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Purpose: To determine whether machine learning assisted-texture analysis of multi-energy virtual monochro-
matic image (VMI) datasets from dual-energy CT (DECT) can be used to differentiate metastatic head and neck
squamous cell carcinoma (HNSCC) lymph nodes from lymphoma, inflammatory, or normal lymph nodes.
Materials andmethods: A retrospective evaluation of 412 cervical nodes from5different patient groups (50patients
in total) having undergone DECT of the neck between 2013 and 2015 was performed: (1) HNSCC with pathology
proven metastatic adenopathy, (2) HNSCC with pathology proven benign nodes (controls for (1)), (3) lymphoma,
(4) inflammatory, and (5) normal nodes (controls for (3) and (4)). Texture analysis was performedwith TexRAD®
software using two independent sets of contours to assess the impact of inter-rater variation. Twomachine learning
algorithms (RandomForests (RF) andGradient BoostingMachine (GBM))wereusedwith independent training and
testing sets and determination of accuracy, sensitivity, specificity, PPV, NPV, and AUC.
Results: In the independent testing (prediction) sets, the accuracy for distinguishing different groups of pathologic
nodes or normal nodes ranged between 80 and 95%. The models generated using texture data extracted from the
independent contour sets had substantial to almost perfect agreement. The accuracy, sensitivity, specificity, PPV,
and NPV for correctly classifying a lymph node as malignant (i.e. metastatic HNSCC or lymphoma) versus benign
were 92%, 91%, 93%, 95%, 87%, respectively.
Conclusion: Machine learning assisted-DECT texture analysis can help distinguish different nodal pathology and
normal nodes with a high accuracy.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction

Identification and accurate characterization of abnormal lymph
nodes is an essential and common task in imaging of the neck. In pa-
tients with head and neck cancer, nodal status is one of the most
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important determinants of outcome and can have significant impact
on patient staging and management [1–3]. In routine clinical practice,
the most common characteristics used to distinguish pathologic from
benign lymph nodes on CT orMRI are size, internal heterogeneity (com-
monly referred to as internal nodal necrosis), shape, contour, and clus-
tering, among others [1]. Node size is probably the most commonly
used criterion, although size criteria have overall error rates of 15 to
20% or more for the determination of lymphadenopathy in the neck
[1]. Identification of pathologic lymph nodes becomes especially chal-
lenging in small lymph nodes measuring less than 10 mm, even with
functional techniques such as PET/CT [1,4–6].

Many of the currently used criteria for determination of pathologic
nodes are derived from evaluation of metastatic head and neck
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squamous cell carcinoma (HNSCC) lymph nodes [1,6–8] and extrapo-
lated to other pathologic entities. With a few exceptions (e.g. presence
of microcalcifications in untreated lymph nodes suggesting metastatic
papillary thyroid cancer), pathologic nodes of different primary etiolo-
gies are not distinguishable based on their imaging characteristics. Ad-
vanced techniques such as dual-energy CT (DECT) [9–11] have been
reported to improve diagnostic evaluation of different nodal pathology
based on evaluation of different DECT quantitative parameters, includ-
ing those derived from quantitative information derived from virtual
monochromatic images (VMIs) constructed at different energies
[12–17]. Therefore, it is possible that advanced image analysis methods
such as texture analysis performed on multi-energy datasets may also
be advantageous for nodal characterization, similar to a study demon-
strating an advantage of multi-energy texture analysis for characteriza-
tion of benign parotid tumors [18,19].

Texture or radiomic analysis, ideally supported by machine learn-
ing approaches for constructing prediction models, has been used in
different organ systems to predict tumor characteristics such as mo-
lecular features, patient prognosis, and response to treatment
[20–27]. Studies have also shown potentially promising results in ap-
plying texture analysis for the evaluation of pathologic lymph nodes
outside the neck, especially in the mediastinum in the context of
lung cancer [28–30]. However, the value of this approach for charac-
terization of nodal pathology in the neck is currently not well
established. The goal of our study was to investigate the use of ma-
chine learning-assisted rapid-kVp-switching DECT texture analysis
employing virtual monochromatic imaging (VMI) datasets for differ-
entiating abnormal from normal lymph nodes and characterization
of different nodal pathologies including HNSCC metastasis, lym-
phoma, and inflammatory lymph nodes.
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2. Materials and Methods

2.1. Patient Population

This study was approved by the institutional review board with
waiver of informed consent. All of the patients selected were from a
tertiary-care hospital and cancer center (Jewish General Hospital, Mon-
treal, Quebec, Canada). A total of 412 lymphnodes from50patientswho
had undergone clinically-indicated DECT scans of the neck betweenNo-
vember 2013 and December 2015 were retrospectively analyzed using
texture analysis. Ten consecutive patients meeting inclusion criteria
for this study (see flowcharts in Figs. 1 and 2) were included from
each of the five nodal categories, with multiple lymph nodes (total
number of lymph nodes is shown in parenthesis) evaluated per patient
as follows: HNSCC with metastatic adenopathy (n = 31), HNSCC with
benign lymph nodes (n = 145; control group 1), lymphoma (n = 65),
inflammatory (n = 29), and normal scans from patients without a
known history of malignancy or significant abnormality on the neck
CT (n = 142; control group 2) (Figs. 1 and 2). All metastatic HNSCC
nodes evaluated were pathologically proven, and all benign nodes in
HNSCC patients were likewise based on pathology proven neck dissec-
tion specimens (Fig. 1). Furthermore, the latter group was selected
based on completely absent nodal metastases in the neck on neck dis-
section, in order to avoid confounding and challenges with
distinguishing and correlating normal appearing lymph nodes on imag-
ing with nodes with micrometastases on pathology that may not be
possible to perform accurately in a retrospective setting. For the other
groups evaluated, it would not be possible to have pathology proof of
every node, therefore strict criteria were used (in biopsy proven disease
where applicable, e.g. in the case of lymphoma patients), that are
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Fig. 2. Flowchart of node selection and groupings for construction of predictionmodels usingmachine learning. Because of the large imbalance between the number of nodes in the control
groups compared tometastatic HNSCC or inflammatory lymph node groups, for pairwise comparison of these groups and controls, a maximumof 4 lymph nodes per control patientwere
randomly selected for use by the machine learning algorithm. This resulted in a subset of 39 nodes for control group 1 and 40 nodes for control group 2. For all other groupings and
comparisons, the full complement of control nodes was used.
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described in detail in the inclusion criteria in Fig. 1 and in the Supple-
mental Material. The underlying etiology for the inflammatory cases
was complicated odontogenic disease or sialolithiasis.

2.2. CT Technique & DECT Image Post-Processing

All patients were scanned using the same 64-section rapid-kVp-
switching dual-energy scanner (Discovery CT750 HD; GE Healthcare, Mil-
waukee, Wisconsin) following injection of 80 mL of iopamidol (Isovue
300; Bracco, Princeton, New Jersey) at a rate of 2 mL/s, with a delay of
65 s. Scans were acquired in dual-energy rapid 80 to 140 kVp switching
mode [31,32] and images were reconstructed into 1.25 mm sections in a
25 cm display FOV and 512 × 512matrix without iterative reconstruction
and using a standard kernel (see Supplemental Material for additional
details). In order to attempt to take advantage of the energy-dependent
changes in tissue attenuation possible with DECT as demonstrated in
different studies evaluating head and neck cancer [18,19,31–33], multi-
energy VMIs were reconstructed from de-identified scans, ranging from
40 to 140 keV in 5 keV increments at the GE Advantage workstation
(4.6; GE Healthcare, Milwaukee, WI). This resulted in 21 different recon-
structions per case for multi-energy VMI analysis.

2.3. Selection of Lymph Nodes & Texture Analysis

All lymph nodes meeting inclusion criteria (Figs. 1 and 2) were in-
cluded in this study. Texture analysis was performed using a filtration-
histogram technique with a commercially-available research software
(TexRAD Ltd., Cambridge, United Kingdom) by manually delineating a
region of interest (ROI) around the largest diameter of the lymph
node in the axial plane. During the initial analysis, all contours were
first drawn by (A.P.), a fellowship-trained Neuroradiologist with
2 years of neuroradiology experience. These contours were later
reviewed and approved (or revised if needed) by a fellowship-trained
academic head and neck radiologist with 7 years of experience in onco-
logic imaging (R.F.). To evaluate the impact of inter-rater variation on
texture analysis and the final prediction models, another neuroradiol-
ogy and head and neck imaging fellowship trained radiologist (G.R.S.)
manually re-contoured the lymphnodes for repeat independent texture
analysis and prediction model reconstruction. For additional informa-
tion please refer to the Supplementary Data.

For each lymph node, texture data were extracted from all 21 VMI
series using the same ROI. This is possible because of the inherent
co-registration of different energy VMI datasets generated from the same
DECT scan [18,19]. For each ROI and VMI energy combination, six texture
features based on first-order statistics of the gray level intensity histogram
were derived: (1) average intensity values, (2) standard deviation (SD),
(3)mean of positive pixels (MPP), (4) entropy, (5) skewness, and (6) kur-
tosis [19,34]. In addition, for each feature set, either no filter or 5 different
spatial scale filter settings were used to highlight features at different
anatomic spatial scales rangingbetween2and6mm[34–36] (Fig. A1, Sup-
plementary Data). Please see Supplementary Data for additional details.

2.4. Machine Learning & Statistical Analysis

Predictionmodels were built using either texture data extracted at a
single VMI energy of 65 keV, typically considered equivalent and used as
a replacement for a conventional 120 kVp single energy neck CT
acquisition when a scan is acquired in DECT mode [32,37–40], or
multi-energy analysis of the entire 21 VMI datasets [18,31–33,41].
Two independent machine learning approaches, the Random Forests
(RF) method [42] and Gradient Boosting Machine (GBM) method
[43,44] were used to build the prediction models for the different out-
comes, consisting of pairwise evaluations of different pathologic
lymph nodes and the normal controls. Finally, RF was used to compare
and distinguish different neoplastic fromnon-neoplastic nodes simulta-
neously (metastatic HNSCC or lymphoma, from benign nodes proven
based on negative neck dissections in HNSCC patients). For an unbiased
assessment of the model accuracy [45], 30% of the patients were ran-
domly selected and set aside as the test group. The remaining 70%
were used to train each predictionmodel. These are described in greater
detail in the Supplementary Data. Once the final prediction model was
found, the accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and area under the receiver op-
erating curve (AUC) of the final models were computed for the training
and testing (prediction) sets. The R package (RDevelopment Core Team
(2008), Vienna, Austria. ISBN 3–900,051–07-0, http://www.R-project.
org) was used for the machine learning and statistical analysis. The R
package, randomForest, was used for building the Random Forests
models [46]. The R package, gbm,was used for building theGBMmodels
[47]. The agreement between prediction models generated using data
extracted from contouring by different readers was assessed by calcu-
lating Cohen's kappa coefficient (κ) based on binary classification of
the nodes into different categories by the prediction models.

3. Results

A total of 412 lymph nodes were evaluated using texture analysis.
For the HNSCC group, 31 metastatic lymph nodes and 145

http://www.R-project.org
http://www.R-project.org


Table 1
Prediction accuracy for distinction of Metastatic HNSCC from normal nodes.

ML approach Acc Sens Spec PPV NPV AUC

Training set RF 48/50 (96%) 21/22 (95%) 27/28 (96%) 21/22 (95%) 27/28 (96%) 0.95
GBM 49/50 (98%) 21/22 (95%) 28/28 (100%) 21/21 (100%) 28/29 (97%) 1.00

Testing set RF 17/20 (85%; 69, 100) 8/9 (89%; 68, 100) 9/11 (82%; 59, 100) 8/10 (80%; 55, 100) 9/10 (90%; 71, 100) 0.97 (0.89, 1.00)
GBM 18/20 (90%; 77, 100) 8/9 (89%; 68, 100) 10/11 (91%; 74, 100) 8/9 (89%; 68, 100) 10/11 (91%; 74, 100) 0.96 (0.87; 1.00)

Models constructed are based on analysis of VMIs at 65 keV using texture data extracted from the first set of independent contours.
For the testing sets (prediction models), the lower and upper limits of the 95% confidence interval are provided after the percentage value or the AUC.
ML: Machine Learning; RF: Random Forests; GBM: Gradient Boosting Machine.
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histopathology proven benign nodes in HNSCC patients (based on neck
dissection) were used for constructing the prediction models. For the
other 3 patient groups, 65 lymphoma nodes, 29 inflammatory nodes,
and 142 nodes from normal controls were evaluated. For pairwise anal-
ysis of HNSCC and inflammatory nodes versus controls, analysis and
construction of prediction models using machine learning was also re-
peated by randomly selecting amaximumof 4 normal nodes per patient
in the control groups. This was done to reduce the imbalance between
the number of normal and pathologic nodes which could adversely af-
fect prediction model performance and reliability. Patient demo-
graphics are shown in Table A1 (Supplementary Data). The following
models were evaluated using texture data extracted from 65 keV VMIs
only or from 21 sets of multi-energy VMIs ranging between 40 and
140 keV. Although the final features for multi-energy model were se-
lected from various energies other than 65 keV, they were highly corre-
lated with those at 65 keV and no significant improvement in
performance was observed and thus, only the 65 keV model perfor-
mance is discussed in detail.

3.1. Distinguishing Neoplastic or Inflammatory Nodes From Normal Lymph
Nodes on 65 keV VMIs

Texture analysis of 65 keV VMIs had a high performance for
distinguishing metastatic HNSCC from benign nodes using either ma-
chine learning approach (Table 1, Fig. 3). In the independent testing
(prediction) set, there was an accuracy, sensitivity, specificity, PPV,
NPV, and AUC of 85%, 89%, 82%, 80%, 90%, and 0.97, respectively, using
RF and 90%, 89%, 91%, 89%, 91%, and 0.96 respectively, using GBM. The
accuracy of the training set was 96% for RF and 98% for GBM and com-
parison of the performance of the testing compared to the training
sets did not suggest any overfitting (overfitting is a modelling error
where the algorithm simulates the training data too closely, using
noise or random fluctuations in the training data as concepts that may
0.0
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Fig. 3. Example of ROC curve analysis of the diagnostic performance of A,RandomForests (RF) a
benign lymph nodes. The testing (prediction) sets (red) have similar performance to the train
overfitting.
not be applicable to new datasets and consequently negatively impact
algorithm performance in new datasets (i.e. generalization of the
model); simply put, overfitting provides a falsely optimistic measure
of algorithm performance). Two features (or predictors) were used in
the final model: SSF6.entropy.65 and SSF0.skewness.65 (classifier de-
scription represents spatial scale filter.texture features based on first-
order statistics of the gray level intensity histogram.VMI energy).

There was also a high accuracy for distinguishing lymphoma from
normal nodes (Table 2), with an accuracy, sensitivity, specificity, PPV,
NPV, and AUC of 90%, 100%, 86%, 76%, 100%, and 0.95, respectively,
using RF or 93%, 100%, 90%, 83%, 100%, and 0.96, respectively, using
GBM. The accuracy of the training set was 88% for RF and 95% for
GBM. Two features were used in the final model: SSF2.MPP.65 and
SSF2.SD.65. There was a fairly high performance of the prediction
models for distinguishing inflammatory from normal nodes (Table 3)
with an accuracy, sensitivity, specificity, PPV, NPV, and AUC of 80%,
88%, 75%, 70%, 90%, 0.97, respectively, using RF or 80%, 88%, 75%, 70%,
90%, and 0.96, respectively, using GBM. The accuracy of the training
set was 90% for RF and 100% for GBM. Two features were used in the
final model: SSF5.entropy.65 and SSF6.mean.65.

When differentmalignant nodeswere combined, using RF, the accu-
racy, sensitivity, specificity, PPV, and NPV for correctly classifying a
lymph node as malignant (i.e. metastatic HNSCC or lymphoma) versus
benign in the prediction set was 92%, 91%, 93%, 95%, 87%, respectively
(Table 4). Two features were used in the final model: SSF0.skewness.65
and SSF2.SD.65. Additional information, including more detailed infor-
mation on the training sets, is provided in Tables 1–4.

We concluded this section by re-generating the above testing (pre-
diction) models using texture data extracted from manual contouring
by a second reader, in order to assess the impact of inter-rater contour
variation on prediction models generated using this approach. As
shown in Table 5, therewas substantial to almost perfect agreement be-
tween the models generated based from the two different readers.
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Table 3
Prediction accuracy for distinction of inflammatory from normal nodes.

ML approach Acc Sens Spec PPV NPV AUC

Training set RF 44/49 (90%) 18/21 (86%) 26/28 (93%) 18/20 (90%) 26/29 (90%) 0.97
GBM 49/49 (100%) 21/21 (100%) 28/28 (100%) 21/21 (100%) 28/28 (100%) 1.00

Testing set RF 16/20 (80%; 62, 98) 7/8 (88%; 65, 100) 9/12 (75%; 50, 100) 7/10 (70%; 42, 98) 9/10 (90%; 71, 100) 0.97 (0.89, 1.00)
GBM 16/20 (80%; 62, 98) 7/8 (88%; 65, 100) 9/12 (75%; 50, 100) 7/10 (70%; 42, 98) 9/10 (90%; 71, 100) 0.96 (0.87, 1.00)

Models constructed are based on analysis of VMIs at 65 keV using texture data extracted from the first set of independent contours.
For the testing sets (prediction models), the lower and upper limits of the 95% confidence interval are provided after the percentage value or the AUC.
ML: Machine Learning; RF: Random Forests; GBM: Gradient Boosting Machine.

Table 2
Prediction accuracy for distinction of Lymphoma from normal nodes.

ML approach Acc Sens Spec PPV NPV AUC

Training set RF 129/146 (88%) 38/46 (83%) 91/100 (91%) 38/47 (81% 91/99 (92%) 0.95
GBM 138/146 (95%) 42/46 (91%) 96/100 (96%) 42/46 (91%) 96/100 (96%) 0.99

Testing set RF 55/61 (90%; 83, 98) 19/19 (100%; 100, 100) 36/42 (86%; 75, 96) 19/25 (76%; 59, 93) 36/36 (100%; 100, 100) 0.95 (0.90, 1.00)
GBM 57/61 (93%; 87, 100) 19/19 (100%; 100, 100) 38/42 (90%; 82, 99) 19/23 (83%; 67, 98) 38/38 (100%; 100, 100) 0.96 (0.91, 1.00)

Models constructed are based on analysis of VMIs at 65 keV using texture data extracted from the first set of independent contours.
For the testing sets (prediction models), the lower and upper limits of the 95% confidence interval are provided after the percentage value or the AUC.
ML: Machine Learning; RF: Random Forests; GBM: Gradient Boosting Machine.

Table 4
Prediction accuracy for Lymph node classification as malignant versus Benign.

Acc Sens Spec PPV NPV

Training set 155/170 (91%) 95/102 (93%) 60/68 (88%) 95/103 (92%) 60/67 (90%)
Testing set 65/71 (92%; 85, 98) 39/43 (91%; 82, 99) 26/28 (93%; 83, 100) 39/41 (95%; 89, 100) 26/30 (87%; 75, 99)

Models constructed are based on analysis of VMIs at 65 keV using texture data extracted from the first set of independent contours, using Random Forests, based on texture data from
histopathology proven benign lymph nodes (negative node dissection in HNSCC patients), metastatic HNSCC, and lymphoma nodes.
For the testing sets (prediction models), the lower and upper limits of the 95% confidence interval are provided after the percentage value.
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3.2. Distinction and Classification of Different Abnormal Nodes on
65 keV VMIs

The accuracy, sensitivity, specificity, PPV, NPV, and AUC of texture
analysis of 65 keV VMIs for distinguishing metastatic HNSCC from lym-
phoma nodes in the prediction set was 93%, 78%, 100%, 100%, 90%, and
0.96, respectively, using RF or 89%, 78%, 95%, 88%, 90%, and 0.95, respec-
tively, using GBM (Table A2, Supplementary Data). Three features were
used in the final model: SSF0.mean.65, SSF0.SD.65, and SSF5.skew-
ness.65. The accuracy, sensitivity, specificity, PPV, NPV, and AUC of tex-
ture analysis of 65 keV VMIs for distinguishing metastatic HNSCC from
inflammatory nodes in the prediction set was 82%, 78%, 88%, 88%, 78%,
and 0.92, respectively, using RF or 82%, 78%, 88%, 88%, 78%, and 0.82, re-
spectively, using GBM (Table A3, Supplementary Data). In this case, the
features used in the final models were not identical for RF and GBM. For
RF, 4 features were used in the final model: SSF6.kurtosis.65, SSF2.en-
tropy.65, SSF0.MPP.65, and SSF3.skewness.65. For GBM, 4 features
were used in the final model: SSF6.kurtosis.65, SSF0.mean.65, SSF2.en-
tropy.65, and SSF2.mean.65.
Table 5
Comparison of testing (prediction) model performance using texture data extracted from man

Testing paradigm Acc (firs

RF Distinction of Metastatic HNSCC from normal nodes 17/20 (8
Distinction of Lymphoma from normal nodes 55/61 (9
Distinction of Inflammatory from normal nodes 16/20 (8
Lymph Node classification as Malignant versus Benign 65/71 (9

GBM Distinction of Metastatic HNSCC from normal nodes 18/20 (9
Distinction of Lymphoma from normal nodes 57/61 (9
Distinction of Inflammatory from normal nodes 16/20 (8

Models constructed are based on analysis of VMIs at 65 keV.
For the testing sets (prediction models), the lower and upper limits of the 95% confidence inte
RF: Random Forests; GBM: Gradient Boosting Machine.
The accuracy, sensitivity, specificity, PPV, NPV, and AUC of texture
analysis of 65 keV VMIs for distinguishing lymphoma from inflamma-
tory nodes in the prediction set was 85%, 100%, 50%, 83%, 100%, and
0.88, respectively, using RF or 85%, 100%, 50%, 83%, 100%, and 0.95 re-
spectively, using GBM (Table A4, Supplementary Data). Two features
were used in the final model: SSF2.MPP.65 and SSF4.mean.65. Once
again, in this case, the features used in the final models were not iden-
tical for RF and GBM. For RF, 4 features were used in the final model:
SSF3.MPP.65, SSF0.skewness.65, SSF5.skewness.65, and SSF6.kurto-
sis.65. For GBM, 4 features were used in the final model: SSF3.MPP.65,
SSF6.mean.65, SSF6.kurtosis.65, and SSF5.skewness.65.

3.3. Analysis of VMIs at a Single Energy Versus Multi-Energy VMIs

All of themodels evaluated using texture data extracted from65 keV
VMIswere also investigated using texture data extracted from21 sets of
multi-energy VMIs ranging between 40 and 140 keV. Although the final
features selected were from various energies other than 65 keV, they
were highly correlated with those at 65 keV and no significant
ual contouring by two different readers.

t reader) Acc (second reader) Cohen's kappa coefficient (κ)

5%; 69, 100) 19/20 (95%; 85, 100) 0.8
0%; 83, 98) 55/61 (90%; 83, 98) 0.86
0%; 62, 98) 17/20 (85%; 69, 100) 0.9
2%; 85, 98) 66/71 (93%; 87, 99) 0.91
0%; 77, 100) 18/20 (90%; 77, 100) 0.8
3%; 87, 100) 56/61 (92%; 85, 99) 0.96
0%; 62, 98) 18/20 (90%; 77, 100) 0.8

rval are provided after the percentage value.
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improvement in performance could be achieved for any of the models
described. In some cases, the results were identical (e.g. accuracy for
distinction of metastatic HNSCC from normal nodes for reader 2 was
95% for multi-energy analysis and 95% for analysis of VMIs at 65 keV).
In some cases, there was a few percentage point variations that were
not significant with very similar or in some cases identical confidence
intervals.

4. Discussion

In this study, we demonstrate that texture analysis with machine
learning can be used to distinguish different pathologic and normal
lymph nodes in the neck with a very high accuracy. Not only was this
approach useful for distinguishing abnormal from normal lymph
nodes, the approach also showed a good performance for distinguishing
different types of pathologic nodes, something that is typically not pos-
sible using current imaging criteria used for the evaluation of lymph-
adenopathy clinically. The prediction models had good performance
for distinguishing normal from abnormal lymph nodes, which could
be particularly useful in the clinical setting. There was substantial to al-
most perfect agreement between the models generated based on
contouring from the two different readers which is promising, and
any variation seen can likely be further reduced or eliminated based
on future innovations required for implementation into the clinical
arena, such as semi-automatic or automatic contouring.

So far, there have been few investigations performing texture or
radiomic analysis of lymph nodes, especially in the neck. In a recent
study performed on [18F]-FDG-PET scans that included a
contrast-enhanced CT, it was reported that there are statistically signif-
icant differences between texture features of benign HIV-related
lymphadenopathy compared to metastatic HNSCC nodes [48]. Another
recent study reported that texture features of the primary HNSCC
tumor may be useful for predicting associated cervical lymphadenop-
athy [49]. Our study confirms the utility of nodal texture analysis,
demonstrating high performance for predicting different malignant
lymph nodes as well as for distinguishing different types of nodal pa-
thology. Interestingly, considering what has been described for predic-
tion of nodal pathology using texture features of the primary HNSCC
tumor [49], there is potential for synergy for a combination approach,
using primary tumor texture features combined with those of lymph
nodes for further enhancing model performance. This is an interesting
topic for future research. A radiomic model combined with machine
learning is non-invasive, can be performed on imaging studies already
obtained as part of the patient's initial work up, and can be performed
pre-operatively. Therefore, the results of this study suggest important
potential for future development of artificial intelligence clinical assis-
tant tools for patient diagnostic work up pertaining to the evaluation
of cervical lymphadenopathy. Nevertheless, these results require vali-
dation in larger patient sets. We observed fairly consistent perfor-
mance using two different classic machine learning approaches with
the use of few features or predictors (2 to 4 depending on the
model), and absence of any indication to suggest significant
overfitting based on comparison of the training and prediction (test)
sets. This increases confidence in the results obtained. These results
also provide the basis for future studies focusing on the more chal-
lenging task of characterizing small lymph nodes measuring less
than 1 cm that frequently cannot be reliably assessed by currently
used imaging criteria [1,6].

Although we evaluated various VMI reconstructions based on
DECT scans in this study, high performance was achieved based on
extraction of data from the 65 keV VMIs, typically considered equiv-
alent to the standard 120-kVp single-energy CT acquisition
[32,37–40]. This finding suggests that our approach could potentially
also be applied to single-energy CT scans, although this will require
independent validation. Interestingly, we did not observe any signif-
icant improvement in prediction model performance when we used
the full complement of 21 VMI datasets reconstructed at different en-
ergies as might have been expected on theoretical grounds [18] or
based on prior published investigations in the literature [19,49–52].
However, this is not entirely surprising given the very high baseline
performance using 65 keV VMIs at a single energy, with the upper
limits of the confidence intervals in the high 90s or 100%. This leaves
little to no room for improvement, even without getting into the ad-
ditional statistical andmathematical challenges that are posed by the
much larger data in the multi-energy VMIs. Especially because of
this, we do not believe that this observation or the lack of additional
advantages of multi-energy VMIs on the current study can be gener-
alized to other pathology, and the potential advantages of the latter
would have to be evaluated on a case by case basis.

Our study has several limitations, the main one being small num-
bers of patients and lymph nodes evaluated, which is reflected in
the large confidence intervals for some of the models. Although for
HNSCC we used histopathology proven malignant and benign nodes,
this could not be done with lymphoma and inflammatory nodes be-
cause, unlike HNSCC, lymphoma patients do not undergo neck dissec-
tion and inflammatory lymph nodes are not biopsied except for rare
circumstances where unusual inflammatory processes are suspected.
However, to overcome these inherent obstacles, we used strict criteria
for selection of nodes and avoided any nodes that were borderline or
equivocally abnormal. Our study assumes that the characteristics of
different pathologic nodes in the same patient are independent, and
this is supported by the fact that a given patient can have both normal
and malignant lymph nodes or that malignant lymph nodes in the
same patient may respond differently to treatment in some cases. In
order to reduce potential bias, the nodes in different groups were ran-
domly selected by the machine learning algorithm and a review of the
selected nodes in the testing (prediction) sets revealed good represen-
tation across different patients. Nonetheless, it is possible that there is
some unintended bias from inclusion of multiple pathologic nodes
from the same patient and a definitive determination in this regard
will ultimately have to be made in future studies with much larger pa-
tient numbers. For this initial study, we used a homogenous tech-
nique, using data generated from the same institution and scanner.
There is furthermore potential for bias related from recruitment
from a single center and specialized cancer center. Although the ho-
mogenous population and technique used was important in order to
demonstrate feasibility and essential for comparison of performance
of single energy versus multi-energy VMIs, potential future implemen-
tation as a clinical assistant tool will require validation (with addi-
tional analysis such as normalization or image pre-processing) across
scanners and institutions. We used a vendor-specific commercially
available software designed for rapid-kVp-switching DECT, although
VMIs at different energies can be generated using DECT systems
from different vendors and therefore the multi-energy approach can
be implemented in a vendor neutral manner.
5. Conclusions

In conclusion, our investigation demonstrates that DECT texture
analysis with machine learning shows a high accuracy for identification
and characterization of lymphadenopathy in the neck, laying the foun-
dation for future larger and ideally prospective studies further evaluat-
ing this application using both DECT and single energy CT scans.
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