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Abstract 

Background:  Selection of optimal computational strategies for analyzing metagenomics data is a decisive step in 
determining the microbial composition of a sample, and this procedure is complex because of the numerous tools 
currently available. The aim of this research was to summarize the results of crowdsourced sbv IMPROVER Microbiom-
ics Challenge designed to evaluate the performance of off-the-shelf metagenomics software as well as to investigate 
the robustness of these results by the extended post-challenge analysis. In total 21 off-the-shelf taxonomic metage-
nome profiling pipelines were benchmarked for their capacity to identify the microbiome composition at various 
taxon levels across 104 shotgun metagenomics datasets of bacterial genomes (representative of various microbiome 
samples) from public databases. Performance was determined by comparing predicted taxonomy profiles with the 
gold standard.

Results:  Most taxonomic profilers performed homogeneously well at the phylum level but generated intermediate 
and heterogeneous scores at the genus and species levels, respectively. kmer-based pipelines using Kraken with and 
without Bracken or using CLARK-S performed best overall, but they exhibited lower precision than the two marker-
gene-based methods MetaPhlAn and mOTU. Filtering out the 1% least abundance species—which were not reliably 
predicted—helped increase the performance of most profilers by increasing precision but at the cost of recall. How-
ever, the use of adaptive filtering thresholds determined from the sample’s Shannon index increased the performance 
of most kmer-based profilers while mitigating the tradeoff between precision and recall.

Conclusions:  kmer-based metagenomic pipelines using Kraken/Bracken or CLARK-S performed most robustly across 
a large variety of microbiome datasets. Removing non-reliably predicted low-abundance species by using diversity-
dependent adaptive filtering thresholds further enhanced the performance of these tools. This work demonstrates 
the applicability of computational pipelines for accurately determining taxonomic profiles in clinical and environmen-
tal contexts and exemplifies the power of crowdsourcing for unbiased evaluation.
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Background
Microorganisms, mainly bacteria, archaea, fungi, and 
viruses, colonize almost every part of the terrestrial bio-
sphere—soil, water, and living organisms. In humans, 
microbes cover all external and internal epithelial sur-
faces, such as the skin, oral sphere, airways, genitals, and 
digestive tract [1], and these microbes generally live in 
symbiosis with their host, contributing to host homeo-
stasis by supporting metabolic functions, assisting in 
the development of immunity, protecting against patho-
gens, and regulating physiological functions or behav-
iors through the gut–brain axis [2, 3]. Factors such as 
genetics, diet, age, antibiotic use, toxins, and toxicants 
can influence and can consequently perturb the compo-
sition and thus the function of microbiota [1], introduc-
ing an imbalance, which is termed “dysbiosis.” This state 
is associated with several medical conditions and changes 
in the composition of a microbiome may be used as bio-
markers (fingerprints) of disease [1]. Therefore, accu-
rate determination of the composition of a microbiome 
is the starting point for gaining a further understanding 
its functions and causalities, such as host–microbiome 
and intra-microbiome interactions and possibly their link 
to diseases. Such research opens up a novel therapeutic 
development landscape as well as various application 
opportunities in diagnostics [4, 5].

By applying modern high-throughput sequencing tech-
nologies to a biological sample, it is possible to obtain 
its genomic snapshot. The microbial composition of the 
sample can be estimated by computational assignment 
of sequencing reads to microbial taxa and quantifying 
their abundance. Numerous computational methods and 
software tools have been developed for taxonomic pro-
filing from 16S or shotgun sequencing data [6], but lim-
ited information on the performance and applicability of 
these computational methods makes it difficult to choose 
the most appropriate strategy. Evaluation of published 
computational methods is generally limited to developers 
benchmarking their method against other existing meth-
ods [7]. However, this non-blinded evaluation is often 
restricted and challenging because of the number and 
choice of methods to be compared. Such self-assessment 
may also lead to biased results [7] and, consequently, a 
low consensus on benchmarking datasets and evaluation 
metrics in metagenomics.

The sbv IMPROVER (systems biology verification for 
Industrial Methodology Process Verification) crowd-
sourcing project aims to verify methods and data in 

systems biology [8]. sbv IMPROVER has shown its use-
fulness in benchmarking computational methods to 
address scientific questions articulated in crowdsourced 
challenges involving systems toxicology, species translat-
ability, and diagnostic signature identification [9–14]. The 
sbv IMPROVER Microbiomics Challenge was designed 
to assess the performance of off-the-shelf metagenom-
ics software data analysis pipelines as a whole—that is, 
from quality control to taxonomy profiling of relative 
abundance and taxonomic assignment of bacterial com-
munities—rather than assessing individual steps of the 
process. This new challenge falls within the continuum of 
crowdsourced initiatives such as the Critical Assessment 
of Metagenome Interpretation (CAMI) challenge (http://​
www.​cami-​chall​enge.​org/), which have evaluated meth-
ods in metagenomics for assembly, binning, and tax-
onomy profiling [15]. However, unlike in similar studies, 
the benchmarking datasets selected for this study cover 
a broad set of features (e.g., habitat, host origin, dataset 
complexity, sequencing technique, and dataset construc-
tion method) and thus allow broader and more detailed 
assessment of the prediction quality of the selected 
profilers.

Participants in the Microbiomics Challenge were pro-
vided shotgun reads generated either by sequencing 
commercially available DNA isolated from a mixture 
of selected microorganisms with known relative abun-
dances or by simulating reads in silico by using complete 
bacterial genomes from the National Center for Biotech-
nology Information (NCBI) GenBank database. To inves-
tigate the impact of microbial composition complexity 
and biases on the performance of computational meth-
ods for metagenomics taxonomy profiling, we simulated 
microbiome samples with higher numbers of species and 
incorporated (or not) a biased representation of AT- or 
GC-rich bacterial species. The participants were asked 
to predict, at the phylum, genus, and species levels, the 
composition of bacterial communities in each sample on 
the basis of their relative abundance. The participants had 
the freedom to use any private or public dataset to set up 
and test their approach. After completion of the chal-
lenge, anonymized participant predictions were scored 
using predefined complementary binary classification 
and abundance metrics for performance assessment and 
identification of the best-performing approaches. This 
manuscript summarizes the results and lessons learned 
from the Microbiomics Challenge and extended bench-
marking post-analyses, including additional taxonomic 
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metagenome profiler pipelines and simulated and real 
metagenomics datasets representative of microbiomes 
from various environmental settings and human organs.

Results and discussion
The metagenomics pipeline using Kraken combined 
with Bracken performed best on the challenge dataset
The challenge participants’ mission was to apply a taxo-
nomic metagenome profiling pipeline to simulated and 
real shotgun metagenomics sequencing samples of vari-
ous compositions and complexities to predict the taxa 
present in each sample and their relative abundance at 
the phylum, genus, and species levels (Fig. 1, with panel 
A showing the competition schematic representation 
and panel B illustrating the strategy for competition 
metagenomics datasets generation). To raise awareness 
about this new challenge, we have presented the Micro-
biomics Challenge in conferences, organized a webinar, 
and described it in detail on the sbv IMPROVER web-
site. Overall, seven worldwide teams participated in the 
challenge and submitted a total of eight predictions on 
the sbv IMPROVER platform. The scorers received the 
anonymized submissions after the challenge closed. The 
scoring process evaluated how well, in comparison with 
the gold standard (Additional file 1), a method predicted 
the presence or absence of taxa by using the F1 score as 
a binary metric and rebuilt the relative abundances by 
using the L1 norm and weighted UniFrac as abundance 
metrics. For each submission, the scores were con-
verted to ranks, which were aggregated in the form of 
a weighted sum of ranks (wsr). The taxonomic metage-
nome profilers used by the participants included kaiju, 
CLARK, and Kraken combined or not with Bracken 
(Fig. 2 and Table 1). The pipelines combined these tools 
with read preprocessing and filtering steps and used the 
full or restricted contents of the microbial genome data-
bases. The pipeline of Team 8 did not use classical tools 
but instead combined read alignment to genomes by 
using blastn and their assignment to taxa by using Tar-
getMiner and the RDP database. The submission with the 
lowest overall wsr of 418 won the challenge (Fig.  2 and 
Additional  file  2, Sheet A). The best-performing pipe-
line used the taxonomic metagenome profiler Kraken in 
combination with Bracken, while the second and third 
best pipelines included Kraken without Bracken. The dif-
ference between the second and third teams was the use 
of bacteria-only and full-content databases, respectively. 
To assess how far the predictions were from random-
ness, the participants’ prediction scores were compared 
with distributions of random prediction scores stratified 
by taxonomic level, unbiased or AT−/GC-rich-biased 
bacterial composition, and sample complexity (Addi-
tional  file  3). Team submissions with scores considered 

to be random increased with higher sample complexi-
ties, and the F1 scores were more affected than the L1 
norm and weighted UniFrac scores. This latter observa-
tion indicates that binary (presence/absence) assignment 
of microorganisms to specific taxonomic communities 
had more impact on the teams’ performance than the 
prediction of abundances. Predictions at the phylum 
level were more accurate than predictions at the species 
level, indicating that accurate qualitative and quantita-
tive identification of bacterial communities at a deeper 
taxonomic level is more challenging. These results are 
consistent with previous CAMI reports of a notable 
decrease in performance below the family level [15]. The 
increased variability of the teams’ scores at lower taxo-
nomic levels illustrates the emergence of differences in 
pipeline performance, which may be negligible at the 
phylum level. Each team’s pipeline exhibited small dif-
ferences in performance in the presence and absence of 
AT−/GC-rich biases. This suggests that the workflows 
were not influenced by this factor, which is in contradic-
tion with previous findings showing that GC bias has an 
effect in next-generation sequencing data, for example, 
on genome assembly [16] or that the bias introduced by 
a certain proportion of AT−/GC-rich bacteria was insuf-
ficiently pronounced to lead to a substantial effect (Addi-
tional file 3).

To better understand the difference in performance of 
the top three pipelines using the Kraken tool, we inves-
tigated the impact of factors such as read filtering, bac-
terial genome database content associated with versions 
and completeness, and read count estimation by using 
Bracken. To ensure that the results and conclusions were 
not specific to the challenge dataset, we expanded the 
analysis to additional publicly available simulated and 
real benchmarking metagenomics datasets representa-
tive of various microbiome compositions from various 
environmental settings and human organs (Fig.  3 and 
Additional file 2, Sheet B). The analysis was conducted by 
comparing the performance of the winning pipeline with 
various factor combinations (Fig. 4 [Panel A] and Addi-
tional file 2, Sheet C). The results were expressed as the 
difference in the F1 scores and weighted UniFrac scores 
for the factor under evaluation (Fig. 4 [Panels B–E] and 
Additional file 2, Sheet D). In general, we did not observe 
large absolute differences in scores (i.e., exceeding 0.25 
for both weighted UniFrac and F1 scores) for any of the 
factor combinations. Except for the NextSeq dataset, 
the read filtering (Fig. 4 [Panel B]) generally exhibited a 
beneficial effect for the in vitro datasets and no effect on 
the scores for the simulated datasets. The in  vitro data-
sets are real sequencing data that contain low-quality 
reads and contaminants such as adapters, which are not 
necessarily present in simulated datasets, and should be 
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filtered out to increase the quality of the read mapping 
and of the assignment to and quantification of taxa. With 
the exception of the Buc12 and Hous31 datasets, using an 
older version of a bacterial genome database surprisingly 
resulted in better predictions for the presence/absence of 
taxa than can be obtained with a more recent database 
version and, in general, did not impact the estimated 

species abundances (Fig.  4 [Panel C]). Similar results 
were obtained when comparing the impact of the refer-
ence database contents. The database restricted to bac-
terial sequences resulted in overall better scores than 
those obtained when using the full database of bacteria, 
viruses, and archaea (Fig. 4 [Panel D]).

Fig. 1  Overview of the objective and dataset of the Microbiomics Challenge. Schematic description of the challenge (A). Participants were 
provided simulated metagenomics datasets representative of samples with increasing bacterial composition complexities and biases and including 
mouse host-read contamination. Real metagenomics datasets were generated from the sequencing of two independent libraries prepared from 
the commercially available ZymoBIOMICS DNA standard extracted from a known mixture of microorganisms, including eight bacterial species and 
two yeasts (B)
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Collectively, these results lead to the following 
conclusions. The use of more recent and complete 
microbial genome databases with Kraken offers new 
informative genomic content that improves spe-
cies identification in datasets for which the informa-
tion was missing. However, the more recent databases 
may increase the number of false positives by possi-
bly increasing non-specific read mapping on micro-
bial genomes newly available in the database. These 
observations may also be linked to the benchmarking 
datasets themselves, which are mostly simulated data 
predominantly using bacterial genomes available in 
older databases at the time they were generated, high-
lighting the limitations of using in silico data.

Contrary to our expectations, Bracken negatively 
impacted the scores obtained with Kraken for taxon 
quantification for most of the datasets, with the excep-
tion of the DNA Control and HMP_even datasets, for 

which beneficial effects were observed (Fig. 4 [Panel E]). 
Further analysis indicated that the Kraken default pipe-
line rounds the taxon abundances to two decimals and 
therefore eliminates taxa with an abundance less than 
0.005 from the final report. When Bracken is combined 
with Kraken for re-estimating taxon abundances, it uses 
a complete non-rounded Kraken output report directly. 
Thus, after the Bracken-based re-estimation, taxa 
excluded as noise by the Kraken default parameters may 
appear in the final profile, resulting in a higher number of 
false-positive counts.

Extended benchmarking of taxonomic metagenome 
profilers confirmed Kraken combined with Bracken 
as the overall best‑performing pipeline across various 
microbiome composition sample datasets
In order to extend the conclusions of this chal-
lenge and evaluate their robustness, we expanded 

Fig. 2  Final team ranking in the sbv IMPROVER Microbiomics Challenge. Bar plot of the weighted sum of ranks (wsr) sorted from the lowest (best) 
to the highest (worst) wsr. A heatmap shows the wsr stratified by metrics (wU, weighted UniFrac; F1, F1 score; L1, L1 norm), taxonomic levels (Ph, 
phylum; Ge, genus; Sp, species), complexity (C; Standard corresponds to the real ZymoBIOMICS DNA standard), and sequence bias status (Un, 
unbiased sample; AT or GC, AT/GC-rich biased samples)
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the benchmarking analysis to a total of 21 taxonomic 
metagenome profiling pipelines (Fig.  5 [Panel A] and 
Additional file 2, Sheet E) to predict the composition of 
104 metagenomic samples, which were combined into 19 
dataset groups to account for the compositional bias of 
some sample types (Fig. 3 and Additional file 2, Sheet B). 
This extended analysis focused on benchmarking pipe-
lines at the species level only, given the more substantial 
differences in performance observed at this taxonomic 
level. The benchmarked tools included those used for the 
challenge for deeper investigation of their performance 
on extended benchmarking datasets. Other tools were 
also selected if they were frequently benchmarked in 
recent publications (from 2015), open source, still main-
tained, and covered various algorithm types. Although 
several papers have already reported informative results 
on benchmarking taxonomic metagenome profiler tools 
[15, 17–24], the present investigation is, to our knowl-
edge, the broadest benchmarking analysis to date, as it 
evaluated multiple tool/dataset combinations. We also 
investigated the performance of the tools with default 
parameters, excluding any sort of dataset-related pipeline 
optimization. The additional benchmarking datasets were 
selected from previous publications as representative of 

various microbiome compositions from differing envi-
ronmental settings and human/mouse organs and cov-
ering various abundance distributions and complexity 
levels. Because of the need for gold standards for tool 
performance evaluation, most of these datasets were 
simulated, which remains a limitation for benchmark-
ing metagenomics tools. Therefore, we also included real 
datasets from the sequencing of microbiome samples 
constituted in vitro by mixing multiple microorganismal 
(bacterial and yeast) strains in predefined proportions. 
Although synthetic in their composition, these datasets 
include artifacts such as biases, sequence errors, and con-
tamination (to some extent) generated during the sample 
processing (e.g., DNA extraction and library preparation) 
and high-throughput sequencing in the laboratory. Since 
each of the tested profilers had its own reference data-
base, we processed the output profiles and gold standards 
using one reference NCBI-based taxonomy tree (Addi-
tional file 4 and Additional file 5) for a fair comparison. 
This required translation of the taxIDs associated with 
each predicted taxonomy profiles into taxIDs associated 
with this reference NCBI-based taxonomy tree.

Figure 5 shows that the in various versions and pipeline 
combinations with and without Bracken, the Kraken tool 

Table 1  Taxonomic metagenome profiling pipelines used by participants in the challenge

Team Preprocessing QC Filtering Classification Quantification

1 NA FastQC (version not speci-
fied)

NA Kraken v1.0 against bacteria Bracken (version used for the 
challenge, commited code: 
March 5, 2018)

2 NA FastQC (version not speci-
fied)

FastQC Kraken v1.0 using bacterial 
database

Kraken v1.0

3 NA FastQC (version not speci-
fied)

FastQC Kraken v1.0 against full 
database

Kraken v1.0

4 Removal of host contamina-
tion by BWA v0.7.12 mapping 
on mouse genome

BWA v0.7.12 mapping 
against complete NCBI 
bacterial genomes

SAMtools v1.8 
filtering in to 
keep bacterial 
reads only

BWA v0.7.12 mapping 
against complete NCBI 
bacterial genomes

Kaiju v1.6.2

5 NA BWA v0.7.12 mapping 
against RefSeq bacterial 
genomes

SAMtools v1.8 
filtering in to 
keep bacterial 
reads only

BWA v0.7.12 mapping 
against RefSeq bacterial 
genomes

Kaiju v1.6.2

6 PEAR v0.9.10 for merging of 
overlapping read pairs

FastQC v0.11.7 NA CLARK v1.2.5 using NCBI/Ref-
Seq bacterial and archaeal 
genomes as reference 
(13.06.2018)

CLARK v1.2.5

7 NA FastQC (version not speci-
fied)

NA Kaiju v1.6.2 using NCBI/Ref-
Seq bacterial and archaeal 
genomes as reference

Kaiju v1.6.2

8 Selection of 16S rRNA reads 
by BLASTN (version not 
specified) in clustered RDP 
database and concatenation 
of read pairs

SeqTools (version not speci-
fied)

NA BLASTN (version not speci-
fied) against concatenated 
read pairs (using RDP as 
reference database) followed 
by taxon determination 
using TargetMine custom 
script

Sequence counts divided by 
16S copy number
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outperformed the other tools in many cases across all 
datasets (Additional file  2, Sheet F). However, the eight 
best-performing pipelines, which also included CLARK-S 
and MetaPhlAn 2.9.14, did not show large differences in 
wsr values, which ranged between 13 and 18. This result 
indicates that the overall performance may not vary sub-
stantially among these pipelines, although differences did 
emerge when investigating the wsr stratified by metrics. 
The pipeline that combined Kraken 1.1 with Bracken 1 
performed the best, supplanting Kraken version 2. When 
focusing on the challenge dataset only, the pipeline that 
used Kraken 1.1 with Bracken 1 was also the highest per-
former among all benchmarked tools (Additional file 6). 

Hence, the larger benchmarking confirms the challenge 
results, and the benchmarking of tools across multiple 
datasets ensured that the results and conclusions were 
not dataset-specific. With the exception of the CAMI 
and BMI datasets, Kraken pipelines with and with-
out Bracken predicted species abundances accurately 
(Fig.  5 [Panel C]), with 75% of the sample datasets fall-
ing within a range of weighted UniFrac distance values of 
0–0.22. In contrast, the F1 scores exhibited high variabil-
ity, with 75% of sample datasets scattered between 0.32 
and 1, possibly explained by the high variability in pre-
cision (75% of samples within a range of 0.21–1), while 
the recall values were greater than 0.82 for 75% of the 

Fig. 3  Overview of the shotgun metagenomics datasets used for the challenge and extended benchmarking analysis. A total of 104 real and 
simulated metagenomics shotgun datasets grouped into 19 categories (surrounded by ovals) representative of microbiome samples from various 
environmental settings and mammalian organs were generated for the challenge or selected from previous studies for the extended benchmarking 
analysis. The characteristics of the simulated datasets are indicated in the legend. The line of the oval represents the mixing model used for creating 
each benchmarking dataset in the group. Dataset properties are shown by the background color shading. Datasets with Shannon index values 
below and above a threshold value of 3 were considered as having low (L) and high (H) complexity, respectively

Fig. 4  Impact of various parameters on the performance of Kraken. Schematic representation of the sets of factor combinations for investigating 
their impact on the performance of the Kraken tool, which was used in the three best-performing pipelines. Combinations shaded in grey were 
not investigated (A). The impact of quality control read filtering (B), database version (C), database completeness (D), and count estimate by using 
Bracken (E) were evaluated. The absolute difference in F1 scores or weighted UniFrac scores between two options (option 1 on the left and option 2 
on the right side for each diverging bar chart) were calculated for each dataset for the factors investigated. The color of the bars illustrates whether 
the option 1 (blue) or option 2 (red) had a larger score

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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sample datasets (Fig.  5 [Panel D]). In comparison with 
the Kraken pipelines, MetaPhlAn exhibited less variabil-
ity in the F1 scores (> 0.61 for 75% of sample datasets) but 
rather scattered weighted UniFrac values (75% of samples 
within a range of 0–0.44) (Fig.  5 [Panel C]). CLARK-S 

was the second best-performing tool after Kraken, with 
similar score behaviors. Tools such as FOCUS, Quikr, 
and TIPP exhibited the poorest performance in both 
qualitative and quantitative species estimates across all 
sample datasets (Fig. 5 [Panel B]).

Fig. 5  Extended benchmarking analysis of metagenomics taxonomy profiler pipelines across various datasets. Collection of benchmarked 
taxonomic profilers (A). Bar plot showing the weighted sum of ranks (wsr) of scores calculated by using three metrics: F1 score, L1 norm, and 
weighted UniFrac. Colors in the bars highlight the contribution of each metric to the final wsr. Taxonomic profiling pipelines are sorted from the 
lowest (best) to the highest (worst) wsr. The heatmap represents the wsr obtained for each taxonomic profiler per group of benchmarking datasets 
(B). Scatter plots of weighted UniFrac scores versus F1 scores (C) or purity (precision) versus completeness (recall) (D) for each benchmarked 
taxonomic profiler and dataset group. Each dot corresponds to the mean of scores obtained for a group of sample datasets. The color and shape of 
each dot are associated with a taxonomic profiler pipeline
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These results indicate that Kraken and CLARK-S kmer-
based pipelines showed a better overall performance in 
qualitative and quantitative profiling at the species level 
than marker-gene-based pipelines (MetaPhlAn and 
mOTU) and other pipelines. These findings are consist-
ent with those of previous benchmarking analyses [17] 
that provided similar conclusions at the phylum and 
genus levels [25] as well as a recent meta-analysis of sev-
eral benchmarking studies that highlighted the consist-
ent top ranking of CLARK, Kraken, and One Codex [18]. 
The impact of the default reference databases used by 
the tools may also account for the observed differences 
in the prediction performance of the taxonomy metage-
nome profilers. However, this aspect was not evaluated, 
per se, in this work, as the scope was to evaluate off-the-
shelf software tools provided with their default param-
eter options and built-in reference databases. Strict 
benchmarking of algorithm performances would neces-
sitate the use of an identical set of microbial genome 
references, which is not always easily achievable, as cer-
tain taxonomic metagenome profiler tools come with 
precomputed reference databases. The LEMMI bench-
marking platform permits continuous integration of 
taxonomic profilers and binners and enables the use of 
an identical set of references for comparing tool perfor-
mance [26]. Our results also highlight the variable and 
lower performance of Kraken (depending on pipeline 
version) and CLARK-S kmer-based pipelines compared 
with that of MetaPhlAn and mOTU marker-gene-based 
pipelines in predicting species presence/absence, with 
the former suffering from a higher level of false-positive 
predictions. The use of reference databases packaged 
with the software tools and/or the differing read-map-
ping strategies may explain this observation. A possible 
increase in non-specific mapping to reference genomes 
for kmer-based approaches—less likely in the context of 
a restricted list of marker genes—may contribute to these 
false positives. In contrast, Kraken and CLARK-S per-
formed better in estimating species abundances than the 
marker-gene-based and other pipelines.

Determining an adapted stepwise‑ and context‑dependent 
threshold for filtering out low‑abundance species is key 
to increasing the performance of most profiling pipelines
Previous works have reported a reduction in the number 
of false positives after filtering out low-abundance species 
from taxonomy profiles [19, 20, 24]. Therefore, we inves-
tigated the impact of removing low-abundance species 
by using an arbitrary abundance cutoff of 1% [20] (Fig. 6, 
Additional file 7, and Additional file 2, Sheet F). With the 
exception of MetaPhlAn and mOTU, both marker-gene-
based taxonomic profilers, almost all tools exhibited a 
systematic improvement in performance across sample 

datasets when low-abundance species were filtered out, 
indicating that most tools may not reliably assess low-
abundance species (Fig.  6 [Panels A and B]). The filter-
ing step most benefited Kaiju, Kraken 2/Bracken 2, and 
Metaphyler in terms of wsr, while tools such as FOCUS 
and Kraken 2 miniDB1/miniDB2 were the least affected. 
Kraken2 can be used with any database or with precon-
structed databases such as MiniKraken2_v1_8GB, an 
8-GB Kraken 2 database constructed from the RefSeq 
bacteria, archaea, and viral libraries, or MiniKraken2_
v2_8GB, an 8-GB Kraken 2 database constructed from 
the RefSeq bacteria, archaea, and viral libraries and the 
GRCh38 human genome assembly. The filtering out of 
low-abundance species translated into an overall increase 
in F1 scores, mostly for samples with lower complexity, 
explained by the greater precision (Fig. 6 [Panels C and 
D] and Additional file 7) due to a decrease in false posi-
tives, but at the cost of recall in some cases, reflected by 
an increase in false negatives. In addition, the number of 
true positives decreased in sample datasets such as CAMI 
and simulated challenge datasets for which samples from 
low to high complexities were aggregated, leading to an 
overall decrease in the F1 score. In contrast, filtering low-
abundance species did not markedly change the weighted 
UniFrac values, indicating that filtering low-abundance 
species affects qualitative rather than quantitative pre-
dictions by improving the tradeoff between false-positive 
and false-negative classifications (Additional file 7).

Every biological sample contains a long tail of low-
abundance species, which might present a challenge for 
classifiers. However, in some cases, these species repre-
sent the majority of a sample’s contents. Thus, applying 
a fixed threshold to remove false-positive classifications 
might, in fact, eliminates vast proportion of variability in 
samples. To investigate whether a more informed filter-
ing threshold than 1% could help optimize the tradeoff 
between false-positive and true-positive species (Fig.  7 
and Additional file  2, Sheet F), we studied the relation-
ship among species abundance levels, false-positive/
true-positive tradeoff, and within-sample diversity using 
the Shannon index. The false positives consisted mainly 
of predicted low-abundance species (Additional file 8). A 
clear separation was observed between true positives and 
false positives for most tools, with the exception of Met-
aPhlAn and mOTU. No clear relationship was observed 
between the Shannon diversity index and abundant spe-
cies when all sample dataset types were plotted. However, 
we observed that stratification of gut and non-gut sample 
datasets revealed an inverse linear relationship between 
the Shannon index and species abundances in non-gut 
sample datasets (Additional file  8). We cannot exclude 
that this may have been linked to the intrinsic proper-
ties of those datasets (i.e., specific read distribution) 
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or to real gut and non-gut microbiome structures. For 
non-gut sample datasets, it may be necessary to develop 
an adapted filtering threshold by using a linear or other 
function between the Shannon diversity index and spe-
cies abundances. However, we used a more exploratory 
and empirical approach to define and investigate opti-
mal low-abundance species filtering thresholds for gut 
and non-gut datasets. To achieve this, we first verified 

that the Shannon indices calculated from predicted tax-
onomy profiles correctly replicated those computed from 
the gold standards (Additional file 9). With the exception 
of MetaPhlAn 2.2.0, mOTU1, and MetaPhyler, which 
yielded coefficients of determination close to 0, the tools 
predicted microbial diversities accurately, with Met-
aPhlAn 2.9.14 and CLARK pipelines outperforming other 
pipelines with R2 values > 0.7 (Fig. 7 [Panel A]). Next, we 

Fig. 6  Impact of 1% filtering threshold for predicted lowest-abundance species on the performance of benchmarked profilers. Bar plot showing 
weighted sum of ranks (wsr) of scores without and with filtering out of the 1% least abundant species. Colors in the bars highlight the contribution 
of each metric to the final wsr. Taxonomic profiling pipelines are sorted from the lowest (best) to the highest (worst) wsr. The heatmap represents 
the wsr obtained with and without filtering out of the 1% least abundant species for each taxonomic profiler per group of benchmarking datasets 
(A). Bar plot showing the difference in wsr obtained with and without filtering out of the 1% least abundant species. The color and orientation of 
the bars illustrate the directionality of the difference (B). Scatter plots of weighted UniFrac scores versus F1 scores (C) or purity (precision) versus 
completeness (recall) (D) for each benchmarked taxonomic profiler and dataset group. Each dot corresponds to the mean of scores obtained for a 
group of sample datasets. The color and shape of each dot are associated with a taxonomic profiler pipeline
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tested a stepwise adaptive filtering approach based on 
Shannon index ranges empirically defined as follows: for 
non-gut sample datasets, the filtering thresholds were 1, 
0.1%, and 0 for Shannon index ranges of 0–2.5, 2.5–4.5, 
and > 4.5, respectively; for gut sample datasets, the fil-
tering thresholds were 0.1% and 0 for Shannon index 
ranges of 0–2.5 and > 2.5, respectively (Additional file 10). 
Although the effect on MetaPhlAn and mOTU was lim-
ited, the adaptive filtering benefited all pipelines tested, 
showing a clear and positive effect on precision and lim-
ited negative impact on recall in comparison with the 
observations made when a 1% filtering threshold was 
applied (Fig. 7 [Panels B and C] and Additional file 7).

Overall, these results indicate that the presence/
absence of low-abundance species was not reliably pre-
dicted by most benchmarked pipelines. Filtering out spe-
cies with abundances lower than 1% helped improve the 
overall performance, although at the cost of more spe-
cies being missed. Predicted species diversity, reflected 
by the Shannon index, was generally well replicated by 
most pipelines and correlated with species abundances 
in the non-gut sample datasets. Defining stepwise and 
context-dependent Shannon index-based filtering thresh-
olds empirically was shown to be a better approach than 
not filtering, using a 1% or 0.1% filtering threshold, and 
it helped improve the performance of all pipelines except 
MetaPhlAn. After filtering out low-abundance species, 
the Kraken 1.1/Bracken 1 pipeline remained the best-
performing pipeline, closely followed by other versions of 
Kraken and Bracken in combination and CLARK-S.

Conclusions
Numerous computational approaches have been pro-
posed for determining microbial composition from 
shotgun metagenomics sequencing data. However, the 
accuracy of predicting the presence/absence of taxa and 
their abundances varies among the tools and depends on 
the microbiome context.

Previous attempts to evaluate metagenome classifi-
ers were performed using various types of in silico and 
in  vitro simulated communities [15, 17–24]. However, 

the quality of classification was usually assessed using 
the data from certain habitats, with fixed read length/
simulation model and/or organism abundance distri-
bution within the benchmarking datasets. Therefore, 
even metagenomics experts may encounter difficulties 
in selecting the most appropriate off-the-shelf tools for 
research because of the lack of systematic, broad, and 
independent comparative analyses. To support decision-
making, the crowdsourced sbv IMPROVER Microbiom-
ics Challenge and extended analyses benchmarked—to 
our knowledge— the largest set of off-the-shelf pipelines 
applied on more than 100 real and simulated shotgun 
metagenomics datasets. These sample datasets were rep-
resentative of microbiomes from various environmental 
settings and human organs, with low to high complexi-
ties, and biased or unbiased for GC- or AT-rich bacterial 
genomes. The results showed that a pipeline combining 
Kraken with Bracken performed the best in predicting 
and quantifying the presence/absence and abundances of 
species—which is more challenging than predicting the 
higher taxonomic levels—across 104 datasets grouped 
into 19 categories. CLARK-S, another kmer-based 
approach, also performed well. Most taxonomic metage-
nome profiling pipelines were not reliable in predicting 
the presence/absence of low-abundance species; with the 
exception of marker-gene-based pipelines such as Met-
aPhlAn and mOTU, the profiler performance increased 
when low-abundance species were filtered out. This can 
be explained by the following hypothesis: marker-gene-
based tools (MetaPhlAn and mOTU) use for classifica-
tion a well-maintained, and usually curated, reference 
database with reference genes highly specific to a particu-
lar taxon. Thus, the risk of incorrect assignments when 
classifying reads in metagenomic sample is relatively low. 
At the same time, such reference databases are less com-
prehensive, which increases the number of false-negative 
predictions, especially when analyzing metagenomics 
samples from poorly studied environments. Conversely, 
tools such as Kraken, CLARK, Kaiju, or Centrifuge that 
use larger, non-curated reference databases for read clas-
sification have a higher chance of taxonomic misassign-
ment owing to the large number of sequences that are 

(See figure on next page.)
Fig. 7  Impact of filtering out predicted low-abundance taxa using context-dependent adaptive thresholds on taxonomic profilers’ performance. 
The correlation between Shannon indices calculated from benchmarking datasets, gold standards, and the outputs of each tool (A). Bar 
plot showing the wsr of scores calculated by using three metrics (F1 score, L1 norm, and weighted UniFrac) without and with filtering out of 
low-abundance species by using context-dependent adaptive thresholds. Colors in the bars highlight the contribution of each metric to the 
final wsr. Taxonomic profiling pipelines are sorted from the lowest (best) to the highest (worst) wsr. The heatmap represents the wsr obtained 
without and with filtering out of low-abundance species by using context-dependent adaptive thresholds for each taxonomic profiler per group 
of benchmarking datasets (B). Bar plot showing the difference in wsr obtained without and with filtering out of low-abundance species by using 
context-dependent adaptive thresholds. The color and orientation of the bar illustrate the directionality of the difference (C)
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Fig. 7  (See legend on previous page.)
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indistinguishable between different taxa. However, they 
produce a lower false-negative rate because of their bet-
ter representation of all species in the reference data-
base. Nevertheless, establishing a cutoff threshold is 
not a trivial task because, for many metagenomes, low-
abundance species represent the main contents of the 
sample. However, in our study, determination of adaptive 
filtering thresholds from information on sample diversity 
appeared to be a better approach for improving precision 
without affecting recall than using a constant filtering 
threshold such as 1% or 0.1%. This finding opens avenues 
for further investigations and development of robust 
methods or improvement of current taxonomic profilers 
for inferring appropriate filtering thresholds. Overall, this 
work provides lessons on the performance and applica-
bility of computational pipelines optimally depending on 
the microbiome context for the accurate determination 
of taxonomic profiles. Such accurate taxonomic profil-
ing is a critical step for supporting future developments 
in environmental and clinical research, for example with 
the discovery of metagenomic-based biomarkers associ-
ated with specific disease states such as ulcerative colitis 
and Crohn disease. By leveraging the power of crowd-
sourcing as well as extended post-challenge collaborative 
benchmarking work among the organizing team, scoring 
review panel members, and best performers, this study 
has highlighted the importance of unbiased and inde-
pendent evaluation of computational methods to achieve 
more generalizable results and confidence in scientific 
conclusions in metagenomics.

Material and methods
Goals and rules of the challenge
The sbv IMPROVER Metagenomics Challenge (Novem-
ber 2017 to June 2018) aimed to evaluate the perfor-
mance of computational metagenomic analysis pipelines 
for their ability to accurately recover the relative abun-
dance of microbial communities at the phylum, genus, 
and species levels of the taxonomy tree.

Generation of metagenomics datasets
Nineteen samples were simulated in silico or generated 
by sequencing the DNA from samples of known bacte-
rial composition. Minimum information on the gen-
eration of the dataset was released to the participants 
during the challenge. A copy (14.07.2017) of the NCBI’s 
bacterial taxonomy tree and genomes and chromosomes 
(complete genome sequences of 1886 reference species) 
were downloaded and frozen as the “reference dataset” 
for generating and analyzing metagenomics datasets and 
later for evaluating the participants’ prediction submis-
sions. The data were described as originating from mouse 
microbiome samples.

Simulated metagenomics sequence dataset
Sequencing reads for 15 of the 19 samples (Fig. 1, Addi-
tional file 11, and Additional file 2, Sheet G) were gen-
erated computationally by using the reference dataset 
and ART simulation tools [27], with the parameters set 
to simulate next-generation sequencing reads from an 
Illumina HiSeq4000 sequencer (2 × 150-bp paired-end 
reads). Reads from sequencing mouse cecal samples 
were mapped onto the mouse host genome (m38) and 
matching reads were retained and added to the simu-
lated reads as sequence-read contaminants, represent-
ing 8–11% of the total reads of a sample. Simulated 
samples with increasing complexity (number of spe-
cies) were generated in the presence or absence of AT- 
and GC-rich sequence biases (Additional file  2, Sheet 
G).

To create unbiased samples with low and medium 
complexity (fewer than 500 species), the number of reads 
were fixed at 1, 5, and 9 million (+ 0 to 10%) for samples 
19, 11 and 7, respectively (Additional file  2, Sheet G). 
The species were randomly (uniform distribution) drawn 
from a list of candidate species identified from mouse gut 
microbiomes. The number of reads to be generated per 
sample reflected the relative species abundance identified 
in the gut microbiomes.

To create unbiased samples with higher complex-
ity (500 or more species), the coverage for each species 
was drawn from a log-normal distribution with a mean 
of − 1 and a standard deviation of 1 in accordance with 
the CAMI publication’s recommendations [15]. The first 
50% of the targeted number of species were randomly 
selected from a uniform distribution of species among 
the reference species. The remaining 50% of species were 
obtained by randomly selecting genera that contained 
4–11 sequenced species and subsequently selecting all 
the sequenced species of each genus until the targeted 
number of species was reached or exceeded This would 
allow us to evaluate the capability of the computational 
analysis pipelines to discriminate bacteria at the species 
level.

To create AT- and CG-rich biased samples with low, 
medium, and high complexities, the coverage for each 
species was taken from a log-normal distribution with 
a mean of − 1 and standard deviation of 1; for samples 
with fewer than 500 species, a mean of 1.2 and stand-
ard deviation of 0.8 were used, thus ensuring a smooth 
coverage gradient from high to low complexity. AT- and 
GC-rich species were characterized by an AT-to-GC 
ratio greater than 60%. The samples included 50% of non-
biased sequencing reads and 50% of sequencing reads 
biased towards AT- or GC-rich species. Among the 50% 
of non-biased sequencing reads, half were generated by 
randomly selecting species among references genomes 
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by using uniform distribution, and the second half were 
obtained by selecting closely related (same genera) spe-
cies as described above. Among the remaining 50% of 
sequencing reads biased towards AT- or GC-rich species, 
half were generated by randomly selecting species among 
reference genomes from AT- or GC-rich species by using 
uniform distribution; the second half were obtained by 
selecting closely related (same genera) AT- or GC-rich 
species as described above.

Real metagenomics sequencing dataset
The four remaining samples were derived from the com-
mercially available ZymoBIOMICS™ Microbial Com-
munity DNA Standards and corresponded to mixtures 
of genomic DNA extracted from pure cultures of eight 
bacteria and two yeasts at known ratios. The GC content 
of the genomes covered a range of 32.7–66.2%. These 
samples from two library preparations were sequenced 
in a 2 × 151-bp paired-end run on an Illumina HiSeq4000 
sequencer.

Data preparation and release
Data files
Sequencing data were provided in the form of two 
FASTQ files per sample (paired end). The complete 
dataset could be retrieved by downloading a tar archive, 
which was split in four files and included gzipped FASTQ 
files for the 19 samples.

Prediction submission requirements
The participants were asked to predict the taxonomic 
composition of the provided samples at the phylum, 
genus, and species levels. The taxonomic composition 
was to be expressed as the relative abundance (percent-
age) of each taxon in the sample’s microbiome. The par-
ticipants were required to ensure that the percentages 
given for each taxon from the same rank summed up to 
less than or exactly 100. Submissions had to comply with 
the Bioboxes profiling format (https://​github.​com/​biobo​
xes/​rfc/​blob/​master/​data-​format/​profi​ling.​mkd).

The information on the taxonomy source identifiers 
adopted for the challenge included the classification and 
nomenclature of all (and more) organisms found in the 
dataset. The “NCBI taxonomy resource dates 14-07-2017” 
archive could be downloaded from the sbv IMPROVER 
website and included the “nodes.dmp” and “names.dmp” 
files used to build the submission template available to 
the participants. A percentage of zero was assumed for 
all taxonomy IDs in the file submission template and not 
in the submission files. A participant’s submission was 
eligible for scoring if the participant had complied with 
the requirements described above, submitted predictions 
for all 19 samples, and included a write-up that described 

their methodology and computational tools used to solve 
the challenge.

Scoring methodology
Gold standard
The submissions were scored by comparing the predictions 
to a gold standard that was unknown to the participants 
(Additional file 1). The gold standard corresponded to the 
true relative abundances (percentages of reads per species, 
genus, and phylum) of bacterial communities in the sam-
ple datasets or to the reported bacterial composition of the 
ZymoBIOMICS samples.

Procedure
To establish fair and meaningful performance scores, we 
used and aggregated complementary metrics. The scor-
ing methods and metrics were reviewed and approved 
by an independent scoring review panel of experts 
before the closure of the challenge. To avoid optimiza-
tion of models/methods for maximizing specific scor-
ing metrics, the scoring methods and metrics were only 
disclosed once the scoring was completed, in accord-
ance with the rules of the challenge. The participants’ 
submissions were anonymized before scoring. The scor-
ing review panel reviewed the results of the scoring and 
approved the final team ranking. The three teams with 
the highest scores (and lowest ranks) were announced as 
the best-performing teams.

Metrics
Both qualitative and quantitative measures were used 
for scoring the participants’ submissions as well as for 
the extended benchmarking analysis. The OPAL soft-
ware was used to compute scores for the respective 
metrics for the challenge scoring [28]. To have more flex-
ibility with data formats for the extended post-challenge 
benchmarking analysis, we used our own code to com-
pute the metrics. To enable fair comparison of the pro-
filers, we implemented a unique reference taxonomy tree 
onto which taxa from profiler predictions were mapped 
(details in the “Reference taxonomy tree for fair compari-
son of predicted taxonomy profiles among taxonomic 
metagenome profilers” section).

The participants were asked to provide their submis-
sions in form of relative abundances with the sum of all 
abundances in each profile equal to one. All the predic-
tions obtained during the extended benchmarking anal-
ysis were normalized the same way. These normalized 
values were used for metrics calculation.

The F1 binary classification metric, which combines 
precision (purity) and recall (completeness), assessed 
how well—relative to the gold standard—a method 
detected the presence or absence of an organism at a 

https://github.com/bioboxes/rfc/blob/master/data-format/profiling.mkd
https://github.com/bioboxes/rfc/blob/master/data-format/profiling.mkd
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specific taxon level. Confusion matrices were constructed 
for each prediction, and precision and recall were calcu-
lated as follows:

where TP is the number of true positives; FP is the num-
ber of false positives; and FN is the number of false nega-
tive species counts for the specific prediction and gold 
standard.

Precision and recall were used to calculate the F1 score 
as follows:

In case the analysis by sample failed for any reason, 
precision, recall, and the F1 score were automatically set 
to 0 (worst score).

The abundance metrics, L1 norm [15] and weighted 
UniFrac [29, 30], enabled assessment of how well a par-
ticular method reconstructed the relative abundances in 
comparison with the gold standard.

L1 norm is a measure of distance between the true and 
predicted abundances at a specific taxonomic rank and 
thus varies from 0 (a perfect match between the true 
and predicted abundances) to 2 (complete dissimilar-
ity between the predicted and true abundances). The L1 
norm was calculated as follows:

where n is the total number of taxa present in the gold 
standard; the prediction, xi is the abundance of the ith 
taxon in the predicted profile; and xGSi  is the abundance 
of the ith taxon in the gold standard. In case the analysis 
by sample failed for any reason, the L1 norm was auto-
matically set to 2 (worst score).

Weighted UniFrac is a tree-based taxonomy distance 
measure between the true and predicted abundances. 
Unlike the L1 norm, this metric enables consideration of 
the taxonomic similarities between the reported and true 
taxa. We used a taxonomy tree of seven ranks (superk-
ingdom [or domain], phylum, class, order, family, genus, 
and species). We reported the results at the phylum, 
genus, and species levels for the challenge (use of the 
taxonomy tree implemented in the OPAL software) and 
only at the species level for the extended benchmarking 
analysis (reference taxonomy tree construction detailed 

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2×
P × R

P + R

L1 =

n

i

| xi − xGSi |

in section “Reference taxonomy tree for fair comparison of 
predicted taxonomy profiles among taxonomic metagen-
ome profilers”). The weighted UniFrac distance between 
two profiles was calculated as follows:

where n is the total number of branches in the tree, ai is 
the proportion of all reads descending from the ith branch 
in the first community, bi is the proportion of all reads 
descending from the ith branch in the second commu-
nity, and di is the distance corresponding to the number 
of branches from the tree root to the ith branch (i.e., the 
weighted UniFrac distance ranges from 0 in case of a per-
fect match of two abundance profiles to 1 in case of com-
plete dissimilarity). In case the analysis by sample failed 
for any reason, the weighted UniFrac distance was auto-
matically set to 1 (worst score).

Randomness evaluation
To assess how far the predictions were from randomness, 
the participants’ prediction scores were compared with 
the distributions of random prediction scores. To gener-
ate 10,000 random predictions, N species were sampled 
(uniform distribution) from the 1886 reference species 
and randomly assigned a value between 0 and 1. For each 
species, the value was converted to a relative abundance 
by dividing it by the sum over all species and multiply-
ing it by 100. The relative abundance for higher levels of 
taxonomy was calculated by summing the abundance val-
ues of all child taxa. For each metric and taxonomy rank, 
a distribution of random prediction scores was gener-
ated by computing the scores for 10,000 random predic-
tions. A participant prediction was deemed to be better 
than random when its score was greater than the score 
of the 95th percentile (threshold) of the random predic-
tion score distribution. All participant prediction scores 
falling below the 95th-percentile threshold score were 
replaced by the threshold score to give the same weight 
to all insignificant predictions by the participants.

Aggregation and final ranking
F1, L1 norm, and weighted UniFrac scores were com-
puted for the predictions submitted for the 19 samples 
and 3 taxonomic levels (species, genus, and phylum), 
resulting in a total of 171 scores. For each sample, taxon-
omy level, and metric combination, the participant pre-
dictions were ranked by their respective scores. For the 
F1 score, where 1 was the best score and 0 the worst, the 
participants were ranked in decreasing order of scores. 
For the L1 norm and weighted UniFrac scores, where 
0 indicates identity, the participant predictions were 

Weighted UniFrac distance =

∑n
i | ai − bi |∑n

i di ∗ (ai + bi)
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ranked in increasing order of scores. In the case of a tie, 
the average rank of the tied scores was assigned.

Aggregated scores consisted of the weighted sum of 
ranks of each sample–taxa–metric rank per team. The 
weight of the F1 score ranks was set to 1. The weight of 
the L1 norm and weighted UniFrac score ranks was set 
to 0.5 to account for the imbalance between abundance 
metrics and the binary classification metric. The weight 
of the score ranks for samples from the four experimental 
ZymoBIOMICS Microbial Community DNA Standards 
was further divided by four to account for the number 
of replicates. The best performer was the team with the 
lowest aggregated rank.

Extended benchmarking of taxonomic metagenome 
profiling pipelines
Benchmarking datasets
In addition to the 19 challenge sample datasets, 85 pub-
licly available metagenomic sample datasets with known 
composition were used to investigate the key steps in the 
challenge-winning pipeline and to benchmark a larger 
set of metagenomic profilers (Fig. 3 and Additional file 2, 
Sheet B). The selection criteria included the availabil-
ity of data and gold standards, representation of a vari-
ety of microbiome samples from varying environmental 
settings and human/mouse organs, and use of simulated 
and real sequencing datasets. Additional file 2, Sheet B, 
provides detailed information on all sample datasets. 
To limit the over-representation of some datasets with 
highly similar composition and subsequent biasing of the 
results, all benchmarking sample datasets were split into 
19 groups, each containing 1–64 samples, depending on 
the group (Fig. 3). All results for a group were calculated 
as the mean across the results for all datasets included in 
the group. Of note, the CAMI High (five samples) and 
CAMI Toy (64 samples) datasets were not used for evalu-
ating the key factors affecting the performance of the top 
three Kraken-based pipelines.
Evaluation of key factors in the performance of the top three 
kraken‑based pipelines
The three highest-performing pipelines used the Kraken 
tool, version 1.0, but differed in the combinations of key 
factors used, such as read filtering, reference databases, 
and abundance estimation with Bracken (Table  1). To 
better understand the difference in performance between 
these three pipelines, we investigated the impact of the 
key factors in various sets of combinations (Fig. 4 [Panel 
A] and Additional file  2, Sheet C). We expanded the 
analysis using additional benchmarking metagenomics 
datasets to ensure that the results and conclusions from 
the challenge test dataset were generalizable (Fig. 3 and 
Additional file 2, Sheet B).

Impact of read filtering
When applied, read filtering was performed by using 
Trimmomatic (version 0.38). The exact parameters of the 
tool varied by dataset (Additional file 2, Sheet H).

Impact of reference databases
Three reference databases were used to evaluate the 
key steps in the challenge-winning pipeline (Additional 
file  2, Sheet C). The first reference database, Microbial 
Challenge Bacterial, was constructed at the time of the 
challenge (July 2017) and included only NCBI bacterial 
sequences. The second database, Microbial Challenge 
Full, was also created at the time of the challenge and 
contained NCBI bacterial, archaeal, and viral sequences. 
The third database, Latest Bacterial, was constructed in 
April 2019 and contained NCBI bacterial sequences.

Impact of bracken
Bracken (version 1) results were always based on the 
output of the Kraken 1.1 version used for the challenge 
(Additional file 2, Sheet C). Bracken kmer database con-
struction was performed with the –read-length param-
eter adjusted to the prefiltering read length in case of 
analysis with no filtering step. In case of filtering, the –
reads-length parameter was adjusted to the postfiltering 
read length (see exact parameters in Additional file  2, 
Sheet H). Bracken analysis was performed by using the -t 
parameter equal to 10.

Extended benchmarking taxonomy profiling pipelines
Taxonomic metagenome profilers
We expanded the benchmarking analysis to a total of 
21 taxonomic metagenome profilers (Fig.  5 and Addi-
tional file  2, Sheet E), including different versions of 
tools such as Kraken with and without Bracken, CLARK 
or CLARK-S, mOTU, and MetaPhlAn as well as tools 
such as Kaiju, MetaPhyler, and Quikr. To avoid uneven 
representation of sample types, all taxonomic metagen-
ome profilers were applied to all 104 benchmarking sam-
ple datasets aggregated into 19 groups for the results. 
Because Kraken 0, Kraken unique, Kraken 1.0.14, and 
Kraken 1.1 produced identical results for all benchmark-
ing datasets, we decided to retain only the results for 
Kraken 1.1 to avoid redundant results. Additional file 2, 
Sheet E, lists the complete information on the taxo-
nomic profiler version, reference database, and param-
eters used when running each taxonomic profiler. The 
analysis focused on species-level classification because it 
is at this taxonomic rank that profiler pipelines exhibit 
greater variations in performance in comparison with 
other taxonomic ranks.
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Reference taxonomy tree for fair comparison of predicted 
taxonomy profiles among taxonomic metagenome profilers
The benchmarking datasets had been generated at vari-
ous points in time, and most of the tested metagenomic 
profilers include a reference database that is generally 
precomputed. Therefore, to align the gold standards in 
terms of taxonomy and fair comparison of metagenomic 
profilers, we created a reference NCBI-based taxonomy 
tree and processed the output-predicted taxonomy pro-
files and the gold standards using this tree (Additional 
file 5). The reference taxonomy tree was generated from 
the NCBI complete database from October 29th, 2019. 
It was organized as a dictionary where the key is a spe-
cies or subspecies taxID, and the value is an array con-
taining the taxIDs of the corresponding species, genus, 
family, order, class, phylum, and superkingdom/domain 
(Additional file  4). The subspecies keys have the same 
value array as the species, and, thus, species is the lowest 
taxonomy level in the tree. Tree leaves for which either 
species or superkingdom was missing were removed. 
Leaves were also removed if more than three taxonomy 
levels were missing. If three or fewer taxonomic lev-
els in the array were missing, they were replaced with 
the “unknown” taxID (Additional file 4). The tree struc-
ture generated contained 1,893,923 keys. Among these, 
66,231 (3.5%) keys were missing one, two, or three taxo-
nomic levels in their associated array.

Translation of taxIDs involved mapping of the taxIDs 
associated with each predicted taxonomy profile to the 
taxIDs of the reference NCBI-based taxonomy tree. If 
the taxID for a given predicted profile was not found in 
the reference tree, it was retrieved from the NCBI tax-
onomy website (https://​www.​ncbi.​nlm.​nih.​gov/​taxon​
omy/). We created a mapping table listing obsolete tax-
IDs and their replacements. The taxIDs associated with 
the predicted taxonomy profiles were mapped to the 
taxIDs of the reference NCBI-based taxonomy tree by 
using the following rules: (i) subspecies were collapsed 
under the taxID of the species to which they belong, and 
their abundances were added to the species abundance; 
(ii) obsolete taxIDs were replaced with the current taxID 
analogs; and (iii) if an obsolete taxID was replaced by a 
current taxID analog already present in the predicted 
taxonomy profile, the abundances associated with both 
taxIDs were summed, and the current taxID was used to 
replace the obsolete one.

Impact of low‑abundance species filtering and determination 
of adaptive context‑dependent thresholds
We investigated the impact of filtering out predicted 
low-abundance species on the overall performance of the 
taxonomic metagenome profiler pipelines. We initially 
used a 1% abundance threshold and then optimized this 

threshold by investigating the relationship between spe-
cies abundances and within-sample diversities by cal-
culating the Shannon index and identifying empirical 
thresholds for optimizing the tradeoff between false-pos-
itive and false-negative species across datasets. The Shan-
non dissimilarity index (H′) was calculated as follows:

where pi represents the relative abundance of the ith taxa.
The Shannon index is a quantitative measure which 

reflects the diversity of species in a sample and thus 
accounts for the phylogenetic relationships among the indi-
viduals. We investigated how well the taxonomic metage-
nome profilers predicted the species diversity for each 
sample dataset in comparison with the diversity of the gold 
standards by calculating the coefficient of determination 
(R2) using the sklearn.metrics.r2_score package for Python.
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