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Abstract: The current research was designed to explore the Blepharispermum hirtum Oliver (Aster-
aceae) stem and leaves essential oil (EO) composition extracted through hydro-distillation using gas
chromatography-mass spectrometry (GC-MS) analysis for the first time. The EOs of the stem and
leaves of B. hirtum were comparatively studied for the in vitro antidiabetic and anticancer potential
using in vitro α-glucosidase and an MTT inhibition assay, respectively. In both of the tested samples,
the same number of fifty-eight compounds were identified and contributed 93.88% and 89.07% of the
total oil composition in the EOs of the stem and leaves of B. hirtum correspondingly. However, cam-
phene was observed as a major compound (23.63%) in the stem EO, followed by β-selinene (5.33%)
and β-elemene (4.66%) and laevo-β-pinene (4.38%). While in the EO of the leaves, the dominant com-
pound was found to be 24-norursa-3,12-diene (9.08%), followed by β-eudesmol (7.81%), β-selinene
(7.26%), thunbergol (5.84%), and caryophyllene oxide (5.62%). Significant antidiabetic potential was
observed with an IC50 of 2.10± 0.57 µg/mL by the stem compared to the EO of the leaves of B. hirtum,
having an IC50 of 4.30 ± 1.56 µg/mL when equated with acarbose (IC50 = 377.71 ± 1.34 µg/mL).
Furthermore, the EOs offered considerable cytotoxic capabilities for MDA-MB-231. However, the
EO of the leaves presented an IC50 = 88.4 ± 0.5 µg/mL compared to the EO of the stem of B. hirtum
against the triple-negative breast cancer (MDA-MB-231) cell lines with an IC50 = 123.6 ± 0.8 µg/mL.
However, the EOs were also treated with the human breast epithelial (MCF-10A) cell line, and from
the results, it has been concluded that these oils did not produce much harm to the normal cell lines.
Hence, the present research proved that the EOs of B. hirtum might be used to cure diabetes mellitus
and human breast cancer. Moreover, further studies are considered to be necessary to isolate the
responsible bioactive constituents to devise drugs for the observed activities.

Keywords: Blepharispermum hirtum; Asteraceae; GS-MS analysis; essential oils; triple-negative breast
cancer; α-glucosidase

1. Introduction

Medicinal plants and their products serve as both traditional and commercial alterna-
tive innovative remedies [1]. Due to the efficacy and lower adverse effects, the demand
for herbal therapies has increased. Plant based natural products, comprising essential oils
(EOs) have gained attention due to their usage in foodstuff, cosmetics, and pharmaceutical
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productions. Constituting a range of several lipophilic and extremely volatile constituents,
obtained from an extensive range of diverse chemical classes, EOs are attributed to multiple
health benefits: analgesic, anti-inflammatory, antioxidant, antimicrobial, anticancer, and
antidiabetic [2].

Diabetes mellitus is considered as a world health issue, linked to two key features
including insufficient insulin secretion or insensitivity to their action. Their high rate of
prevalence reflects its severity, and according to the projected statistics of WHO, more than
422 million people have diabetes, 1.5 million deaths are directly attributed to diabetes each
year, and the prevalence ratio will increase to 693 million by 2045 [1,3]. The diabetes might
lead to several other complications such as polyuria, polydipsia, impaired vision, and skin
infections [4]. Therefore, strategies need to be developed to combat these drawbacks. In
this context, α-glucosidase (EC 3.2.1.20) has become a promising target for the treatment
of diabetes mellitus. The inhibition of these carbohydrates’ key metabolic enzymes slows
down carbohydrate digestion, resulting in the low absorption of glucose, leading to nor-
malizing the blood glucose levels. Hence, the investigation of new anti-diabetic agents
using natural sources is currently of need because of their non-cytotoxic effects [5–7].

Increased interest of users concerning pharmacologically effective plant-based natural
products (NPs) as substitute therapies to treat cancer has increased the attention of scientists
worldwide [4]. However, an intensifying significance has been observed recently that EOs
act as an anticancer medication to overcome the development of multidrug resistance and
critical harmful effects linked with available antitumor remedies [5]. Therefore, due to
the key role of EOs in cytotoxic therapy, the EOs of unreported plants might be used as a
complementary remedy [6].

Blepharispermum hirtum Oliver (family: Asteraceae) is a naturally growing tree, about
2 m in height, and is endemic to Dhofar (Oman). The plant has very broad and soft leaves
with a basic inflorescence containing a capitulum of white flowers. The genus Blepharisper-
mum comprises 15 species, all of which are shrubs, except for B hirtum. Blepharispermum
species are distributed over different regions of Africa, the Arabian Peninsula, and India [7].
Decoctions as well as the root powder of B. subsessile have been used by local practitioners
in India for the treatment of various health ailments used in nervous disorders, while
the whole plant is used in diarrhea, stomach ache, rheumatic affections, skin diseases,
eye troubles, anti-inflammatory diseases, and irregular menstruation [8–10]. Recently,
Fatope et al., [9] reported ent-kaurene diterpenoids with larvicidal and antimicrobial ac-
tivity. It also has promising potential to resist microbes and antifeedant significance [9].
The genus Blepharispermum is an affluent basis for many bioactive ingredients including
dimethyl isoencecalin and 5-hydroxy-6-acetyl-2-hydroxymethyl-2-methyl chromene [10].

Furthermore, the reported literature of EOs and the traditional uses of the plants
growing in Oman have been noticed to have promising potential to cure diabetes and
cancer [11,12]. Natural products derived from plants and plant products that have been
traditionally used to treat various diseases including cancer and diabetes have advantages
in drug discovery [13]. Thus, the current study was designed to profile the constituents
of the EOs and determine the in vitro antidiabetic and cytotoxic significance of B. hirtum.
Hence, the recent study will update the literature on the genus Blepharispermum and report
on the EOs of B. hirtum for the first time.

2. Materials and Methods
2.1. General Instrumentation

The MDA-MB-231 and MCF-7 cell lines were acquired from the American Type Cul-
ture Collection (ATCC) and MCF-10A was purchased from the Iranian Biological Resource
Center (IBRC) (Tehran, Iran). GC-MS was conducted on a gas chromatography-mass spec-
trometer (GC-MS-QP2010, Shimadzu Kyoto, Japan). The α-glucosidase enzyme (EC 3.2.1.20,
Sigma-Aldrich, Darmstadt, Germany) and spectrophotometer (xMark™ Microplate Spec-
trophotometer, Bio-Rad, Hercules, CA, USA) were used for the α-glucosidase activity. A
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High-Speed Multifunctional Grander (Grand Household, Code. GR-SCG350H) was used
for the grinding of the plant. Analytical grade reagents were used in the current study.

2.2. Collection and Identification of Plant Materials

The whole plant material of B. hirtum (8.7 kg) was collected from Salalah, the Dhofar
region of Oman (April–May 2020). After identification by the plant taxonomist (Syed
Abdullah Gilani, Department of Biological Sciences and Chemistry, University of Nizwa,
Nizwa, Oman), the leaves (4.0 kg) were separated from the stems (4.2 kg) and placed under
shade at room temperature for dryness. The dried samples were ground into fine powder
(50–300 mesh) using a stainless-steel blender. A voucher specimen of B. hirtum (BHO-
03/2020) was deposited in the herbarium of the Natural and Medical Sciences Research
Center, University of Nizwa, Oman.

2.3. Essential Oils Extraction

The essential oils extracted through hydro-distillation from the leaves and stem of the
B. hirtum yielded 1.2 g (0.052%) and 0.95 g (0.045%), respectively, using a Clevenger-type
apparatus (three times for at least 6 h) and were observed to be yellow-colored [14,15]. A
known quantity of the EOs was collected, dried over anhydrous sodium sulfate (Na2SO4),
and kept in the refrigerator at 4 ◦C until further GC-MS analysis and in vitro antidiabetic
and cytotoxic assays.

2.4. GC-MS Analysis

The chemical constituents in the stem and leaf samples of the understudy plant were
determined through the Perkin Elmer Clarus (PEC) 600 GC System (Perkin Elmer, Waltham,
MA, USA) using gas chromatography-mass spectrometry (GC/MS) analysis. The GC/MS
instrument was coupled with an Rtx-5MS capillary column (30 m × 0.25 mm, 0.25 µm film
thickness) at 260 ◦C, connected to a PEC 600 mass spectrometer (MS). Electron multiplier
(EM) voltage was achieved from autotune with 70 eV ionizing energy (IE). The carrier gas
was helium (99.9999%) with a flow rate of 1 mL/min, while temperatures of 260 ◦C and
280 ◦C were used for the injection, transfer line, and ion source, respectively, during the
whole analysis. The oven temperature was kept at 60 ◦C, holds for 1 min, at a flow rate of
4 ◦C/min–260 ◦C, and stood for 4 min. The essential oil solution (1 µL) was injected with a
split ratio of 10:1. The complete chromatographic data were obtained by accumulating the
full-scan mass spectra in the range of 45–550 amu. Furthermore, the total processing time
of the GC/MS analysis was 55 min.

Identification of the Components

The essential oils extracted from the leaves and stems of B. hirtum were identified
by their respective chromatogram peaks obtained for each compound through GC-MS
analysis. Some of the compounds were identified by comparing their mass spectra with the
MS library database (NIST 2011 v.2.3). Compound identification was also made possible
by comparing their retention times (Rt) with those of the pure authentic samples and by
means of their retention index (RI), relative to the series of n-hydrocarbons [14–16].

2.5. In Vitro α-Glucosidase Inhibitory Assay

Evaluation of the α-glucosidase inhibitory significance of the essential oils of the tested
samples proceeded at 37 ◦C using 0.5 mM phosphate buffer (pH 6.8) [9,10]. High to low
doses of the tested samples including (60, 30, 15, 7.8, 3.90, and 1.95 µg/mL), respectively,
were incubated with the enzyme (2 U/2 mL) in phosphate buffer for 15 min at 37 ◦C. After
adding the 25 µL substrate, p-nitrophenyl-a-D-glucopyranoside (0.7 mM, final), a spec-
trophotometer was used to track the changes in absorbance at 400 nm for 30 min. DMSO-
d6 (7.5 percent final) was used as a positive control. As a reference standard, acarbose
(IC50 = 377.7 1.34 µg/mL) was employed. Furthermore, the IC50 was calculated by using
EZ-fit software, as explained in the statistical analysis section by Equations (2) and (3).



Metabolites 2022, 12, 907 4 of 11

2.6. In Vitro Cytotoxic Potential

In vitro cytotoxicity capacity of EOs was determined by performing an MTT (yellow
tetrazolium salt, 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyl tetrazolium bromide) assay by
using an aggressive breast cancer cell line (MDA-MB-231) [17]. Human breast normal cell
line MCF-10A was kept as a control in the study. Cells were cultured in Dulbecco’s modi-
fied Eagle medium (DMEM) supplemented with 10% FBS and 1% antibiotics (100 U/mL
penicillin). The cells were seeded in a 96-well plate at a density of 1.0 × 104 cells/well and
incubated for 24 h at 37 ◦C in 5% CO2. The medium was discarded, and both cell lines were
treated with different concentrations (3, 10, 30, 100, and 300 µg/mL) of plant EOs [18] after
48 h of incubation (Maher et al. [19]). A total of 20 µL of MTT solution (5 mg/mL) was
pipetted into each well and incubated for another 4 h. The medium was later discarded,
and the formazan precipitate was dissolved in DMSO. The absorbance of the mixtures
was determined using a microplate reader at 570 nm. All experiments were performed in
triplicate and the cytotoxicity was expressed as a percentage of cell viability compared to
the untreated control cells [18]

% Viability =
Absorbance of sample
Absorbance of control × 100 (1)

2.7. Statistical Analysis

Excel and the SoftMax Pro package were used as the applications to examine the results
for biological activity. The following formula was used to determine the % inhibition.

% Inhibition = 100−
(O.Dtest compound

O.Dcontrol

)
× 100 (2)

All of the tested substances’ IC50 values were calculated using EZ-FIT (Perrella Scien-
tific, Inc., Amherst, MA, USA). All experiments were carried out in triplicate to reduce the
likelihood of mistakes, and differences in the results are reported as the standard error of
mean values (SEM).

SE = σ√
n (3)

The cytotoxic activity was estimated via IBM SPSS Statistics 26 software and utilized
to analyze the dose response and computation of IC50.

3. Results and Discussion
3.1. Composition of Essential Oil

The role of essential oils in the therapy of human health complications from ancient
times to date cannot be denied. The promising potential attributed to EOs is due to the
presence of valuable ingredients. In the current study, through the GC-MS analysis, fifty-
eight compounds were identified in the EOs of the stems and leaves of B. hirtum (Table 1).
The compounds identified in the stem through GC-MS screening contributed 93.88% of
the total oil composition among which camphene was noticed as the dominant compound
having 23.63%, followed by β-selinene with 5.33%, β-elemene (4.66%), and laevo-β-pinene
(4.38%) (Table 1 and Figure 1). While the same number of compounds were identified in the
EOs of the leaves of the B. hirtum sample, which contributed 89.07% of the total composition,
with major compounds of 24-norursa-3,12-diene at 9.08%, followed by β-eudesmol (7.81%),
β-selinene (7.26%), thunbergol (5.84%), and caryophyllene oxide (5.62%) (Figures 1 and 2).
The compound camphene was earlier reported in the EOs of Piper cernuum, as presented
by Girola et al. [20], while β-selinene was previously noticed in Litsea cubeba and Lanthana
camara, as stated by Si et al. [21] and Sarma et al. [22], respectively. Furthermore, our
data consented to the outcomes elaborated by Quassinti et al. [23] in Hypericum hircinum
and Ferulago macrocarpa, as described by Sajjadi et al. [24]. In addition, our data are also
supported by the outcomes earlier reported by Akpulat et al. [25] and Hulley et al. [26]
in the EOs of some plants belonging to the family Asteraceae, which might be due to the
presence of the common chemical ingredients. However, our findings do not match the
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EOs reported by Mejia et al. [27] in Brassica nigra and also with the literature documented
by Oroojalian et al. [28] in some Apiaceae species. Many factors are responsible for the
variation among the contents present within a plant species including the difference in
plant family and environmental gradients [29].

Table 1. The GC-MS analysis of the EOs of Blepharispermum hirtum Oliver.

S. No. Compounds RTmin RIcal RIrep % Stem % Leaves

1 5,5-Dimethyl-1-vinylbicyclo [2.1.1] hexane 7.44 927 920 0.12 0.03

2 3-Thujene 7.65 935 928 3.11 0.06

3 Camphene 7.88 944 935 23.63 2.19

4 2,4(10)-Thujadiene 8.39 963 957 0.53 0.03

5 Sabinene 8.91 982 964 2.21 0.14

6 Laevo-β-Pinene 9.01 986 978 4.38 0.12

7 β-Myrcene 9.37 999 981 0.91 0.25

8 α-Phellandrene 9.75 1013 997 0.39 0.05

9 3-Carene 9.92 1019 1005 0.11 0.04

10 p-Cymene 10.30 1033 1011 1.46 0.14

11 D-Limonene 10.42 1037 1018 2.79 0.46

12 γ-Terpinene 11.25 1067 1047 1.51 0.11

13 Linalool 12.34 1106 1082 0.49 0.32

14 Perillen 12.40 1108 1086 0.04 0.08

15 α-Campholenal 13.10 1134 1102 0.42 0.31

16 2,9-Dimethyl-5-decyne 13.10 1136 1103 0.31 0.03

17 L-Pinocarveol 13.46 1147 1108 0.85 0.84

18 cis-Verbenol 13.52 1149 1110 0.25 0.36

19 trans-Verbenol 13.61 1153 1128 0.71 2.51

20 p-Mentha-1,5-dien-8-ol 14.18 1174 1148 0.56 0.69

21 Terpinen-4-ol 14.47 1185 1175 0.67 0.46

22 Myrtenol 15.00 1205 1174 0.45 0.49

23 Levoverbenone 15.34 1218 1191 0.26 0.86

24 cis-Carveol 15.54 1226 1208 0.08 0.37

25 Bornyl acetate 17.26 1292 1269 1.23 0.83

26 α-Terpinyl acetate 18.78 1354 1322 0.91 0.97

27 Copaene 19.48 1383 1376 0.47 0.44

28 β-Bourbonene 19.71 1392 1386 0.84 1.57

29 β-Elemene 19.84 1398 1398 4.66 4.52

30 Caryophyllene 20.54 1428 1421 3.73 4.35

31 Humulene 21.32 1462 1454 1.31 1.55

32 Alloaromadendrene 21.49 1469 1459 0.39 0.59

33 γ-Muurolene 21.80 1483 1471 1.05 1.01

34 Germacrene D 21.94 1489 1480 3.26 1.31

35 β-Selinene 22.08 1495 1509 5.33 7.26

36 α-Selinene 22.26 1503 1500 2.92 4.63
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Table 1. Cont.

S. No. Compounds RTmin RIcal RIrep % Stem % Leaves

37 Cubebol 22.64 1521 1512 0.33 0.99

38 δ-Cadinene 22.82 1529 1514 1.59 2.93

39 Elemol 23.38 1554 1535 0.63 1.42

40 Germacrene D-4-ol 23.99 1582 1570 0.09 0.31

41 Caryophyllene oxide 24.19 1991 1575 2.89 5.62

42 Humulene 1,2-epoxide 24.743 1617 1596 0.61 1.16

43 γ-Eudesmol 24.786 1619 1627 0.58 1.18

44 Cubenol 25.09 1634 1631 0.13 0.38

45 tau-Cadinol 25.341 1946 1637 0.77 1.78

46 β-Eudesmol 25.57 1657 1644 2.73 7.81

47 Benzyl Benzoate 27.77 1767 1765 0.12 0.54

48 α-Phellandrene, dimer 28.32 1794 1801 0.43 0.76

49 m-Camphorene 31.11 1945 1960 0.09 0.31

50 Cembrene A 31.41 1961 1970 0.32 0.58

51 p-Camphorene 31.68 1978 1977 0.08 0.41

52 Geranyl-α-terpinene 32.21 2007 1990 0.05 0.13

53 Verticillol 32.70 2036 2036 0.29 0.38

54 Cembrenol 34.55 2046 2161 0.25 0.29

55 Thunbergol 34.71 2156 2173 3.32 5.84

56 24-Norursa-3,9(11),12-triene 46.48 2156 3042 1.23 3.17

57 24-Noroleana-3,12-diene 46.645 3013 3057 1.55 4.03

58 24-Norursa-3,12-diene 47.198 3060 3105 3.46 9.08

Total % of the identified compounds 93.88 89.07

RIcalc = Retention index calculated. RIrep = Retention index obtained from database (NIST, 2011). RT = Retention
time (min).
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3.2. In Vitro Antidiabetic Significance

It is very clear that in recent times, natural products have been considered as untapped
diamonds because of their invaluable medicinal use and lower side effects. The recent
studies were designed to keep these key features of new drug candidates. The reported
pharmacotherapeutic importance of EOs in the treatment of diabetes encouraged us to
identify anti-diabetic agents via evaluating natural resources [30]. Therefore, in the current
studies, two samples of EOs extracted from B. hirtum were subjected to, due to their crucial
role in the inhibition of the key anti-diabetic targeted enzyme, α-glucosidase. Interestingly,
both samples displayed overwhelming anti-diabetic potential with very high potency
IC50 = 2.10 ± 0.57 µg/mL (stem) and 4.30 ± 1.56 µg/mL (leaves) when compared with
the marketed drug acarbose IC50 = 377.71 ± 1.34 µg/mL (Figure 3). This invaluable high
potency of these natural products further showed and strengthened their role as anti-
diabetic agents. The stem EOs contained camphene in a higher quantity (23.63%) compared
to the leaves (2.19%), which has a significant role in curing diabetes, as reflected in the
literature stated by Mishra et al. [31] and Hachlafi et al. [32], and this might be the reason
for which the EOs of the stem depicted a significant capacity to act as an antidiabetic agent.
In addition, our findings were in agreement with the data reported by Majouli et al. [33]
for Hertia cheirifolia and Ceylan et al. [34], which documented the significance of Thymus
spathulifolius due to the presence of common constituents and the same technique used in
the mentioned plant species and understudy plant samples. However, our results did not
match the previously described outcome of Ahmad [35] for M. spicata and Basak et al. [36],
which revealed the significance of the EOs of Laurus nobilis. Variation in the capacity of
the plants mainly depends upon the chemical ingredients that might be altered due to the
edaphic, climatic, quality, and availability of water, as stated by Shah et al. [37], and is also
affected by the elemental and other ingredients present in the water available for plants.
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3.3. In Vitro Cytotoxicity Capacity

The cytotoxic potential of the tested samples of B. hirtum EOs was evaluated from low
to high doses using human breast cancer cell line MDA-MB-231 compared to human normal
breast epithelial cell lines; Michigan cancer foundation (MCF) MCF-10A was used as a
control in the experiment. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide] assay was used to determine the decrease in the cancer cell viability induced
by cytotoxic agents. For MDA-MB-231, the IC50 values, % inhibition, and viability of the
tested EOs are presented in Table 2. Our findings show that the EOs of the leaves and stem
have promising capabilities against MDA-MB-231 cells with IC50 values of 88.4 ± 0.5 and
123.6 ± 0.8 µg/mL, respectively. To determine whether the cytotoxic effects of the oils were
selective for malignant cells in comparison to the non-malignant cells, the non-tumorigenic
MCF-10A cells were screened through the tested EOs from low to high doses (3, 10, 30, 100,
and 300 µg/mL) in a similar manner as the cancer cells. After the MTT assay, the results
of the % inhibition and viability for the MCF-10A cell lines by essential oils are presented
in Table 3. The results showed that these cells were less susceptible to the actions of the
essential oil, particularly at a higher dose of 300 µg/mL. The data in this study revealed that
the triple negative MDA-MB-231 cells, which bear an aggressive phenotype, responded
more favorably to EOs, and showed greater cytotoxicity. The significant potential for
cytotoxicity was observed when non-tumorigenic MCF-10A cells were exposed to this
plant’s EOs, which suggested that EOs have the potential in offering promising treatment
for patients with breast cancer. Some valuable constituents were noticed in the understudy
plant samples due to which they offered promising potential cancer therapy. Our findings
agreed with the report described by Ortiz et al. [38] of the plant species belonging to the
genus Santalum and Furtoda et al. [39] in the Blepharocalyx salicifolius. Our findings also
favor the study of Loizzo et al. [40], who described the significance of the EOs of some
plants of the family Lamiaceae and Lauraceae.

Table 2. The % viability and inhibition of B. hirtum essential oil on the breast cancer cell line MDA-
MB-231.

Tested Samples Conc. (µg/mL) % Viability % Inhibition IC50 (µg/mL)

Leaves

3 94.33 5.66

88.4 ± 0.5

10 82.41 17.58

30 71.09 28.90

100 47.85 52.14

300 26.26 73.73

Stem

3 96.49 3.50

123.6 ± 0.8

10 85.43 14.56

30 72.65 27.34

100 53.04 46.95

300 37.05 62.94

Table 3. The % Viability and inhibition of B. hirtum essential oil on the normal breast cell line MCF-10A.

Tested Samples Conc (µg/mL) % Viability % Inhibition IC50 (µg/mL)

Leaves

3 96.29 3.70

>300

10 93.04 6.99

30 89.34 10.65

100 86.96 13.03

300 78.07 23.99
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Table 3. Cont.

Tested Samples Conc (µg/mL) % Viability % Inhibition IC50 (µg/mL)

Stem

3 97.50 2.49

>300

10 95.28 4.71

30 89.93 10.06

100 85.10 14.89

300 79.22 20.77

4. Conclusions

The comparative analysis of the B. hirtum stem and leaves EOs revealed that the
understudy plant is an affluent source of responsible bioactive chemical constituents that
are intended to produce as useful properties as the plant. Fifty-eight constituents were
observed in the EOs of the stem and leaves of B. hirtum and contributed 93.88% and 89.07%
of the total amount, respectively. Camphene was observed as a major compound (23.63%),
followed by β-selinene (5.33%), β-elemene (4.66%), and laevo-β-pinene (4.38%) in the stem
EO. While the 24-norursa-3,12-diene (9.08%), β-eudesmol (7.81%), β-selinene (7.26%), thun-
bergol (5.84%), and caryophyllene oxide (5.62%) were noted as the dominant constituents.
Considerable potential to cure diabetes was offered by the tested samples compared to
the standard. Moreover, the EOs of B. hirtum produced significant cytotoxicity effects
against the breast cancer cell line MDA-MB-231 and were non-toxic to the normal cell line
MCF-10A. The occurrence of the chemical constituents and promising α-glucosidase and
cytotoxic activities of the EOs validate their pharmaceutical and nutraceutical importance.
Hence, the analysis revealed that B. hirtum EOs can be used as an alternative promising
natural remedy to cure diabetes mellitus and cancer.
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