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Proteomics, the large-scale analysis of proteins, is contributing greatly to understanding gene function in the postgenomic era.
However, disease protein ranking using shotgun proteomics data has not been fully evaluated. In this study, we prioritized disease-
related proteins by integrating the protein-protein interaction (PPI) network and protein differential expression profiles from colon
and rectal cancer (CRC) or breast cancer (BC) proteomics. We applied Local Ranking (LR) and Global Ranking (GR) methods in
network with three kinds of protein sets as a priori knowledge, which were known disease proteins (KDPs) that were collected from
the Online Mendelian Inheritance in Man (OMIM) database, differentially expressed proteins (DEPs), and the collection of KDPs
and their direct neighborhood with differential expression (eKDPs). The cross-validations showed that GR method outperformed
LRmethod while using eKDPs as the initial training showed significantly higher accuracy compared to using the other two a priori
sets. And thenwe validated the top ranked proteins using RNAi-based loss-of-function screens in the DepMapdatabase.The results
showed that 75% of top 20 proteins in CRC are necessary for tumor survival. In summary, the network-based Global Ranking with
protein differential expression can efficiently prioritize cancer-relatedproteins and discover new candidate cancer genes or proteins.

1. Introduction

Discovering disease genes is important for understanding
the mechanisms in physiological and pathological processes
of disease. Genetic studies like linkage analysis [1] and
association studies [2] can uncover diseases associated with
chromosomal regions, which contain hundreds of candidate
genes that may be associated with a disease [3]. Conducting
experiments to confirm certain disease-related genes is time-
consuming. To maximize efficiency, many computational
methods and tools have been proposed to prioritize disease
genes.

Since proteins are the basic unit of biological function
to link genotypes to phenotypes, CPTAC and other can-
cer proteomics projects have characterized the proteomic
features of human cancers [4–8]. However, how to pri-
oritize cancer protein and discover new candidates based
on PPI network and protein expression has not been fully
addressed.

In the previous reports, the gene prioritization approach
mainly depends on the similarity of characteristics, including
sequence similarity [9, 10], function annotation [10–13], gene
product [14], and protein domains, between known genes
associated with the phenotype of interest and the candidate
genes. In biological network, the neighbor genes may be
functionally or physically similar and affect the pathway or
the phenotype of interest [15]. Oti et al. [16] proposed a direct
neighbor-based method to predict disease candidates with
known disease loci. This method is based on the principle of
“guilt-by-association” [17] and is called Local Ranking (LR)
in this work. In addition to the LR method, Köhler et al. [18]
proposed random walk method to access the global distance
between the candidate genes and the known disease genes,
which we called Global Ranking (GR) here. However, lack
of knowledge about disease proteins and few known disease-
related genes limits the development of the GR. To solve
this problem, one approach combines the PPI network and
the gene expression data to prioritize genes [19] like PINTA
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Table 1: Known disease protein list of CRC also found in HINT.

Cancer type Cancer genes (Entrez gene ID)

Colorectal Cancer

RAD54L; PTPN12; EP300; DLC1; CTNNB1;
AURKA; MSH6; TGFBR2; BUB1B; SMAD7;
CCND1; SRC; PTPRJ; PLA2G2A; POLD1;
BRAF; BUB1; MLH3; MLH1; FLCN; BAX;
MSH2; APC; RAD54B; GALNT12;
CHEK2P1; AKT1; TP53; FGFR3; PIK3CA;
PMS2; NRAS; cds1; AXIN2; MUTYH;
MCC; TLR2; DCC; ODC1

[20]. Le and Kwon [21] developed a neighbor-favoring weight
reinforcement to improve the performance in disease gene
prioritization. Recently, protein network-based integration of
multiomics data for prioritizing cancer genes has also been
proposed [22, 23]. However, these strategies have not been
tested in proteomics data analysis yet.

In this study, by integrating PPI network and differentially
expressed protein profiles given by shotgun proteomics, we
evaluated LR and GR methods with three different initial
protein sets as a priori knowledge to prioritize disease
proteins. The three initial protein sets contain known disease
proteins (KDPs), differentially expressed proteins (DEPs),
and the KDPs with their direct neighbor DEPs (eKDPs). The
cross-validations and RNAi perturbation screens were used
for performance evaluation of different strategies.

2. Materials and Methods

2.1. Proteomic Datasets. To test and compare the two ranking
methods with three initial protein sets, two cancer proteome
datasets were used. The proteomic data of CRC used in our
work include 90 TCGA colon tumor samples and 30 normal
colon epithelium samples, and the normalized proteomic
expression profile is provided in Zhang’s work [4]. The other
proteomic dataset contains 77 tumor samples and 3 normal
breast tissue samples, and its normalization is presented in
Mertins et al. [5]

2.2. Protein-Protein Interaction Network. We constructed
protein interaction networks based on the HINT database
(http://hint.yulab.org/). HINT [24] (High-quality INTerac-
tomes) is a database of high-quality protein-protein interac-
tions in different organisms and contains two types of inter-
actions: binary physical interactions and cocomplex associa-
tions. After removing duplicates and self-linked interactions,
we obtained 132032 interactions between 13048 proteins with
the average degree of 10.12.

2.3. Cancer Protein List. The 44 known CRC genes were col-
lected from theOMIM [25] knowledgebase (http://www.ncbi
.nlm.nih.gov/omim), 39 of which exist in the HINT, as shown
in Table 1. Similarly, 28 of 33 known BC genes collected from
OMIM exist in HINT, as shown in Table 2.

2.4. Differential Expression Measures. The statistical analysis
of protein differential expression was Welch’s t-test, and a

Table 2: Known disease protein list of BC also found in HINT.

Cancer type Cancer genes (Entrez gene ID)

Breast Cancer

XRCC3; RAD54L; casp8; BACH1; RAD51D;
kras; ESR1; PALB2; NQO1; RAD51;
RAD51C; TSG101; PPM1D; brca2; BARD1;
BRCA1; PHB; AKT1; TP53; PIK3CA;
RB1CC1; HMMR; NQO2; cds1; SLC22A18;
ATM; BRIP1; CDH1

Bonferroni correction (p < 0.05) was applied, leading to 2455
DEPs in the CRC and 1549 DEPs in BC.We selected the DEPs
directly linked with the KDPs in the PPI network to enlarge
the initial protein set and made up the third initial protein set
eKDPs.

2.5. Performance Measurement. Similarly to the previous
disease gene ranking work [19], we employed a leave-one-out
cross-validation test to validate the different models. In each
iteration, one KDP and the other 99 non-KDP proteins were
randomly selected to set up the testing set. All the remaining
KDPs were used for training and building the model. A
generalization error estimate was obtained by repeating this
procedure for each of the KDPs available. Here only the
proteins in the HINT PPI network were considered. The
performance measurement used was the receiver-operating
characteristic (ROC) analysis [26]. “roc” function in R
package “pROC” was used to realize the measurement. The
ranking scores of these proteins in the testing set given by the
GR or LR method were used as predictor.

Genome-scale perturbation screens cannowbe efficiently
performed in many cell lines using RNAi to knock down
the target genes. Tsherniak et al. systematically analyzed
genome-scale loss-function screens performed in 501 cancer
cell lines and the results were publicly available on the Cancer
Dependency web [27]. In order to validate the top ranked
genes/proteins that we newly identified in CRC samples, we
investigated their gene-level differential dependency scores
(DS) at the web (https://depmap.org/rnai/index) to measure
the relationship to tumor survival.

2.6. Ranking Strategies. In the LR method, the protein
rankings are solely based on the directly connected protein
neighbors, which can be one of the three kinds of initial
protein sets (KDPs, DEPs, and eKDPs). The GR method
can also use the information of the three kinds of initial
protein sets by processing a random network walk on the PPI
network.

The LR method sets the number of proteins in the initial
protein set as its only standard for evaluating the probability
of a candidate protein being associated with a disease. The
more proteins in the initial protein set are associated with the
candidate proteins, the higher score the candidate proteinwill
get. In the GR method, the random walk restarts at one of
the three kinds of initial protein sets. We adopted the heat
kernel rank [28] method, which has been applied in gene
prioritization previously [29].

http://hint.yulab.org/
http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
https://depmap.org/rnai/index
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Figure 1: Workflow of the ranking process of LR and GR with three kinds of initial protein sets. Firstly, we mapped the three kinds of protein
sets to the PPI network as initial protein datasets, which consisted of KDPs (red), DEPs (green), and eKDPs. Then, we applied the LR or GR
to the network based on the initial protein set (blue).

Given a graph G, processing a random walk on G, the
transition probability matrix W is defined as W=D−1A. A
is the adjacency matrix and D is the diagonal matrix. The
Laplacian matrix of G is L=I-W. By establishing the diffusion
rate 𝛼 and setting a preference vector 𝑝0, the ranking score
vector can be got as the following Equation:

𝑝𝛼 = 𝑝0𝑒−𝛼𝐿 (1)

The similarity matrix of proteins is shown in

𝑆 = (𝐼 + −𝜕𝑁 𝐿)
𝑁

(2)

Then, we can obtain the discrete approximation (see (3))
described in Yang’s work [30]:

𝑝𝛼 = 𝑝0 (𝐼 + −𝛼𝑁 𝐿)
𝑁

(3)

where parameter 𝛼 is the diffusion rate and N is the number
of iterations. As the two parameters are set, a random walk
through the network is initiated.

We set 𝛼=0.5 and N=3 for the interactions that can
make 𝑝𝜕 reach a steady state. We initialized the preference
vector 𝑝0 with binary values and filled the initial pro-
tein set with 1 and all the other candidate proteins with
0. Finally, we can obtain the vector 𝑝𝜕, which contained
scores for all of the candidate proteins. It should be noted
that the KDP’s neighbor DEPs were not initialized when
this KDP was selected for the testing set in leave-one-out
cross-validation.

3. Results

3.1. Comparing LR, GR Methods with Three Different Kinds of
Initial Protein Set. We compared the two ranking methods
using local [16] and global interaction information [29] or
both. We plotted the ROC curves and computed the AUC
values to evaluate LR and GR with three different initial
protein sets, respectively [26, 31]. Figure 1 shows aworkflowof
the comparison of the two ranking strategies. The LRmethod
scores the candidate protein by the number of directly linked
initial proteins, and the GR method scores the candidate
protein by all the initial proteins. As a result, all the candidate
proteins on the PPI network can be scored.

In CRC, the AUC values of GR with different initial
protein sets were 0.834, 0.782, and 0.735, better than the
LR method, whose AUC values were 0.814, 0.777, and 0.683,
respectively, as shown in Figure 2. As a result, using the same
kind of prior knowledge, the performance of GR was better
compared to LR.While using the eKDPs as the initial protein
set, the result tended to be significantly better compared to
using the other two datasets. We also calculated the AUC
value of GR with the initial protein set involving the KDPs
and 629 randomly selected DEPs (AUC=0.687). This result
suggested that the GR method is suitable for proteome data
as well as transcriptome data, and the neighbor DEPs can
enlarge the initial protein set, which is helpful for ranking
proteins.

The results of BC were the same as the results from CRC.
These results showed that both the LR and GR methods can
assess the similarity between two proteins in the PPI network
for protein ranking. However, the GRmethod was better than
the LR method.
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Figure 2: Comparison of LR and GR with three different initial protein sets. (a) and (b) show the results of CRC, and Figures (c) and (d)
show the results of BC. KDPs (red), DEPs (blue), and DEPs and their neighbors (green) are the three initial protein sets.

After prioritizing the proteins with the TCGA CRC
shotgun proteomics, we obtained 6 ranked candidate protein
lists for the LR and GR methods with three initial protein
sets. We counted the number of KDPs ranked in the top 10,

top 20, top 50, top 100, and top 200 proteins in the lists.
Figure 3 shows the comparison of the number of top ranked
KDPs with different methods. We noted that the results of
GR were the same as LR with the same initial protein set.
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Figure 3: Comparison of the number of top ranked KDPs with different methods and initial protein sets. (a) shows the results of CRC and
(b) shows the results of BC.

However, while comparing the initial protein sets, eKDPs
performed better than the other two. The top 100 ranked
proteins resulted from GR method with eKDPs in CRC and
BC are provided in Supplementary Table 1.

3.2. Annotation of the Top Ranked Proteins in CRC. As the
results shown above, the GR method with eKDPs performed
better than the other two. We looked at the top 20 and
top 50 ranked proteins/genes identified by the GR method
with eKDPs in CRC samples. We found 7 KDPs in the
top 20 ranked proteins (37%) and 10 KDPs in the top
50 ranked proteins (20%). Except for the KDPs, using the
Cancer Dependency Map [27] we also queried the cancer
dependency scores of 20 putative cancer genes/proteins in the
top ranked list that we newly identified from the CRC dataset.
As shown in Figure 4(a), 8 genes are necessary for colon
tumor survival. In particular, UBC,MCM2, and COPS5 show
stronger dependencies in colon cancer comparing with the
mean across all cell lines (six sigma or greater dependency).
Another seven genes have relationship with tumor survival
in lung cancer, ovarian cancer, and other cancer types. In
summary, 75% of the top 20 genes are necessary for the
survival of colon cancer or other cancers’ survival. At the
same time, we selected 20 genes randomly from candidate
protein list and repeated it 10 times.The average dependencies
in colon and other types of cancers of these genes were
illustrated in Figure 4(b). Only 40% in the 20 randomly

selected candidate proteins are necessary for tumor survival,
which is significantly lower than the proportion in our top
ranked list (Pearson chi-square= 5.013, p= 0.025).

4. Discussion

In this manuscript, we compared the performance of
network-based methods using protein expression profiles
for cancer protein ranking. We found that the GR method
outperformed when the eKDPs were used as the initial
protein set. We randomly selected 39 proteins in the PPI
network and compared with 39 KDPs for their degrees
linking with the differentially expressed nodes. The average
link of colon cancer proteins to DEPs was 16.46, which is
significantly higher than the average value 5.65 from random
controls. This result suggests that the expressions of the close
neighbors of cancer proteins are more likely to be changed.

We further validated the top ranked proteins/genes in
CRC samples based on the dependency score given by the
Cancer Dependency Map. 75% of top 20 genes showed
relationship with tumor survival. For example, UBC has
different functions depending on the Lys residue linked by
the ubiquitin. UBC is involved in DNA repair, kinase mod-
ification, protein degradation, DNA-damage responses, and
other pathways [32].One study showedUbiquitin C-terminal
hydrolase-L1 (UCHL1) can activate the 𝛽-catenin/TCF path-
way through its deubiquitinating activity to contribute to
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Figure 4: Cancer dependency evidences for the top 20 ranked proteins.The pie charts in (a) and (b) separately represent the percentage of top
20 ranked proteins excluding KDPs and 20 randomly selected candidate proteins, which are necessary for the survival of colon tumor or other
cancers.. The gene annotation classes depend on the DS given by Cancer Dependency Map, which consists of colon cancer related proteins
(DS<-2; red), other cancers related proteins (DS<-2; yellow), and proteins without relating to cancers or having no information (gray).

CRC progression [33]. Minichromosome maintenance com-
plex component 2 (MCM2) is involved in the initiation of
eukaryotic genome replication. It has been reported that
MCM2 is a therapeutic target of Trichostatin A in CRC cells
[34] and also has been suggested to be used in the early diag-
nosis of CRC [35]. The Jun Protooncogene (JUN) is involved
in activated KRAS-mediated transcriptional activation of
USP28 in CRC cells, where it binds to the USP28 promoter
[36]. Cullin 3 (CUL3) is the core component of multiple
cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-
protein ligase complexes, which mediate the ubiquitination
and subsequent proteasomal degradation of target proteins.
As shown by Wang, CUL3 downregulation rescues folate
deprivation-induced MAT II𝛼 exhaustion and growth arrest
in CRC cells [37].

5. Conclusions

Global network-based ranking is more efficient for pro-
teomics data in cancer protein identification. The network-
based proteome analysis is helpful in ranking disease proteins
and discovering new candidate proteins.
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