘robust = TRUE’ option to account for

outliers [33]. miRNAs were called significantly differentially expressed if the Benjamini and

Hochberg adjusted false discovery rates [34] were less than 15%. Only miRNAs with an

AveLogExp>1 were included for further analysis.

Reverse Transcription and qRT-PCR. The expression of identified miRNAs was quanti-

fied using the TaqMan miRNA expression assays from Applied Biosystems (AB) listed in

Table 1.

Total extracted RNA (10ng/sample) underwent Reverse Transcription to produce miRNA-

specific cDNA using the TaqMan miRNA Reverse Transcription kit (Applied Biosystems, cat-

alog number 4366597) according to the manufacturer’s protocol. cDNA samples were stored

at -30˚C until required. Per well, 1.34μl Reverse Transcription product was mixed with 7.66μl

Nuclease-free water and 10μl TaqMan 2X Universal PCR Master Mix, NoAmpErase UNG

(Applied Biosystems, catalog number 4364341). All reactions were run in triplicates except

where specified otherwise in a 7900HT Fast Real-Timer PCR System (Applied Biosystems)

according to the manufacturer’s recommendations.

Fold changes were calculated with the common ΔΔCt method described by Livak and

Schmittgen [35]. Ct values were normalized to the average of two miRNAs which showed the

lowest SD across all tissue samples in the NGS analysis. Thus, ΔCt values were calculated as fol-

lows:

DCt ¼ Ct ðtested miRNAÞ � average Ct ðbta � miR � 2284x; PC � 5p � 592� 3212Þ:

For the comparisons of miRNA expression between the age groups in each cardiopulmonary

Cardiopulmonary miRNA in ovine late gestation
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tissue ΔΔCt values were calculated as follows:

Comparison 1Þ Near � term versus preterm fetuses : DDCt ¼ DCt ðNTÞ � DCt ðPTÞ

Comparison 2Þ Neonate versus near � term fetuses : DDCt ¼ DCt ðNeoÞ � DCt ðNTÞ

Fold changes were calculated as the relationship 2-ΔΔCt.

Fig 1. The proportion of miRNA reads detected in Illumina HiSeq next-generation deep sequencing (NGS) which mapped to the sheep genome version OviAri3
as well as recently identified ovine miRNAs (‘PC’ [34]) or miRNAs of the miRBase (http://mirbase.org/). The miRNA prefix defines the species in which the

identified miRNA was cloned: bta = bos taurus (cattle), hsa = homo sapiens (human), oar = ovis aries (sheep), mmu = mus musculus (mouse), ssc = sus scrofa (pig),

oan = ornithorhynchus anatinus (platypus), let = caenorhabditis elegans (worm), mdo = monodelphis domestica (opossum), rno = rattus norvegicus (rat), eca = equus

caballus (horse), cfa = canis familiaris (dog); none = no species-specific prefix (conserved sequence across species). Number: number of miRNAs mapping to sequences

of a specific species. 5: percentage of total detected miRNAs. NB: All identified miRNAs are listed in S1 Table.

https://doi.org/10.1371/journal.pone.0204038.g001

Table 1. TaqMan Assays used for qRT-PCR measurements. miRNA-ID: miRNA ID: microRNA name as listed in S1 Table. Assay name and catalog #: commercially

available assay from Applied Biosystems. Sequence: sequence of the miRNA profiled by TaqMan assay.

miRNA-ID Sequence Assay name catalog #

bta-miR-22-3p_R+1 AAGCUGCCAGUUGAAGAACUG bta-miR-22-3p 4440886

bta-miR-27a-3p_R+1 UUCACAGUGGCUAAGUUCCGC hsa-miR-27a 4427975

bta-miR-146a_R-2 UGAGAACUGAAUUCCAUAGGUU xtr-miR-146 4440886

miR-210 CUGUGCGUGUGACAGCGGCUG custom designed 4398987

hsa-miR-335� UUUUUCAUUAUUGCUCCUGACC hsa-miR-335� 4427975

PC-5p-592_3212 UAGCAGCACGUAAAUAUUGGG custom designed 4398987

bta-miR-2284x_R+1 UGAAaaGUUCGUUCGGGUUUU bta-miR-2284x 4440886

https://doi.org/10.1371/journal.pone.0204038.t001
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ΔCt values were compared in statistical analyses using GraphPad Prism 6. Data were calcu-

lated using one-way analysis of variance (ANOVA) followed by unpaired Student’s tests, with

p values adjusted with a Bonferroni correction for multiple comparisons.

Results

Identification of ovine miRNAs by NGS

To create a novel ‘cardiopulmonary sheep miRNome’, Illumina HiSeq NGS was performed on

tissue samples collected from lung, PA, RV and LV of three different developmental age

groups (n = 3 per group): preterm fetuses (PT) 128 days in gestation (term = 147 days), near-

term fetuses (NT) 140 days in gestation, and neonatal lambs (Neo) aged 5–7 days. NGS reads

detected across all samples were mapped to the sheep genome version OviAri3 and annotated

with miRNAs across all species from miRBase, including more recently published ovine miR-

NAs [26].

Across all tested tissue samples (lung, PA, LV and RV), 1345 miRNAs were annotated using

a novel bioinformatics strategy (see Methods section for details). We refer to these 1345 miR-

NAs as the ‘cardiopulmonary sheep miRNome’, with details of all miRNAs, including their

chromosomal locations and sequences listed in S1 Table. A prefix defines the species in which

the miRNA has been cloned, whereas miRNAs without a prefix are conserved miRNAs with

identical sequences across species.

Fig 1 summarizes the overlap of the detected miRNAs with miRNA sequences published in

ovis aries and other species. Of the 1345 detected miRNAs, 584 were sheep-specific miRNAs,

with only 80 listed as ovine miRNAs (prefix = oar) in the miRBase, and 504 being more

recently published miRNAs (prefix = PC) [26]. A high number (288) of the detected miRNAs

were non-specific cross-species conserved miRNAs (no miRNA prefix). A similarly high num-

ber (236) of detected miRNAs were cattle-specific miRNAs (prefix = bta). Notably 130

detected miRNAs were identified as human-specific miRNAs (prefix = hsa). The remaining 62

miRNAs mapped to miRNA sequences previously identified for other species including

mouse, rat and zebrafish. Considering the high proportion of gene homology (>90%) between

sheep, cattle and human lungs, the 584 sheep-specific miRNA are likely variants that differ to

bovine or human by one or a few base-pairs.

Age-group comparisons of miRNA expression measured by NGS

To identify changes in miRNA expression occurring during ovine cardiopulmonary develop-

ment, differential expression of the miRNAs between the different age groups was assessed in

each tissue separately (n = 3 per age group). The miRNA expression changes were compared

between PT and NT, and between NT and Neo groups. Differentially expressed miRNAs were

detected using moderated t-statistics in the limma package [31]. The results for all miRNAs of

the ‘cardiopulmonary sheep miRNome’ in each tissue are listed in S1 Table.

MicroRNAs were further investigated if they had an average log expression (AveLogExp) of

>1 count per million (cpm) and their fold changes achieved a false discovery rate (FDR) of

<15% (see ‘Methods’ for further details of analysis). Under these criteria, 84 miRNA expres-

sion changes were detected across all tissues (41 decreases and 43 increases). Of these, 78

occurred from NT to Neo, and only six from PT to NT, with the majority of changes in

miRNA expression (59) detected in the lung.

Comparing changes between PT and NT groups, expression of only one miRNA (PC-3p-

30485_40) decreased in the lung. On the other hand, in the LV, three miRNAs were up-regu-

lated (miR-7641, miR-3074-5p and bta-miR-221_R+1) and two down-regulated (bta-miR-
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148a, oar-miR-370-3p_R-2). By contrast, no miRNAs changed expression in the RV and PA

between the PT and NT groups at FDR<0.15 and AveLogExp>1.

Comparing miRNA expression between NT and Neo at FDR<0.15 and AveLogExp>1, 58

miRNAs changed expression in the lung (32 were up-regulated and 26 down-regulated), 16 in

the PA (six up-regulated, 10 down-regulated), four in the LV (two up-regulated and two

down-regulated) and none in the RV (see Table 2). Notably, two of the largest changes

included a 20-fold increase in LV for mmu-miR-208a-5p and a 20-fold increase in PA for PC-

5p-874723_1. Changes in miRNA expression between NT fetuses and Neo lambs in the lung

included bta-miR-15b (39% increase, FDR = 0.11), hsa-miR-24-2�_L+1R-1 (93% increase,

FDR = 0.07), miR-29a (83% increase, FDR = 0.15), bta-miR-27a-3p_R+1 (70% increase, FDR:

0.02) and bta-miR-146a_R-2 (168% increase, FDR = 0.04).

It is noteworthy that, between the NT and Neo groups, altered expression of three miRNA

occurred in more than one tissue. These comprised: 1) bta-miR-22-3p_R+1, which increased

in the lung (by 100%, FDR = 0.02), PA (by 53%, FDR = 0.05) and LV (by 100%, FDR = 0.06):

2) miR-210 which decreased in the lung (by 52%, FDR = 0.02), PA (by 56%, FDR = 0.07) and

LV (by 52%, FDR = 0.13) and; 3) hsa-miR-335� which increased in the lung (by 100%,

FDR = 0.03) but decreased in the PA (by 58%, FDR = 0.05).

Age-group comparisons of miRNA expression validated by qRT-PCR in a

second series of sheep

Five miRNA candidates were selected from the NGS study for validation in a second indepen-

dent series of PT, NT and Neo sheep by qRT-PCR (n = 4 per group), namely bta-miR-22-3p_R

+1, bta-miR-27a-3p_R+1, bta-miR-146a_R-2, miR-210 and hsa-miR-335�.

As shown in Fig 2A, bta-miR-22-3p_R+1 expression increased in the lung from PT to NT

(by 50%, p<0.05) and from NT to Neo (by 82%, p<0.01), and markedly in the LV from NT to

Neo (by 267%, p<0.001). However, bta-miR-27a-3p_R+1 expression (Fig 2B) increased in the

LV between PT and NT (by 59%, p<0.05), but was unchanged in tested tissues between NT

and Neo. By contrast, Bta-miR-146a_R-2 expression (Fig 2C) was unaltered in tested tissues

from PT to NT, but between NT and Neo, increased in the lung (by 112%, p<0.001) and LV

(by 72%, p<0.01). On the other hand, miR-210 expression (Fig 2D) increased from PT to NT

in the RV (by 60%, p<0.05), but between NT and Neo, decreased in lung (by 47%, p<0.01),

PA (by 53%, p<0.05), LV (by 39%, p<0.05) and RV (by 44%, p<0.01). Hsa-miR-335� expres-

sion (Fig 2E) decreased from PT to NT in the lung (by 53%, p<0.001), PA (by 38%, p<0.05),

LV (by 27%, p<0.001) and RV (by 37%, p<0.01), and between NT and Neo, decreased in the

PA (by 33%, p<0.05), but increased in the lung (by 62%, p<0.05).

Comparison of the results in sheep from the NGS and qRT-PCR studies

All age-related miRNA expression changes detected at FDR<0.15 and AveLogExp>1 in the

NGS study were confirmed at p<0.05 in the qRT-PCR study, except for the apparent increased

expression of bta-miR-22-3p_R+1 in the PA and bta-miR-27a-3p_R+1 in the lung, which did

not validate by qRT-PCR (p = 0.50 and p = 0.15 respectively).

When profiling miRNA expression in the qRT-PCR validation group, ten additional signifi-

cant miRNA expression changes were detected that were not evident at FDR<0.15 by NGS.

Between PT and NT, these comprised three additional increases (bta-miR-22-3p_R+1 in the

lung, bta-miR-27a-3p_R+1 in the LV and miR-210 the RV) and four decreases (hsa-miR-335�

in the lung, PA, LV and RV). The corresponding changes from NT to Neo were two increases

(bta-miR-22-3p_R+1 in the RV and bta-miR-146a_R-2 in the LV) and one decrease (miR-210

in the RV). Of note, all additional significant age-related changes detected with qRT-PCR
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showed fold-changes in the same direction as in the NGS analysis, however at FDR>0.15 (S1

Table).

Fig 3 summarizes fold changes in miRNA expression confirmed at both FDR<0.15 by NGS

and p<0.05 by qRT-PCR, and indicates that changes significant with both techniques were

present from NT to Neo, but not between PT and NT. These changes were evident in bta-miR-

22-3p_R+1 (increase in lung and LV), miR-210 (decrease in lung, PA and LV), hsa-miR-335�

(increase in lung and decrease in PA) and bta-miR-146a_R-2 (increase in lung).

Discussion

Our study has identified a total of 1345 miRNAs in fetal and neonatal ovine cardiopulmonary

tissues. With only 584 miRNA identified as sheep specific, only 80 of these miRNAs are listed

in the miRBase as sheep-specific miRNAs (miRBAse-OAR3.1). Although this reinforces the

need to further identify and consolidate the sheep miRNA expression during fetal and neona-

tal development of the heart and lungs. Most ovine miRNAs published in the miRBase have

been cloned in ovine skeletal muscle, whereas organ and region-specific or cell type-specific

expression differences in miRNA nucleotide sequences have had very limited detailed study.

Thus it is not surprising that only a small number of the miRNAs detected in our study

mapped to ovine miRNAs listed in the miRBase. Many of the 584 sheep-specific miRNA vary

by as little as a single base pair to human or other species. The finding that a high number of

miRNAs detected in our study had conserved sequences common to other species justifies the

Fig 2. The expression patterns of miRNA confirmed by qRT-PCR in lung, pulmonary artery (PA), left ventricle (LV), and

right ventricle (RV) from three age groups: preterm fetus (PT), near-term fetus (NT), neonatal lamb (Neo). A. bta-miR-22-

3p_R+1, B. bta-miR-27a_R+1. C. bta-miR-146a_R-2, D. miR-210, E. hsa-miR-335�. �p<0.05, ��p<0.01, ���p<0.001. Data are

represented as mean±SD, n = 4.

https://doi.org/10.1371/journal.pone.0204038.g002

Fig 3. The miRNA expression fold changes which were confirmed in both the sheep group used for NGS (FDR<0.15) and the sheep group used for

qRT-PCR (p<0.05) are summarised for changes between near-term fetuses and neonatal lambs. Fold Change increases in expression are green and decreases

red. Legend color variations indicate significance levels. FDR = false discovery rate for Illumina HiSeq next-generation deep sequencing (NGS) and P = adjusted p-

value for quantitative real-time PCR (qRT-PCR), n = 7 (NGS = 3; qRT-PCR = 4).

https://doi.org/10.1371/journal.pone.0204038.g003
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integration of miRNAs which mapped to sequences of other species in the analysis. In particu-

lar, there was a predominant overlap of the identified ovine miRNA sequences with bovine-

specific miRNA sequences. More work is required to determine and validate whether such

minor base pair differences reflect only species-specific genetic and protein differences or

potentially differences in miRNA function, including cell type-specific fine regulatory

function.

Only relatively few of the 1345 miRNAs detected by NGS in the ovine cardiopulmonary tis-

sues showed differential expression that progressed according to age, suggesting that there

may be strict temporal and spatial regulation of miRNA expression during cardiopulmonary

development in late gestation and the early postnatal period. Although tissue fragmentation

methods (mechanical or enzymatic) for subsequent RNA extraction are known to produce a

distribution of fragment sizes, it is highly likely that tissue type may also influence fragment

size distribution on the basis of tissue density and fibrous composition. As the library sizes for

the LV and RV samples were smaller than the library sizes for the PA and lung samples, this

may have had some influence on NGS sensitivity to detect miRNA expression changes in LV

and RV. A high variation in library sizes across different samples commonly occurs when per-

forming NGS [36]. It is unclear whether the differences in library sizes occurring in our study

represent a true biological variation as a potential limitation in the detection of significant age-

related changes was the small sample size of the NGS series (n = 3).

When measuring miRNA expression by qRT-PCR, more miRNA expression changes

between the age groups could be detected compared to NGS. The reason for the discrepancy of

the results may relate to differing experimental and statistical approaches of NGS and

qRT-PCR along with limited subject numbers. Most miRNAs shifts were found to change in

more than one tissue, indicative of roles at multiple targets. Although some of these miRNA

have previously been reported for murine heart, their functional role and targets have not been

determined in the context of fetal and neonatal ovine cardiopulmonary development.

It is important to consider miRNA expression in the context of the marked changes in

ovine cardiopulmonary physiology that occur during the latter part of gestation, and more par-

ticularly, between the fetal and newborn periods [16,17,19,20,37]. The fetal circulation has an

“in parallel” and compartmentalized organization whereby both ventricles contribute to perfu-

sion of fetal body tissues, but with LV output mainly distributed to the upper body and the

bulk of RV output crossing the ductus arteriosus (a vascular channel connecting the pulmo-

nary trunk directly to the descending thoracic aorta) to provide most of the blood flow to the

lower fetal body and placenta. Only a minor portion of the RV output passes to the fetal lungs,

which have a high vascular resistance and do not participate in respiratory gas exchange as

they are filled with fluid. However, the RV is the functionally dominant heart chamber in the

fetus as RV output exceeds LV output, while blood pressure in the pulmonary trunk is greater

than in the aorta [16,20].

Substantial fetal growth and cardiopulmonary maturation occurs during late gestation (i.e.

between the PT and NT time-points), manifested by rises in arterial blood pressures and ven-

tricular outputs, as well as structural and functional maturation of the lungs [16,17]. Subse-

quently, the transition from fetal to newborn life at birth is characterized by, 1) a striking

increase in blood flow to the lungs, which fill with air and become the site of gaseous exchange,

2) a rapid switchover to an LV functional dominance, as LV output increases to equal or even

exceed RV output, while aortic blood pressure rises and pulmonary pressures fall, and 3)

marked rises in whole body and myocardial oxygen consumption that are associated with sub-

stantial shifts in substrate utilization [16,17,19,20,37,38]. In addition, exposure to the extra-

uterine environment also involves an expansion of the neonate’s microbiota [39].
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PLOS ONE | https://doi.org/10.1371/journal.pone.0204038 September 19, 2018 12 / 16

https://doi.org/10.1371/journal.pone.0204038


Although pulmonary tissue miRNA expression changes have been reported with gestational

age in mice, this has not been previously explored in fetal and neonatal sheep. For example,

increases in murine pulmonary miR-146a and miR-27a [12] have been detected with advanced

gestational age. Others have reported that in murine lungs miR-22-3p expression is increased

concomitant to increased oxygen tension [40], whereas miR-210, is augmented in hypoxic

lungs, pulmonary smooth muscle and other cell types exposed to hypoxic conditions [41,42].

In our study with NGS and quantitative RT PCR validation, neonatal lambs (consistent with

an increase in blood oxygenation and high oxidative metabolic state) had increased pulmonary

Bta-miR-22-3p_R+1, bta-miR-146a-R-2, and Hsa-miR-335� and decreased miR-210 com-

pared to NT fetal lambs (in low oxygen state in utero). Compared to NT fetal lambs the pulmo-

nary artery of neonates features a marked decrease in blood pressure. Pulmonary artery bta-

miR-143_R-1 and hsa-miR-335� were decreased in neonates compared to NT in our study.

Notably, it has been reported that a marked reduction in blood pressure is evident in miR-143/

145 knock-out mice [43].

Consistent with the post-natal increase in oxidative metabolism and support of systemic

cardiac output, the key changes in miR expression validated by quantitative RT-PCR were for

Bta-miR-22-3p_R+1 and bta-miR-146a-3p_R+1 which increased and miR-210 which

decreased in neonatal LV compared to NT fetuses. In contrast only miR-210 decreased in neo-

natal RV compared to NT fetuses. Although not previously reported in ovine cardiopulmonary

tissue, and pending further specific validation and elaboration, these key identified shifts in

Bta-miR-22-3p_R+1, bta-miR-146a-R-2, Hsa-miR-335� and miR-210, are in keeping with

important processes occurring across the late gestation to neonatal period such as regulation

of cell proliferation, cell differentiation, immune cell function and changes in cell hypoxia [44–

46].

Our study detected moderate expression of miRNA-15 family members (miR-15a/b, miR-

16, miR-195, miR-422, miR-497) in pulmonary, LV and RV tissues, however significant post-

natal increases were not observed as reported previously in mice (postnatal day 10 versus post-

natal day 1) [5]. Indeed the miRNA microarray study by Morrison et al. [18] also did not find

a significant shift in miRNA-15 family that had been anticipated to correlate with miRNA-

15-regulated cessation of cardiomyocyte proliferation in the ovine neonate as reported for pre-

vious mouse studies. This finding highlights that there are distinct specificities according to

species, cell type and age that require detailed studies to be performed in large animal models

and in human tissues.

In conclusion, our study has identified 1345 miRNAs in the fetal and neonatal ovine cardio-

pulmonary system and identified a narrow profile of specific miRNA that shift in expression

occurring across the progression of late gestation to the neonatal period in LV and RV myo-

cardium, main pulmonary artery and lungs. The ‘cardiopulmonary sheep miRNome’ we have

compiled here is made available as a comparative resource for future studies of the gestational

and postnatal ovine cardiopulmonary system. In addition to examining the functional roles of

the presently identified miRNA shifts, future work is required to validate miRNA expression

specifically for unique cell types isolated from cardiopulmonary tissues. Of particular impor-

tance, additional studies are required to determine the miRNA targets and regulatory signifi-

cance of the relatively few miRNAs that alter in expression during the marked growth

occurring in late gestation, the birth transition per se and post-natal growth to maturity.
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S2 Table. Tissue specific miRNA shifts by age group.
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