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Abstract: Phenylketonuria (PKU) is a common inborn error of amino acid metabolism in which the
enzyme phenylalanine hydroxylase, which converts phenylalanine to tyrosine, is functionally im-
paired due to pathogenic variants in the PAH gene. Thirty-four Brazilian patients with a biochemical
diagnosis of PKU, from 33 unrelated families, were analyzed through next-generation sequencing in
the Ion Torrent PGM™ platform. Phenotype–genotype correlations were made based on the BioPKU
database. Three patients required additional Sanger sequencing analyses. Twenty-six different
pathogenic variants were identified. The most frequent variants were c.1315+1G>A (n = 8/66),
c.473G>A (n = 6/66), and c.1162G>A (n = 6/66). One novel variant, c.524C>G (p.Pro175Arg), was
found in one allele and was predicted as likely pathogenic by the American College of Medical
Genetics and Genomics (ACMG) criteria. The molecular modeling of p.Pro175Arg indicated that this
substitution can affect monomers binding in the PAH tetramer, which could lead to a change in the
stability and activity of this enzyme. Next-generation sequencing was a fast and effective method for
diagnosing PKU and is useful for patient phenotype prediction and genetic counseling.

Keywords: next-generation sequencing; molecular diagnosis; phenylketonuria; phenylalanine hy-
droxylase; PAH
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1. Introduction

Phenylketonuria (PKU, OMIM #261600) is an autosomal recessive inborn error of
metabolism in which the conversion of phenylalanine (Phe) to tyrosine by the phenylala-
nine hydroxylase (EC 1.14.16.1) is defective, resulting in partial or total inactivity of the
conversion due to biallelic variants in the PAH gene [1]. Untreated Phe accumulation leads
to irreversible neurological effects, such as impaired cognitive development in children
and seizures [2].

The treatment for PKU consists of Phe-free dietary management and supplementation
with the Phe-free metabolic formula [3,4]. The use of sapropterin dihydrochloride may be
also recommended for tetrahydrobiopterin (BH4)-responsive patients [5].

In Brazil, the public health system neonatal screening program performs biochemical
screening for PKU by the detection of Phe in dried blood spots (DBS). If the results are
abnormal, an additional blood sample is requested to confirm the diagnosis and begin
treatment. The confirmatory test includes the measurement of blood Phe and tyrosine
concentrations [6].

The PAH gene comprises 13 exons and 12 introns, resulting in a 452-residue protein.
Worldwide, about 1188 variants in the PAH gene have been described in the PAHvdb
(http://www.biopku.org) and about 1013 variants in the Human Gene Mutation Database
(HGMD, http://www.hgmd.cf.ac.uk) [7]. The molecular investigation is sometimes the key
to concluding the diagnosis of PKU and, consequently, assists in improving the treatment.
The gold standard for gene variant detection in PKU patients is Sanger sequencing, which
is costly and time-consuming [8]. Next-generation sequencing allows massive parallel
deep-level sequencing, i.e., analyzing the entire exome or a targeted gene panel, which
results in increased diagnostic sensitivity, faster sequencing and an inexpensive process [9].
PAH genotype data can be used for the prediction of BH4 responsiveness [9].

This study aimed to perform a molecular diagnosis of Brazilian PKU patients through
massive parallel sequencing to confirm the diagnosis and obtain new data that can improve
the choice of treatment for some patients.

2. Materials and Methods
2.1. Subjects

A total of 34 (33 nonrelated) nonconsanguineous PKU patients were recruited (fe-
male = 18, classic PKU = 22, mild PKU = 10, and undefined PKU type = 2), of whom 7 had
complete previous genotyping, and 7 had incomplete previous genotyping. Of the total
cohort, 23 patients were seen at the HCPA Medical Genetics Service (Porto Alegre, Rio
Grande do Sul-RS, Brazil), and 11 were seen at the Hospital de Apoio de Brasília Neonatal
Service on Newborn Screening, Genetics Unit (Distrito Federal-DF, Brazil).

For the patients from RS, a BH4 deficiency was previously excluded by the mea-
surement of 6,7-dihydropteridine reductase (DHPR) activity in the blood or DBS and of
biopterins and neopterins in urine or DBS. Information such as the Phe level at diagnosis,
age at diagnosis, age at treatment initiation, BH4 responsiveness [10,11], and previous geno-
typing diagnosis of the patients were obtained retrospectively from the medical records.

2.2. DNA Extraction and Sequencing

Total blood samples were collected, and DNA extraction was performed with an Easy-
DNA gDNA Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA), according
to the manufacturer’s instructions. The DNA samples were quantified in Qubit (Thermo
Fisher Scientific).

A targeted gene panel was designed using the Ion AmpliSeq Designer (Thermo Fisher
Scientific) to include all the exonic regions and intron–exon boundaries of the PAH gene
and of the genes causing BH4 deficiencies (GCH1, GCHFR, PTS, PCBD1, QDPR, and SPR).
Genomic DNA libraries were prepared using an Ion AmpliSeq™ Library Kit 2.0 (Thermo
Fisher Scientific), followed by purification with magnetic beads (AMPure beads). The
samples were sequenced in an Ion Torrent PGM Platform (Thermo Fisher Scientific, server

http://www.biopku.org
http://www.hgmd.cf.ac.uk


Genes 2021, 12, 20 3 of 12

version 5.0, Waltham, MA, USA), with a minimal coverage of 250X at the Unidade de
Pesquisa Laboratorial (Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre).

Massive parallel sequencing data were analyzed using Torrent Suite 5.0.5 (Thermo
Fisher Scientific) to perform the base-calling procedure. IGV 2.8.2 [12] was used for
detection of the depth of sequencing and coverage failures that could suggest deletions.
Variants were filtered by Enlis Genome Research (Enlis Genomics, Berkeley, CA, USA)
and Ion Reporter software (Thermo Fisher Scientific), as well as the following databases:
ClinVar, Phenylalanine Hydroxylase Gene Locus-Specific (PAHvdb) [9], and Human Gene
Mutation Database.

Novel, conflicting and phase undetermined variants were confirmed by automated
Sanger sequencing in an ABI 3500 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA). The results were analyzed in Chromas 2.6.1 (Technelysium, South Brisbane,
Australia), and NM_000277.3 and NP_000268.1 were used as the reference sequences.

Previous genotypes were identified through the Sanger sequencing method.

2.3. Pathogenicity Determination and Prediction

To determine the pathogenicity of the novel variant, the following variables were
considered: allele frequency < 1% in gnomAD [13] and ABraOM [14]. The American
College of Medical Genetics and Genomics (ACMG) guidelines for interpreting variants
were used [15].

2.4. Genotype–Phenotype Analysis

Genotype–phenotype associations were made through BioPKU database entries [16]
and biochemical classification (classic, mild, or undefined PKU), as previously described by
Nalin et al. [17], using as the main criteria the Phe level at diagnosis (classic: >1200 µMol/L
and mild: 360–1200 µMol/L).

2.5. Molecular Modeling

The tridimensional structure of wild-type phenylalanine hydroxylase was taken from
Protein Data Base (PDB) ID 6HYC [18], which also served as a template for tetramer recon-
struction. The point mutations were modeled with DeepView [19], while the frameshift
and early stop codon variants were modeled with I-TASSER [20]. FoldX 5.0 (Analy-
seComplex command) was used to inspect the possible differences in binding affinity
between monomers in the PAH tetramer. The differences between the energies of the
mutant and wild-type proteins (∆∆G = ∆Gmut − ∆Gwt) were considered significant above
1.6 kcal/mol. This value corresponds to twice the intrinsic standard deviation of FoldX [21]
and should significantly affect the stability of the variant [22].

3. Results

The clinical, biochemical, and genotypic results are presented in Table 1. The sample’s
median age at diagnosis was 37 [interquartile (IQ) 27–60] days. For the RS patients, the
median age at diagnosis was 81.4 (IQ 26.5–88) days and 41 (IQ 34–45.5) days for the DF
patients.
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Table 1. Summary of the included phenylketonuria (PKU) patients, including genotypes and clinical information.

Patient State Gender
First Phe

Level
(µMol/L)

Age at
Diagnosis

(Days)

Age at
Treatment
Starting
(Days)

Type
of

PKU
NGS Genotype Previous Genotype

Type of PKU
According to

BioPKU 1

BH4 Respon-
siveness

According to
the Test

BH4
Responsiveness

According to
BioPKU 2

1 * RS F 1566 26 26 C c.1222C>T(;)1222C>T
p.Arg408Trp(;)Arg408Trp

c.1222C>T(;)1222C>T
p.Arg408Trp(;)Arg408Trp

Classic
(1832/1845) NP No (95/98) Yes

(2/98) Slow (1/98)

2 ** RS M 847 28 58 M c.524C>G(;)754C>T
p.(Pro175Arg)(;)Arg252Trp

c.754C>T(;)?
p.Arg252Trp(;)? NA No ***** NA

3 RS F 1784 36 36 C c.1042C>G(;)1315+1G>A
p.Leu348Val(;)?

c.1042C>G(;)1315+1G>A
p.Leu348Val(;)? Classic (11/16) NP No (5/6)Yes (1/6)

4 RS F 1478 43 43 C c.932T>C(;)1315+1G>A
p.Leu311Pro(;)? c.1315+1G>A(;)? p.?(;)? Classic (2/2) NP NA

5 RS M 417 28 50 M c.1162G>A(;)1169A>G
p.Val388Met(;)Glu390Gly

c.1162G>T(;)?
p.Val388Met(;)? Mild (8/12) NP Yes (11/11)

6 RS F 375 32 66 M
c.1066-11G>A(;)1169A>G

p.Gln355_Tyr356insGlyLeuGln
(;)Glu390Gly

NP Mild (8/14) NP Yes (8/8)

7 ** RS M NA 60 60 U c.842+1G>A(;)1162G>A
p.(?)(;)Val388Met

c.842+1G>A(;)1162G>Ap.?
(;)Val388Met NA No ***** NA

8 RS F 562 74 82 M c.1169A>G(;)1222C>T
p.Glu390Gly(;)Arg408Trp NP Mild (54/84) Yes Yes (23/23)

9 RS M 1845 102 102 M c.722G>A(;)1222C>T
p.Arg241His(;)Arg408Trp

c.1222C>T(;)1222C>T
p.Arg408Trp(;)Arg408Trp Mild (25/28) No ****** Yes (3/6) Slow

(2/6) No (1/6)

10 * RS M 877 128 156 M c.473G>A(;)1162G>A
p.Arg158Gln(;)Val388Met

c.1162G>A(;)?
p.Val388Met(;)? Classic (5/7) No Yes (2/3) Slow

(1/3)

11 *** RS M 1022 195 292 M c.[1241A>G];[1042C>G]
p.[Leu348Val];[Tyr414Cys] NP Mild (4/5) Yes ***** Yes (3/3)

12 RS F 3245 5 44 C c.745C>T(;)838G>A
p.Leu249Phe(;)Glu280Lys NP Classic (1/1) NP NA

13 RS F 1361 15 19 C c.754C>T(;)1222C>T
p.Arg252Trp(;)Arg408Trp

c.1222C>T(;)?
p.Arg408Trp(;)?

Classic
(103/103) NP No (4/4)

14 *** RS F 1736 16 16 C c.[473G>A];[1055delG]
p.[Arg158Gln];[Gly352ValfsTer48] NP Classic (1/1) NP NA

15 RS F 2329 24 24 C c.712A>C(;)814G>T
p.Thr238Pro(;)Gly272Ter NP Classic (1/1) NP NA

16 RS M 2716 27 27 C c.194T>C(;)472C>T
p.Ile65Thr(;)Arg158Trp c.194T>C(;)? p.Ile65Thr(;)? Classic (2/2) NP No (1/1)

17 RS M 1697 30 30 C c.754C>T(;)1024delG
p.Arg252Trp(;)Ala342HisfsTer58 NP NA NP NA

18 ** RS F 2178 27 48 C c.754C>T(;)1315+1G>A
p.Arg242Trp(;)? c.1315+1G>A(;)? p.?(;)? Classic (9/9) NP No (1/1)

19 RS M 2904 73 101 M c.473G>A(;)1162G>A
p.Arg158Gln(;)Val388Met NP Classic (5/7) NP No (2/3) Slow

(1/3)



Genes 2021, 12, 20 5 of 12

Table 1. Cont.

Patient State Gender
First Phe

Level
(µMol/L)

Age at
Diagnosis

(Days)

Age at
Treatment
Starting
(Days)

Type
of

PKU
NGS Genotype Previous Genotype

Type of PKU
According to

BioPKU 1

BH4 Respon-
siveness

According to
the Test

BH4
Responsiveness

According to
BioPKU 2

20 RS M 2323 4 17 C c.1222C>T(;)1315+1G>A
p.Arg408Trp(;)?

c.1222C>T(;)1315+1G>A
p.Arg408Trp(;)?

Classic
(265/265) NP No (40/40)

21 RS M 2081 227 233 C c.473G>A(;)1315+1G>A
p.Arg158Gln NP Classic (29/29) No ***** No (6/6)

22.1 **** RS M 1455 670 670 C c.782G>A(;)1315+1G>A
p.Arg261Gln(;)?

c.782G>A(;)1315+1G>A
p.Arg261Gln(;)? Classic (47/66) No ***** No (24/25) Slow

(1/25)

22.2 **** RS M 2196 2555 2677 C c.782G>A(;)1315+1G>A
p.Arg261Gln(;)?

c.782G>A(;)1315+1G>A
p.Arg261Gln(;)? Classic (47/66) No ***** No (24/25) Slow

(1/25)

23 DF M 1978 39 39 C
c.754C>T(;)1066-11G>A

p.Arg252Trp(;)
Gln355_Tyr356insGlyLeuGln

NP Classic (19/19) No No (6/6)

24 DF M 1857 18 22 C c.168+5G>A(;)782G>A
p.?(;)Arg261Gln NP Mild (4/5) Slow Yes (2/2)

25 DF M 768 47 47 M c.184delC(;)1169A>G
p.Leu62Ter(;)Glu390Gly NP NA Yes NA

26 DF F 344 41 41 M c.184delC(;)1169A>G
p.Leu62Ter(;)Glu390Gly NP NA Yes NA

27 DF F 3133 38 38 C c.1066-11G>A(;)1066-11G>A
p.Gln355_Tyr356insGlyLeuGln(;)Gln355_Tyr356insGlyLeuGlnNP Classic

(420/427) Yes No (107/114) Slow
(7/114)

28 DF F 1724 41 41 C c.728G>A(;)728G>A
p.Arg243Gln(;)Arg243Gln NP Classic

(140/141) No No (13/14) Slow
(1/14)

29 DF F 1936 44 44 C c.441+5G>T(;)473G>A
p.Arg158Gln(;)? NP Classic (20/21) No No (9/12) Slow

(3/12)

30 DF F 2299 22 22 C c.184delC(;)184delC
p.Leu62Ter(;)Leu62Ter NP NA No NA

31 DF F 1754 57 57 C c.473G>A(;)782G>A
p.Arg158Gln(;)Arg261Gln NP Mild (21/36) Yes Yes (8/13) No

(4/13) Slow (1/13)

32 DF F NA 60 NA U c.1162G>A(;)1162G>A
p.Val388Met(;)Val388Met NP Classic (23/41) Yes Yes (9/15) No

(4/15) Slow (2/15

33 DF F 1361 30 30 C c.782G>A(;)1315+1G>A
p.Arg261Gln(;)? NP Classic (47/66) Yes No (24/25) Slow

(1/25)

Notes: In bold: novel variant, NP: not performed, NA—not available, C: classic, M: mild, and U: undefined. 1—The most frequent type in the BioPKU database. 2—The most frequent responsiveness phenotype
informed of in the BioPKU. *—This patient had genotype validation by Sanger sequencing; ** These patients were previously described in [23]. *** Allelic phase confirmed by parents’ analysis. **** These patients
are siblings. ***** The BH4 responsiveness results were described by [10]. ****** The BH4 responsiveness results were described by [11]. NGS: next-generation sequencing.
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A total of 26 different pathogenic variants were found in the PAH gene (Table 2).
One was a novel variant c.524C>G (p.Pro175Arg), five were located at the intron–exon
boundaries, and twenty were found in exonic regions (Figure 1). The majority (n = 6) of the
pathogenic variants were found in exon 7. For the other BH4 metabolism-related genes, no
pathogenic variants were found.

Table 2. Variants found in 33 unrelated PKU patients, their references, and American College of Medical Genetics and
Genomics (ACMG) classification.

Allele Protein Location Reference ACMG Effect

c.168+5G>A p.? I 2 [24] PP5 VUS
c.184delC p.Leu62Ter E 3 [25] PVS1, PM2, PP3, PM4 Pathogenic
c.194T>C p.Ile65Thr E 3 [26] PS3, PP2, PP5 Likely pathogenic

c.441+5G>T p.? I 4 [24] PP5 VUS
c.472C>T p.Arg158Trp E 5 [27] PS1, PP2, PP3, PP5 Likely pathogenic
c.473G>A p.Arg158Gln E 5 [28] PS1, PP2, PP3, PP5 Likely pathogenic
c.524C>G p.(Pro175Arg) E 6 This article PM2, PM5, PP2, PP3 Likely pathogenic
c.712A>C p.Thr238Pro E 7 [29] PM2, PP2, PP3, PP5 VUS
c.722G>A p.Arg241His E 7 [30] PS1, PS3, PP2, PP3, PP5 Pathogenic
c.728G>A p.Arg243Gln E 7 [31] PS1, PS3, PP2, PP3, PP5 Pathogenic
c.745C>T p.Leu249Phe E 7 [32] PS1, PP2, PP3, PP5 Likely pathogenic
c.754C>T p.Arg252Trp E 7 [33] PS1, PS3, PP2, PP3, PP5 Pathogenic
c.782G>A p.Arg261Gln E 7 [33] PS1, PS3, PP2, PP3, PP5 Pathogenic
c.814G>T p.Gly272Ter E 7 [34] PVS1, PM4, PP3, PP5 Pathogenic
c.838G>A p.Glu280Lys E 7 [35] PS1, PS3, PP2, PP3, PP5 Pathogenic

c.842+1G>A p.? I 7 [36] PVS1, PP5 VUS
c.932T>C p.Leu311Pro E 9 [37] PS1, PS3, PP2, PP3, PP5 Pathogenic

c.1024delG p.Ala342HisfsTer58 E 10 [38] PVS1, PM2, PM4, PP3, PP5 Pathogenic
c.1042C>G p.Leu348Val E 10 [26] PS3, PP2, PP3, PP5 Likely pathogenic
c.1055delG p.Gly352ValfsTer48 E 10 [39] PVS1, PM4, PP3, PP5 Pathogenic

c.1066-11G>A p.Gln355_Tyr356insGlyLeuGln I 10 [40] PS3, PP5 VUS
c.1162G>A p.Val388Met E11 [41] PS1, PS3, PP2, PP3, PP5 Pathogenic
c.1169A>G p.Glu390Gly E 11 [42] PS3, PS1, PP2, PP3, PP5 Pathogenic
c.1222C>T p.Arg408Trp E 12 [43] PS3, PP2, PP3, PP5 Likely pathogenic
c.1241A>G p.Tyr414Cys E 12 [44] PS1, PS3, PP2, PP3, PP5 Pathogenic

c.1315+1G>A p.? I 12 [45] PVS1, PP5 VUS

Notes: E: exon and I: intron. The most frequent variant was c.1315+1G>A (8/66, 11.7%), followed by c.473G>A (6/66, 8.8%) and c.1162G>A
(6/66, 8.8%). In the RS patients, the most common variants were c.1315+1G>A (7/44, 15.2%), c.1222C>T (6/44, 13%), c.473G>A (4/44, 8.7%),
c.754C>T (4/44, 8.7%), and c.1162G>A (4/44, 8.7%). In the DF patients, c.184delC (4/22, 18.1%), c.782G>A (3/22, 13.6%), and c.1066-11G>A
(3/22, 13.6%) were the most common variants.

Figure 1. PAH exon structure, and the location of the variants found in the patient sample.

Of the 14 patients without a BH4 responsiveness test, the results of nine were predicted
through the BioPKU database: two were responsive, and seven were nonresponsive. Of the
total cohort, the results of ten agreed with the BioPKU data. Two RS patients (patients 2 and
7) presented a genotype not described in the BioPKU database [46] and were nonresponsive
to BH4, according to the biochemical test [10,11]. Also, three DF patients (patients 26, 27
and 31) presented a genotype not described at BioPKU database, being two responsive and
one nonresponsive, respectively.
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The novel variant c.524C>G was found in patient 20, located on exon 6 of the PAH. The
ACMG criteria fulfilled by the variant were PM2, PM5, PP2, and PP3, resulting in a likely
pathogenic classification. In addition, the patient’s clinical information was consistent with
classic PKU.

As shown in Figure 2, the novel variant c.524C>G resulted in a proline being sub-
stituted with an arginine in position 175, which is located in the catalytic domain of the
PAH protein. This variant does not promote structural alterations in the protein. In the
combination of variants p.(Pro175Arg) and p.Arg252Trp, found in the genotype of patient
2, a small portion of monomers showed higher affinity between the subunits than the
wild-type complex. The molecular modeling analysis of PAH variants p.Thr238Pro and
p.Gly272Ter, found in patient 14, showed differences in the interaction energy between
monomers in the PAH tetramer, and most of the different tetramers showed significantly
lower affinity than the wild-type (Table S1).
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4. Discussion

PKU is the most common IEM, and its incidence ranges between 1:850–112,000 in
Europe (Karachay-Cherkessia Republic (Russia) and Finland, respectively], to 1:10,000 live
births in the USA [47]. In Brazil, its incidence is 1:25,000 live births [48], while, in Southern
Brazil, its incidence is 1:12,000–16,000 [49]. PKU has been included in Brazil’s newborn
screening program since 2001 [50]. Despite this screening program, our sample’s median
age at diagnosis was higher than the Brazilian Ministry of Health recommendations, i.e.,
up to 28 days of age [6]. A reason for this high median age at diagnosis is the difficulties
in the execution of the program, which was implemented only in 2001. Some of our
patients were born before that, when each Brazilian state performed a different screening
and not all states included PKU in their newborn screening program. This is the reason
behind the outstandingly late diagnosis of patients 22.1 and 22.2, diagnosed only after the
development of severe symptoms. Besides that, this family is very interesting, since the
oldest brother (22.2), who was diagnosed after—and because of—the youngest brother,
presented a milder neurological phenotype.

The PAH gene analysis by massive parallel sequencing is a fast, cost-effective, and
accurate alternative for the genetic diagnosis of PKU [8,51]. Due to its large size and
heterogeneity, similar symptoms are caused by alterations in more than one gene, as in the
differential diagnosis of BH4 deficiency and DNAJC12 gene variants. In PKU, especially, a
less time-consuming diagnosis can be helpful to avoid the development of neurological
symptoms to help predict BH4 responsiveness and to facilitate a differential diagnosis [52].

In this study, the patients’ molecular diagnosis agreed in every case with the diagnosis
based on biochemical and clinical observations, which confirms the effectiveness of this
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methodology. We identified variants that were not covered in the previous genotyping
analysis. In patient 9, for example, the error in previous genotyping could have been the
result of a lack of specificity or coverage of the implemented technique or a lack of analysis
of the parents’ genotypes.

The most frequent variant found in the patients, c.1315+1G>A, was described as
a common pathogenic variant in different Northern European populations, especially
in Germany [53]. The second-most frequent variant, p.Arg158Gln, is also common in
European populations, including Southern Italy and Eastern Europe [53]. The third-most
prevalent variant found, p.Val388Met, is described as common in the Iberian Peninsula
(5.7% in Spain and 19% in Portugal) and has a high frequency in Brazil (9%) and Chile
(13%) [54].

The second-most frequent variant in RS patients, p.Arg408Trp, is also common in
German populations (24.6%) [55]. In Southern Brazil, the predominance of European
ancestry (77.7%) can explain these findings [56]. A previous study of the RS population
found p.Ile65Thr (19.5%), c.169-13T>G (9.7%), p.Arg261Ter (9.7%), p.Arg261Gln (9.7%),
p.Val388Met (9.7%), and p.Arg408Trp (9.7%) to be the most frequent variants in this pop-
ulation [23]. However, the frequency of these variations differed in the present study:
p.Ile65Thr (2.1%), p.Arg261Gln (4.3%), p.Val388Met (8.7%), p.Arg408Trp (13%), and the
variants c.169-13T>G and p.Arg261Ter were not found. Nevertheless, the small sample size
in the previous study should be taken into consideration (n = 16). The variants p.Arg261Gln
and c.1066-11G>A, frequent in patients from DF, have also been described as the most
common variants in Portugal [53]. In the DF, which is in the Midwestern region of Brazil,
the population’s ancestry shows a mixture of Southeastern and Northeastern Brazilian
populations, with significant European (63%) and African (24.1%) ancestries [57].

A previous study by Acosta et al. (2001) [58] in a Brazilian population (a mix-
ture of Southern, Southeastern, Northeastern, and Midwestern regions) described the
most frequent of the pathogenic variants as c.1066-11G>A (17.4%), p.Arg261Gln (12.2%),
p.Val388Met (9.1%), p.Arg252Trp (6.5%), and p.Arg270Lys (4.8%) [58]. Of these vari-
ants, only p.Arg270Lys was not found in the present study. The variants p.Arg261Gln,
p.Val388Met, and c.1066-11G>A are also frequent in the States of Mato Grosso do Sul and
Minas Gerais [59–61]. The most common pathogenic variants in Argentina and Chile were
p.Arg261Gln (10.6%) and p.Val388Met (17.2%), respectively [62,63].

The novel variant p.Pro175Arg involves the substitution of a proline for an arginine.
The hydrophobic amino acid proline has particular properties: its side chain is connected
to the protein backbone. However, unlike proline, which does not display main-chain
conformation, arginine, a charged amino acid, is usually found in protein-active or protein-
binding sites [64]. The variant is located in the catalytic domain, although not in a hotspot
region with highly destabilizing pathogenic variants between residues 238–330 [18]. The
molecular modeling analysis indicates that this substitution can affect the binding between
monomers in the PAH tetramer, which could lead to a change in the stability and activity of
this enzyme. Another variant, p.Arg252Trp, has 1% of the PAH activity [65] and is related
to the classic PKU.

5. Conclusions

The correlation of many variations in the genotypes and their resulting phenotypes
is already available in public databases. Thus, a fast genotype diagnosis of PKU patients
can help with treatment outcomes. Genotyping is a helpful way to understand how
phenylalanine hydroxylase is altered in a patient, the impact of this specific alteration to
the enzyme, and the enzyme’s level of residual activity with these variants. Additionally,
genotyping can help with the patients whose genotypes have information of the BH4
responsiveness; when these patients are responsive, the supplementation with BH4 leads
to the enhancement of residual PAH activity, with a chaperone-like effect on a misfolding
enzyme subunit [66].
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This study presents a summary of the clinical and genetic data of 33 unrelated patients
from two different regions of Brazil, which confirmed the diagnosis of PAH deficiency in
every case. A novel variant was found in the PAH gene.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
5/12/1/20/s1, Table S1. Differences in binding affinity between monomers in the PAH tetramer in
patients 2 and 14 as predicted by the program FoldX 5.0. Interaction energy (∆G) between monomers
A to D calculated using combinations of the allelles 1 and 2 found in each patient. Differences
between the energies of mutant and wild-type proteins (∆∆G = ∆Gmut−∆Gwt) above 1.6 kcal/mol
should significantly affect the stability of the tetramer.
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