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Abstract: The study investigated the protective effect of walnut oligopeptides (WOPs) against
ethanol-induced gastric injury using Sprague-Dawley (SD) rats. Rats were randomly divided into
seven groups based on body weight (10/group), normal group, ethanol group, whey protein group
(220 mg/kg body weight), omeprazole group (20 mg/kg body weight), and three WOPs groups (220,
440, 880 mg/kg body weight). After 30 days of treatment with WOPs, rats were given 5 mL/kg absolute
ethanol by gavage to induce gastric mucosal injury. Gastric ulcer index (GUI) were determined
and the following measured; gastric content pH, gastric mucin, endogenous pepsinogens (PG),
prostaglandin E2 (PGE2), inflammatory cytokines, oxidative stress indicators, and the expression of
apoptosis-related proteins were measured to evaluate the gastroprotective effect of WOPs. The results
showed that the administration with WOPs markedly mitigated the hemorrhagic gastric lesions caused
by ethanol in rats, and decreased the GUI, the gastric content pH, PG1, PG2, and NO levels, enhanced
mucin and PGE2. Also, WOPs repressed gastric inflammation through the reduction of TNF-α,
IL-6, IL-1β and increase IL-10 levels, and revealed antioxidant properties with the enhancement
of superoxide dismutase, glutathione, and catalase activity, while reduction of malondialdehyde.
Moreover, WOPs treatment significantly down-regulated Bax, caspase-3 and nuclear factor-κB p65
(NF-κB p65) expression, while up-regulating the expression of Bcl-2 and inhibitor kappa Bα (IκBα)
protein. These results indicated that WOPs have protective effects against ethanol-induced gastric
mucosal injury in rats through anti-inflammatory, anti-oxidation, and anti-apoptosis mechanisms.
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1. Introduction

Gastric ulcers, characterized by mucosal damage, are induced by nonsteroidal anti-inflammatory
drugs, potassium chloride, alcohol intake, and Helicobacter pylori, etc., [1]. Ethanol is one of the
most common gastric mucosal invasion factors. With the development of society and increased
consumption of alcohol, the ethanol-induced gastric ulcer has become a prominent gastrointestinal
disease [2]. World Health Organization report showed that drinking alcohol caused about 3 million
deaths globally in 2016 (about 2.3 million men and about 700,000 women), accounting for 5.3 percent of
all deaths. Diseases of the digestive system accounted for 21.3 percent of deaths attributable to alcohol
consumption, placing a huge burden on global public health [3]. Experimentally, ethanol penetrates
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easily and rapidly into the gastric mucosa, then directly induces gastric mucosa lesions primarily
manifested as extended hemorrhagic bands, enlarged submucosal edema, and mucosal fragmentation,
which in turn reduces the generation of gastric mucosal protective factors and further aggravating
gastric mucosal damage [4,5]. Moreover, there is increasing evidence that ethanol mediates various
pathological events directly or indirectly via different pathophysiological pathways to form ulcers.
Studies have confirmed ethanol can induce gastric mucosa to over synthesize and secrete a variety of
inflammatory cytokines and oxygen free radicals, such as tumor necrosis factor α (TNF-α) and reactive
oxygen species (ROS). In addition to direct damage to gastric mucosa, these factors are involved in the
process of ethanol-induced excessive inflammation, oxidative damage, cell necrosis, and apoptosis of
gastric mucosal [6,7]. However, the majority of anti-ulcer drugs, including proton pump inhibitors,
antacids, and antihistaminic agents, currently used in the treatment of peptic ulcers showed limited
efficacy and multiple adverse side effects [2,4,8]. Therefore, exploring the potential mechanism and
finding safe and effective agents for the protection of ethanol-mediated gastric mucosal injury is of
great importance.

Currently, bioactive peptides, especially those derived from edible substances, have drawn
increasing attention of researchers because of their multiple physiological functions, such as
immunomodulatory, inflammatory inhibition, antioxidant, anti-fatigue effects, etc., [9–13]. Several
studies have been demonstrated that whey protein isolate [14], collagen hydrolysates [14],
wheat peptides [15], and cod (Gadus macrocephalus) skin collagen peptides [16], can protect against
ethanol-induced gastric damage.

Walnuts (Juglans regia L.) are one of the most widespread tree nuts in the world [17]. Studies
have demonstrated that walnut contains various functional components including unsaturated
fatty acids, dietary fibers, polyphenols, flavones, proteins, and peptides [18,19]. Walnuts have
health-promoting effects, such as antifungal, anti-inflammatory and hypotensive properties and
antioxidant activities [17–21]. Walnut oligopeptides (WOPs), which are extracted from walnut,
characterized by lower molecular weight, more digestible and absorbable properties. Previous studies
reported that WOPs has anti-oxidant, anti-inflammation, and anti-fatigue effects in mice [22,23].
However, there is no report on the gastroprotective effect of WOPs. Therefore, we speculated that
WOPs could be considered an effective agent to combat gastric mucosal injury induced by ethanol
which is related to oxidative stress imbalance, inflammation, and apoptosis. Hence, this study aimed
to explore the possible protective effects of WOPs against ethanol-induced gastric mucosal injury and
its mechanism in rats.

2. Materials and Methods

2.1. Preparation of WOPs Sample

WOPs were extracted from the proteins of walnut (Juglans regia L.) via enzymatic hydrolysis and
provided by Jilin Taigu Biological Engineering Co., Ltd. (Jilin, China). Briefly, walnut residual proteins
were homogenized, centrifugated, and then hydrolyzed by multiple proteases. Then, nanofiltration,
cryoconcentration, decolorization, purification, and spray drying were performed to obtain WOPs
powders. After being purified by high-performance liquid chromatography (HPLC, Agilent, CA, USA),
matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS, Linear,
NV, USA) and automatic amino acid analyzer (Hitachi, Tokyo, Japan) were used to determine
the molecular weight distribution and free amino acids amount of WOPs sample separately.
The identification results showed that the small molecule oligopeptides with relative molecular
weight <1000 Da accounted for 86.5% of WOPs sample. Further analysis found that the free amino
acids accounted for 2.98% and the detailed amino acid composition of the sample was described in our
previous reports [22,23].
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2.2. Chemicals and Reagents

Absolute ethanol (ETOH) was purchased from Sinopharm Chemical Reagent Beijing Co.,
Ltd (Beijing, China). Whey protein was obtained from Jilin Taigu Biological Engineering Co., Ltd. (Jilin,
China). Omeprazole was purchased from Hunan Dino Pharmaceutical Limited by Share Ltd (Hunan,
China). The serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) assay kits were
obtained from Yingkexinchuang Science and Technology Ltd. (Macau, China). The prostaglandin E2
(PGE2), pepsinogens, mucin, superoxide dismutase (SOD), nitric oxide(NO), malondialdehyde (MDA),
catalase (CAT), glutathione (GSH), myeloperoxidase (MPO), mucin, tumor necrosis factor α (TNF-α),
interleukin (IL)-6, interleukin (IL)-1β, and interleukin (IL)-10 assay kits were purchased from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China). The bicinchoninic acid (BCA) protein assay
kit and RIPA lysis buffer were purchased from Beyotime Institute of Biotechnology (Beijing, China).
The primary antibodies against rabbit nuclear factor-κB p65 (NF-κB p65) and Bax were obtained from
Cell Signaling Technology, Inc. (CST); inhibitor kappa Bα (IκBα), Bcl-2, caspase-3, and heat shock
protein70 (HSP70) were obtained from Abcam (Cambridge, UK).

2.3. Animals and Experimental Design

Sprague-Dawley (SD) rats (male, weighing 180–220 g, 6–8 weeks) in a specific pathogen-free
condition were obtained from the Department of Laboratory Animal Science, at Peking University
(Laboratory animal production license No.: SCXK (Jing) 2016-0010; Laboratory animal use license
No.: SYXK (Jing) 2016-0041). The rats were kept in a rat laboratory in the Department of Laboratory
Animal Science, which is in a filter-protected and air-conditioned room with constant temperature
(21–25 ◦C), the humidity of 50–60%, and photoperiod of 12 h. Three rats were housed in a cage and
had free access to standard food (American Institute of Nutrition Rodent Diets-93G (AIN-93G diet)
and water. All experimental procedures were approved by the Peking University Animal Research
Committee, following the Guide for the Care and Use of Laboratory Animals (NIH publication no.
85-23, revised 1996).

After one week of acclimatization, seventy rats were randomly divided into seven groups
(10/group): normal group, ethanol group, whey protein group (220 mg/kg body weight, as a protein
reference), omeprazole group (20 mg/kg body weight, as a reference of the anti-ulcer drug) [4,5,24],
and three WOPs intervention groups at different doses (220, 440, 880 mg/kg body weight, namely
WOPs-LG, WOPs-MG, WOPs-HG respectively). Rats in whey protein, omeprazole, and WOPs groups
were orally gavage with distilled water as a vehicle, while normal group and ethanol group were given
vehicle alone once a day for 30 consecutive days. The body weight and food consumption of rats were
recorded by an electronic weighing scale once a week.

At day 30, after the final administration, all rats were fasted for 24 h but given free access to water.
Then rats were gavage with absolute ethanol at 5 mL/kg body weight to induce gastric ulceration based
on reference to other research and pre-experiment [8,25–28]. One hour later, animals were sacrificed,
a blood sample was collected from the femoral artery and then centrifuged at 3000 rpm for 15 min to
obtain serum and preserved at −80 ◦C; the stomach was immediately removed, and the gastric juice
was collected into a tube and then the pH of gastric content was recorded with a digital pH meter.

2.4. Microscopic Evaluation of the Gastric Lesions

The stomach was opened along the greater curvature, washed clean with cold saline, and blotted
dry with filter paper, then the gross lesions of gastric tissue were observed and evaluated. The gastric
ulcer index (GUI) was scored according to the Guth standard with some modifications [8,29,30],
as shown in Table 1.
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Table 1. The scoring criteria of gastric ulcer index (GUI).

Severity of Erosion 1 Point 2 Points 3 Points 4 Points

Spot erosion - - -
Erosion length <1 mm 1–2 mm 2–3 mm 3–4 mm >4 mm, segmented scored
Erosion width >2 mm, score doubled

Total score A sum of partial scores

2.5. Biochemical Assays and Enzyme-Linked Immunobsorbent Assay

The levels of serum ALT and AST were determined by an automatic biochemical analyzer
(Olympus Corporation, Tokyo, Japan), the gastric tissue homogenate of different treated groups were
used to estimate the PG1, PG2, PGE2, mucin contents, inflammatory parameters (MPO, TNF-α, IL-6,
IL-1β, IL-10), oxidative stress biomarkers (NO, SOD, CAT, GSH, MDA) by ELISA kits according to the
protocol provided by the manufacturer.

2.6. Western Blot Analysis

The expression of Bax, caspase-3, Bcl-2, HSP70, NF-κB (p65), and IκBα proteins in gastric tissue
of experiment rats was determined by Western blot analysis according to the previously described
procedures with some optimizing modifications [31,32]. In brief, total proteins were extracted from
homogenates using RIPA lysis buffer and the concentration was determined according to the BCA
method. Then, 20 ug sample was electrophoresed through sodium dodecyl sulfate-polyacrylamide
gel (10%) electrophoresis and electrotransferred to polyvinylidene fluoride membranes (Millipore,
Billerica, MA, USA) for one hour. Next, the membranes were incubated with 5% (m/v) skimmed milk
for four hours at room temperature, followed by incubation with primary antibodies against β-actin
at 1:2000 (loading control), NF-κB at 1:1000, IκB at 1:5000, HSP 70 at 1:1000, Bax at1:1000, Bcl-2 at
1:2000, and caspase-3 at 1:2000 overnight at 4 ◦C. Then, the membranes were incubated with secondary
antibody goat anti-rabbit IgG (1:10000) at room temperature for four hours. Finally, protein bands
were visualized and detected by the chemiluminescence reaction and Hyperfilm ECL, then quantified
and processed by Image-Pro Plus (IPP) software.

2.7. Statistical Analysis

All values were presented as means ± standard deviations (SDs). Variances in the measurement
data were checked for homogeneity by Bartlett’s test. When the data were homogeneous, the one-way
analysis of variance test with least significant difference (LSD) or Dunnett’s T3 methods was used to
measure the significance of differences among groups. The levels of p < 0.05 was considered to be
statistically significant.

3. Results

3.1. Effect of WOPs on Body Weight and Food intake

During the 30 days of the experiment, it was observed that daily intervention of WOPs did not
cause any signs of toxicity or mortality in rats, and there was no significant difference in the bodyweight
among all groups (p > 0.05). The total food intake was significantly higher in WOPs-HG groups than
that in the normal control, ethanol, and whey protein group (p < 0.05), but no significant change in
food utilization was observed between groups (p > 0.05) (Table 2).
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Table 2. Effects of walnut oligopeptides (WOPs) on body weight and food intake.

Groups Body Weight (g) Food Intake (g) Food Utilization (%)
Initial Final

Normal 218.63 ± 9.79 400.00 ± 47.56 712.82 ± 46.74 25.37 ± 5.46
Ethanol 218.23 ± 10.19 396.17 ± 31.58 733.38 ± 81.68 25.28 ± 4.31

Whey protein 218.88 ± 10.13 412.29 ± 49.08 722.21 ± 52.95 26.68 ± 5.87
Omeprazole 218.60 ± 12.51 403.45 ± 46.70 750.68 ± 40.59 24.75 ± 5.37
WOPs-LG 221.75 ± 6.33 400.40 ± 46.15 748.74 ± 82.38 24.54 ± 4.12
WOPs-MG 220.14 ± 8.58 398.68 ± 33.54 739.33 ± 51.50 25.52 ± 2.43
WOPs-HG 221.15 ± 7.06 425.73 ± 55.07 787.00 ± 64.67 a*b*c* 27.08 ± 3.32

Food utilization = (Final body weight − initial body weight)/food intake × 100%. Values were presented as mean ±
SD (n = 10), a* means compared with normal group: p < 0.05; b* means compared with ethanol group: p < 0.05;
c* means compared with whey protein group: p < 0.05. WOPs-LG, 220 mg/kg of walnut oligopeptides group;
WOPs-MG, 440 mg/kg of walnut oligopeptides group; WOPs-HG, 880 mg/kg of walnut oligopeptides group.

3.2. Effect of WOPs on Gross Evaluation and Gastric Ulcer Index (GUI) of the Gastric Mucosa in Rats

As shown in Figure 1a, no visible lesion exhibited in the stomach of rats in the normal group,
the surface of the stomach was pink, and the gastric mucosa was smooth, intact, and regular (group
N). Rats in six groups administrated with absolute ethanol at 5 mL/kg displayed varying degrees of
hemorrhagic gastric lesions and the incidence rate of injury was 100%, indicating that ethanol has
caused gastric mucosa injury successfully (group E~WH). Rats in ethanol group suffered the most
severe gastric mucosal damage with a wide range of lesions appearing as extended hemorrhagic
bands (group E), while the whey protein group (group P) and omeprazole group (group O) revealed
mild damage compared with ethanol group. However, WOPs administration groups (group WL,
WM and WH) exhibited moderate to slight gastric mucosa injuries in comparison with ethanol group,
and among three WOPs groups, the gastric mucosa injuries of rats in the WOPs-HG (880 mg/kg
body weight) group were the least severe and remarkably better than in whey protein group and
omeprazole group.
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Figure 1. Effect of walnut oligopeptides (WOPs) pretreatment on gross evaluation (a) and gastric
ulcer index (b) of gastric mucosa injury in ethanol-treated rats. N, normal control group; E, ethanol
group; P, whey protein group (220 mg/kg body weight); O, omeprazole group (20 mg/kg body weight);
WL, WOPs-LG (220 mg/kg body weight); WM, WOPs-LG (440 mg/kg body weight); WH, WOPs-HG
(880 mg/kg body weight). Data were presented as mean ± SD (n = 10); b, c, d stand for in comparison
with ethanol group, whey protein group and omeprazole group, respectively; * p < 0.05 was considered
to have statistical differences. GUI, Gastric ulcer index; WOPs-LG, 220 mg/kg of walnut oligopeptides
group; WOPs-MG, 440 mg/kg of walnut oligopeptides group; WOPs-HG, 880 mg/kg of walnut
oligopeptides group.

The results presented in Figure 1b illustrated that the gastric ulcer index (GUI) substantially
increased of rats in the ethanol group. The administration with WOPs significantly reduced GUI in
comparison with the ethanol group (p < 0.05). Gastric mucosa of rats in the WOPs-HG (880 mg/kg
body weight) was mainly spotted hemorrhage, its GUI was distinctly lower than that of whey protein
group and the omeprazole group (p < 0.05). However, the GUI of rats in the omeprazole group and
whey protein group was lower than that of the ethanol group, but the difference was not significant
(p > 0.05). The intervention dose of omeprazole positive control group was converted according to the
recommended dosage to body weight ratio according to the drug instructions [4].

3.3. Effect of WOPs on Gastric Content pH, Pepsinogen, Gastric Mucin Content and Biochemical Analysis

As shown by the results in Table 3, oral administration of absolute ethanol significantly increased
the gastric content pH, pepsinogen (includes PG1 and PG2) levels, and decreased gastric mucus
contents in comparison with the normal rats (p < 0.05); while animals administrated with WOPs
or whey protein or omeprazole groups were significantly decreased PG1, PG2 levels and increased
mucin contents compared with ethanol group, and gastric content pH in WOPs-HG (880 mg/kg body
weight) group was lower than that in ethanol group (p < 0.05). Besides, the activity of PG1 in WOPs
intervention group was higher, while PG2 was lower than that in whey protein group (p < 0.05);
and in comparison with rats in WOPs intervention groups, the gastric contents pH and PG2 level in
omeprazole group were significantly increased, while PG1 level and PGR (ratio of PG1 to PG2) were
decreased (p < 0.05). On the other hand, the ethanol group exhibited a significant increase in serum
AST and ALT levels compared with untreated rats (p < 0.05). However, animals administrated with
WOPs significantly reduced the elevated of ALT in three WOPs groups and AST in WOPs-HG group
(p < 0.05).
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Table 3. Effect of WOPs on gastric content pH, pepsinogen, gastric mucin and serum ALT, AST levels.

Groups pH PG1 (µg/L) PG2 (µg/L) PGR Mucin (ng/L) ALT (U/L) AST (U/L)

Normal 2.42 ± 0.77 5.09 ± 0.35 2.89 ± 0.13 1.77 ± 0.18 4.42 ± 0.23 60.83 ± 17.37 211.50 ± 57.15
Ethanol 5.15 ± 0.95 a* 8.74 ± 0.43 a* 4.90 ± 0.17 a* 1.79 ± 0.08 2.47 ± 0.16 a* 83.75 ± 15.74 a* 300.80 ± 56.03 a*

Whey protein 4.08 ± 1.52 6.10 ± 0.32 a*b* 4.20 ± 0.24 a*b* 1.46 ± 0.09 b* 3.39 ± 0.14 a*b* 68.11 ± 15.28 b* 269.20 ± 58.54 a*
Omeprazole 6.54 ± 1.17 a*b*c* 5.81 ± 0.25 a*b* 4.27 ± 0.21 a*b* 1.36 ± 0.09 a*b* 3.59 ± 0.17 a*b*c* 71.00 ± 19.03 262.00 ± 44.47 a*
WOPs-LG 4.16 ± 1.26 d* 7.46 ± 0.18 a*b*c*d* 4.40 ± 0.20 a*b*c* 1.71 ± 0.09 c*d* 3.41 ± 0.17 a*b* 68.45 ± 8.70 b* 274.78 ± 53.67 a*
WOPs-MG 3.14 ± 1.58 d* 6.83 ± 0.36 a*b*c*d* 4.00 ± 0.18 a*b*c*d* 1.71 ± 0.11 c*d* 3.29 ± 0.15 a*b*d* 66.50 ± 12.78 b* 283.00 ± 33.36 a*
WOPs-HG 2.75 ± 0.44 b*d* 6.97 ± 0.35 a*b*c*d* 3.87 ± 0.25 a*b*c*d* 1.80 ± 0.16 c*d* 3.22 ± 0.13 a*b*c*d* 64.60 ± 10.16 b* 247.38 ± 29.21 b*

The PGR was calculated as the PG1 (µg/L) to PG2 (µg/L). Values were presented as mean ± SD (n = 10), a* means compared with normal group: p < 0.05; b* means compared with
ethanol group: p < 0.05; c* means compared with whey protein group: p < 0.05; d* means compared with omeprazole group: p < 0.05. ALT, alanine aminotransferase; AST, aspartate
aminotransferase; WOPs-LG, 220 mg/kg of walnut oligopeptides group; WOPs-MG, 440 mg/kg of walnut oligopeptides group; WOPs-HG, 880 mg/kg of walnut oligopeptides group.
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3.4. Effect of WOPs on PGE2, NO, and MPO Levels in Gastric Tissue of Rats

As shown in Figure 2, ethanol administration significantly reduced the content of PGE2, elevated
levels of NO and MPO when compared with rats in the normal group (p < 0.05). The pretreatment of
whey protein, omeprazole or WOPs significantly increased PGE2 content, decreased NO and MPO
levels compared with ethanol group (p < 0.05). In comparison with whey protein group, the levels
of PGE2 in WOPs-MG, NO in WOPs-LG and WOPs-MG, MPO in WOPs-LG were slightly higher
(p < 0.05); whereas PGE2 in WOPs-LG and WOPs-HG, NO in WOPs-HG, MPO in WOPs-MG and
WOPs-HG show no significant difference (p > 0.05). In addition, NO and MPO levels in three WOPs
intervention groups were higher than those in the omeprazole group (p < 0.05), but there was no
significant difference in PGE2 level (p > 0.05).
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Figure 2. Effects of WOPs on gastric PGE2 (a), NO (b), and MPO (c) levels in ethanol-induced rats.
Values were expressed as mean ± SD (n = 10); a, b, c, d means compared with normal group, ethanol
group, whey protein group, and omeprazole group separately; * p < 0.05 was considered to have
statistical differences. PGE2, prostaglandin E2; NO, nitric oxide; MPO, myeloperoxidase. WOPs-LG,
220 mg/kg of walnut oligopeptides group; WOPs-MG, 440 mg/kg of walnut oligopeptides group;
WOPs-HG, 880 mg/kg of walnut oligopeptides group.

3.5. Effect of WOPs on Ethanol-Induced Oxidative Stress in Gastric Tissue of Rats

As shown in Figure 3, the results indicated rats administrated with 5 mL/kg absolute ethanol
showed decreased SOD, GSH, and CAT levels, whereas their gastric mucosal malondialdehyde (MDA)
levels were significantly elevated compared with rats in the normal group (p < 0.05). Whey protein,
omeprazole, and WOPs-treated rats significantly reversed those changes compared with the ethanol
group (p < 0.05). Furthermore, MDA levels of rats in t WOPs-HG were significantly reduced compared
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with whey protein group (p < 0.05), SOD levels of rats in three WOPs intervention groups were
increased compared with omeprazole group (p < 0.05). However, there was no significant change in
GSH and CAT levels between WOPs groups and whey protein group or omeprazole group (p > 0.05).
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Figure 3. Effects of WOPs on SOD (a), GSH (b), CAT (c), MDA (d) levels in ethanol-induced rats.
Values are presented as mean ± SD (n = 10); a, b, c, d means compared with normal group, ethanol
group, whey protein group, and omeprazole group separately; * p < 0.05 was considered to have
statistical differences. SOD, superoxide dismutase; GSH, reduced glutathione; CAT, Catalase; MDA,
malondialdehyde; WOPs-LG, 220 mg/kg of walnut oligopeptides group; WOPs-MG, 440 mg/kg of
walnut oligopeptides group; WOPs-HG, 880 mg/kg of walnut oligopeptides group.

3.6. Effect of WOPs on Inflammatory Cytokines in Gastric Tissue of Rats

As shown in Figure 4, the levels of TNF-α, IL-6, and IL-1β after ethanol exposure were markedly
higher, while IL-10 was significantly decreased compared to the rats of normal group (p < 0.05),
which indicated that ethanol-induced inflammatory response generated multiple cytokines in rats.
WOPs pretreatment greatly suppressed the increased TNF-α, IL-6, IL-1β and IL-10 levels in gastric
tissue of rats (p < 0.05), except TNF-α in WOPs-LG group, which is similar to the difference between
whey protein, omeprazole groups, or ethanol group. Moreover, the levels of IL-1β in WOPs-MG and
WOPs-HG, IL-6 in WOPs-HG groups were lower, while IL-1β in WOPs-LG, IL-10 in the WOPs-MG and
WOPs-HG groups were higher than those in rats of whey protein group (p < 0.05); but no significant
difference was observed in TNF-α between WOPs groups and whey protein group (p > 0.05). Compared
with omeprazole group, TNF-α in WOPs-HG group, IL-1β in WOPs-MG and WOPs-HG groups,
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and IL-10 in the WOPs-LG group were distinctly decreased, while IL-6 in WOPs-LG, WOPs-MG groups
were greatly increased (p < 0.05).
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Figure 4. Effects of WOPs on TNF-α (a), IL-1β (b), IL-6 (c), and IL-10 (d) levels in ethanol-induced rats.
Data are expressed as mean ± SD (n = 10); a, b, c, d represent compared with normal group, ethanol
group, whey protein group, and omeprazole group, respectively; * p < 0.05 was considered to have
statistical differences. Tumor necrosis factor α, TNF-α; interleukin (IL)-6, IL-6; interleukin (IL)-1β,
IL-1β; IL-10, interleukin (IL)-10; WOPs-LG, 220 mg/kg of walnut oligopeptides group; WOPs-MG,
440 mg/kg of walnut oligopeptides group; WOPs-HG, 880 mg/kg of walnut oligopeptides group.

3.7. Effect of WOPs on the NF-κB p65, IκBα, HSP70, Bcl-2, Bax and Caspase-3 Expression in Gastric Tissue

The protein expression of nuclear factor-κB p65 (NF-κB p65), inhibitor kappa Bα (IκBα), heat shock
protein70 (HSP70), Bcl-2, Bax, and caspase-3 in the gastric tissue were examined by Western blot analysis.

As shown in Figure 5b,c, compared with the normal group, the expression of NF-κB p65
significantly increased and the expression of IκBα reduced in ethanol group (p < 0.05). Whereas
the expression of NF-κB p65 in WOPs-LG and WOPs-HG groups was significantly down-regulated,
IκBα in WOPs-MG and WOPs-HG groups was significantly up-regulated in comparison with those in
ethanol group (p < 0.05), and there was no significant difference between WOPs group, whey protein
group, and omeprazole group (p > 0.05).

The data illustrated in Figure 5d indicated that ethanol administration resulted in significant
down-regulation of HSP 70 expression of animals in ethanol group, omeprazole group, and WOPs-LG
group compared with the normal group (p < 0.05). However, no statistical difference was observed
among other groups (p > 0.05).
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Figure 5. Effect of WOPs on the apoptosis-related protein expression in rats. (a) Apoptosis-related
protein levels were analyzed by Western blot. N, normal control group; E, ethanol group; P, whey protein
group (220 mg/kg body weight); O, omeprazole group (20 mg/kg body weight); WL, WOPs-LG
(220 mg/kg body weight); WM, WOPs-LG (440 mg/kg body weight); WH, WOPs-HG (880 mg/kg body
weight). (b) Effect of WOPs on the expression of NF-κB p65 in gastric tissue of rats. (c) Expression
of IκBα in gastric tissue of rats. (d) Expression of HSP70 in gastric tissue of rats. (e) Expression of
Bcl-2 in gastric tissue of rats. (f) Expression of Bax in gastric tissue of rats. (g) Expression of Caspase-3
in gastric tissue of rats. Data are expressed as mean ± SD (n = 10); a, b, d represent compared with
the normal group, ethanol group, and omeprazole group separately; * p < 0.05 was considered to
have statistical differences. NF-κB p65, nuclear factor-κB p65; IκBα, inhibitor kappa Bα; WOPs-LG,
220 mg/kg of walnut oligopeptides group; WOPs-MG, 440 mg/kg of walnut oligopeptides group;
WOPs-HG, 880 mg/kg of walnut oligopeptides group.

The data presented in Figure 5e–g showed that the gastric mucosa of rats in ethanol group had
significant apoptosis damage, which was exhibited by the down-regulation of anti-apoptosis protein
Bcl-2 and up-regulation of the pro-apoptotic proteins Bax and caspase-3 (p < 0.05), while no significant
difference was observed in whey protein group or omeprazole group in comparison with those in
ethanol group (p > 0.05). Nevertheless, the expression of Bcl-2 was significantly up-regulated, while Bax
and caspase-3 were markedly down-regulated of rats in WOPs-MG and WOPs-HG groups when
compared with the ethanol group (p < 0.05), which indicated that WOPs intervention can alleviate the
gastric mucosal apoptosis induced by ethanol to a certain extent. Besides, the expression of Bcl-2 in
WOPs-MG and WOPs-HG groups were higher than those of omeprazole group (p < 0.05), whereas
the expression of Bax and caspase-3 between WOPs groups and omeprazole group did not differ
significantly (p > 0.05).

4. Discussion

Nowadays, natural products, especially food-derived peptides, have gradually attracted
researchers’ attention because of its varied biological effects with reduced side effects [33,34]. WOPs,
which are mainly composed of small-molecule oligopeptides derived from walnuts (Juglans regia L.),
have been reported to have various physiological functions such as anti-oxidants, anti-inflammatory,
anti-fatigue, and attenuating irradiation-induced hematopoietic [22,23]. However, the effects of
WOPs on ethanol-induced gastric mucosal injury has not been reported. Thus, we aimed to treat
the Sprague–Dawley (SD) rats with walnut (Juglans regia L.) oligopeptides (WOPs) by oral gavage to
investigate the gastric protective effect of WOPs on gastric mucosal injury induced by absolute ethanol
(5 mL/kg). Whey protein and omeprazole were used as reference groups. Whey protein is composed
of several protein fractions including β-lactoglobulin, α-lactalbumin, and immunoglobulin, and has a
role in a variety of physiological activities, such as enhance immunity, antioxidation, improve learning
and memory abilities, and promote growth [12]. Omeprazole is a proton pump inhibitor (PPI), which is
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widely used in the short-term and long-term treatment of peptic ulcer disease attribute to the effect in
causing a relatively complete suppression of acid secretion [5]. Most studies of ethanol-induced gastric
mucosal damage have been performed in rodent models, but there is no generally accepted gavage
dose of alcohol to date. According to multiple pieces of literature, absolute ethanol administered at a
dose of 5 mL/kg in rodents was used more frequently, and the gastric mucosa injury can occur about
30 min and generally reach a peak 60 min after alcohol intake, which took into account differences
in alcohol metabolism between rodents and humans [8,25–28]. In pre-experiments, we found that
the dose of absolute ethanol caused obvious damage to gastric mucosa with low mortality of rats.
Therefore, we developed the gastric mucosa injury model in SD rats by gavage 5 mL/kg absolute
ethanol and then rats were sacrificed one hour later in this study. The results showed that rats in ethanol
group suffered severe gastric mucosal damage, exhibited edema, the mucosal surface was dark red,
mucosal erosion, punctate, linear, cord-like and even flaky hemorrhage (Figure 1), and the incidence
rate of injury was 100%, indicating that ethanol has caused gastric mucosa injury successfully, which is
in accordance with previous studies [8,30]. However, gross observation showed that whey protein,
omeprazole, and three WOPs groups had less gastric lesions and lower GUI values in comparison with
the ethanol group, and the gastric mucosa injuries of rats in the WOPs-HG group was the lightest and
significant and better than that of whey protein group or omeprazole group. The results demonstrated
that animal pre-treated with WOPs, especially at a dose of 880 mg/kg body weight, could considerably
reduce the gastric mucosal hemorrhage injury caused by ethanol.

Gastric mucosal injury is a multifactorial pathological process that involved endogenous
and exogenous factors, its basic pathophysiology mechanism includes imbalance between some
pro-inflammation factors (including hydrochloric acid, pepsin, and reactive oxygen species) and
defensive factors (such as mucus-bicarbonate barrier, mucosal blood flow, and some cytokines) [35–38].
Although the complex pathological mechanism of ethanol-induced gastric mucosal damage,
the interaction of gastric acid and pepsin is still considered to be the major cause of gastric mucosal
injury [39]. Excessive secretion of gastric acid would cause weakened barrier function, resulting in
self-digestion of gastric mucosa tissue and inducing the occurrence of the ulcer [40,41]. Pepsin is
transformed from pepsinogen (PG) secreted by main cells through activation of hydrogen ions [42].
PG1 and PG2 levels are important indicators of gastric mucosal injury, mirroring the morphology
and functional status of gastric mucosa, while the reduction of PGR (the ratio of PG I to PG II) can
be used to examine the progress of atrophic gastritis [43]. The results of this experiment illustrated
that acute destruction of ethanol induced a remarkable elevation in gastric content pH and the levels
of PG1, PG2 in ethanol group; while the pH of gastric contents in omeprazole group were higher
than other groups. However, the administration with WOPs reversed these changes to some extent
compared with the ethanol group. In addition, mucin is a critical glycoprotein element that forms a
protective mucus layer on the gastric mucosa [30]. The mechanism of ethanol-induced depletion of
gastric mucin is mainly that acetaldehyde directly inhibits the galactosyltransferase activity, which is a
vital component in mucin synthesis, thus affecting the synthesis of ethanol dehydrogenase and mucin
glycoprotein [5]. In the present study, the result demonstrated that the contents of mucin of rats in
WOPs intervention groups were distinctly higher than that of rats in the ethanol group. Moreover,
the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) have been
regarded as sensitive pathological markers of ethanol-induced liver dysfunction. WOPs could prevent
the elevated ALT, AST levels of rats in the ethanol group, which suggested that WOPs exerted a certain
protective effect on impaired liver function caused by absolute ethanol in the present study.

With any etiology, various factors are involved in the pathological process of gastric mucosa
injury, such as prostaglandin E2 (PGE2), nitric oxide (NO), myeloperoxidase (MPO), heat shock
proteins (HSP70), etc., [39]. Prostaglandins, in particular prostaglandin E2 (PGE2), are the major
defensive factors against most gastric mucosa irritation induced by various risk factors. PGE2 can
primarily protect gastric mucosal by stimulating gastric mucus and bicarbonate secretion, increasing
the mucosal blood flow, suppressing the aggregation of leukocyte, and attenuating cytotoxic damage
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by participating in various mechanisms [5,39,44]. The present study demonstrated that compared
with normal rats, the gastric mucosa PGE2 levels in the ethanol group rats were significantly reduced
(Figure 2a), suggesting that ethanol causes the inactivation of prostaglandin synthase, which leads to a
decrease in prostaglandin biosynthesis, which is in accordance with other related researches [4,5,8,30].
However, WOPs remarkably enhanced the level of PGE 2 in comparison with ethanol group, indicating
that PGE2 participated in the defense mechanism of WOPs against ethanol-induced gastric mucosal
injury. Additionally, neutrophils are a considerable source of inflammatory cytokines and can induce
reactive oxygen that can result in gastric mucosal damage. Previous studies have found that as a
crucial indicator of neutrophil infiltration, an increase in MPO level was often observed in the gastric
ulcer caused by ethanol [5,30]. Nitric oxide synthase (NOS) can be divided into two categories, the
constructive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS). cNOS can
constantly release NO at low levels under physiological situations [45]. Whereas, iNOS can produce a
large amount of inducible NO after being activated by endotoxin or inflammatory cytokines, causing
vascular microcirculation disturbance and gastric mucosa injury [42,46,47]. In this study, the MPO
and NO levels were considerably elevated in rats in the ethanol group when compared with those
of the normal group (Figure 2b,c). However, the considerable upsurge of MPO and NO levels were
markedly suppressed by treatment with WOPs, whey protein, and omeprazole compared with the
ethanol group rats. Besides, the results showed that omeprazole has a higher ability to inhibit MPO and
NO levels than WOPs, but no distinct difference was observed between whey protein and WOPs. Heat
shock protein70 (HSP70) has a protective effect against ethanol-induced gastric mucosal injury [2,48].
However, no significant difference was observed between WOPs groups and ethanol group in this
study (Figure 4d). The above results suggested that WOPs had a protective effect on gastric mucosa,
enhanced PGE2 activity in gastric mucosal, and caused a reduction of MPO and NO levels in the
ulcerated tissue.

Oxidative stress has been suggested to be involved in the pathogenesis of gastric mucosal
damage caused by ethanol, which is due to the imbalance between the substantial production of
reactive oxygen species (ROS) and rapid depletion of endogenous antioxidant capacity [6,49]. A chief
source of oxygen free radicals generation could be ascribed to the infiltration of neutrophils, and it
is closely related to the imbalance of cellular homeostasis and the excessive production of lipid
peroxides [26]. The impairment of antioxidant defense mechanisms was induced by ethanol basically
through enhancing the generation of cellular oxidants (e.g., O2•−) and lipid peroxidation products (e.g.,
MDA) and depleting the number of antioxidants (e.g., SOD, GSH, CAT) in the gastric mucosa, which in
turn causes mitochondrial membrane changes in permeability and depolarization, and eventually led
to cell death and apoptosis [5,50]. Therefore, increased activity of scavenging enzymes is an effective
way to alleviate oxidative damage, which plays a major defensive role in the genesis of ethanol-induced
gastric ulcers induced by ethanol [4,48,51]. Meanwhile, malondialdehyde (MDA) is the final production
of lipid peroxidation and is a key marker to estimate indirectly the level of lipid peroxidation [5,35].
Our project outcomes indicated that administration with of 5 mL/kg absolute ethanol reduced the
levels of SOD, CAT, and GSH, while it elevated the MDA levels in ethanol-administered rats. However,
administration with WOPs distinctly altered the reduction of those antioxidant enzymes and the
increase of MDA levels. Furthermore, the intervention of WOPs markedly enhanced SOD levels
compared with omeprazole group and attenuated MDA levels compared with the whey protein group.
These results suggested that WOPs have the powerful ability to improve absolute ethanol-induced
oxidative stress imbalance of gastric mucosal.

Inflammation is a pivotal pathological reaction of ethanol-related peptic ulcer, which is mainly
characterized by increased secretion of diverse proinflammatory factors, such as TNF-α, IL-6, and IL-1β,
and inhibition of the production of anti-inflammatory cytokines such as IL-10 [7,52]. TNF-α is relevant
to the inflammatory reaction, lipid metabolism, and apoptotic injuries in the development of gastric
ulcer [48]. In addition, this pro-inflammatory cytokine can promptly trigger the expression of the
transcription factor nuclear factor κB (NF-κB), which in turn activates the release of various cytokines,
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thus aggravating gastric mucosa injury [30,48]. Moreover, IL-10 is mainly produced by Th2 cells or
mononuclear macrophages, is a multifunctional negative regulatory factor that plays a down-regulating
role in an inflammatory response, which can inhibit and antagonize the production and activity of
pro-inflammatory factors. Consequently, inhibiting the increase of inflammatory cytokines is essential
to alleviate gastric mucosal injury caused by ethanol. In this study, the levels of TNF-α, IL-6, IL-1β in
ethanol group were significantly elevated, while the levels of IL-10 were decreased when compared
with those of rats in the normal group, indicating the involvement of inflammatory response in
ethanol-induced gastric mucosa injury, which was in accordance with other similar reports [26,30,53].
Notably, the administration with WOPs remarkably improved the levels of these inflammatory
cytokines in comparison with rats in the ethanol group. These results indicate that WOPs-treated rats
displayed a remarkable attenuation of ethanol-induced inflammation reaction via suppressing TNF-α,
IL-6, IL-1β and increasing IL-10 and MPO (Figure 2c) levels of gastric mucosal.

Previous studies have shown that apoptosis is closely related to the occurrence of gastric mucosal
damage, and excessive apoptosis will destroy the integrity of the mucosa and eventually induce gastric
ulcer [8,54]. The cellular apoptosis caused by ethanol could be primarily attributed to the upregulation
of pro-apoptosis protein Bax and caspase-3, and down-regulation of the anti-apoptosis protein Bcl-2,
thereby resulting in gastric mucosa dysfunction [11,30]. Additionally, NF-κB is the predominant
mediator of redox imbalance and excessive generation of inflammatory cytokines [8,48]. Generally,
NF-κB interacts with inhibitor kappa B (IκB) to make it inactive in the cytoplasm under physiological
conditions. When various stimuli lead it to return to phosphor-IκB, then IκB degrades, thereby
translocating NF-kB to the nucleus and inducing the expression of its target genes, such as TNF-α
and IL-1β [31,55,56]. The results demonstrated that the protein expression of NF-κB p65 (Figure 5b),
Bax (Figure 5f), and caspase 3 (Figure 5g) were up-regulated, while the IκBα (Figure 5c) and Bcl 2
(Figure 5e) expression were down-regulated in rats in the ethanol group when compared with those of
rats in the normal group. However, no significant difference was found in the whey protein group
or omeprazole group when compared with the ethanol group. Notably, administration with WOPs
reduced the expression of NF-κB p65, Bax, and caspase 3, and increased the expression of IκBα and Bcl
2 in comparison with those of ethanol rats, which was consistent with previously reported studies,
showing WOPs could inhibit IR-induced splenocyte apoptosis and inflammation [23]. Moreover,
comparing the gastroprotective effects of WOPs and omeprazole or whey protein, WOPs were superior
in the regulation of anti-apoptosis protein Bcl-2 in comparison with omeprazole group, but there
was no significant difference between both groups on NF-κB p65, Bax, and caspase-3 expression.
Taken together, these results indicate that WOPs-treated rats exhibited a marked gastroprotective
effect, primarily manifested by anti-inflammatory, anti-oxidative, and anti-apoptotic mechanisms,
which could be ascribed to the resultant changes in gastric PGE2 levels and regulation of IκBα/NF-κB
signal pathway in rats.

5. Conclusions

The above research results suggests that WOPs have an obvious protective effect on gastric
mucosal injury caused by ethanol. The gastroprotective activity of WOPs is primarily because of
its effect on attenuating ethanol-induced gastric mucosal hemorrhagic injury, reducing gastric ulcer
index, enhancing PGE2 and oxidative stress parameters, suppressing MPO, proinflammatory factors,
and lipid peroxidation indicators changed by oral gavage with 5 mL/kg ethanol to rats, thereby
mitigating gastric mucosa damage caused by ethanol. In addition, administration with WOPs could
up-regulate the expression of anti-apoptosis protein (Bcl-2) and down-regulated the expression of
pro-apoptotic proteins (Bax and caspase-3), and it might be associated with the alleviation of the NF-κB
signaling pathway. Furthermore, we found that the optimal dose of WOPs supplementation in rats
may be 880 mg/kg body weight, which showed better protective efficacy against ethanol-induced
gastric mucosal damage, but further experimental verification is needed. This study first illustrated
the gastroprotective effect of WOPs and provides an important prospect for the application of WOPs
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on ethanol-induced gastric mucosa injury. Further research is required to evaluate the protective effect
of WOPs in a clinical setup and ascertained the optimal dose of WOPs supplementation in humans.
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