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Tumor necrosis factor alpha (TNF-α) plays important roles in processes such as
immunomodulation, fever, inflammatory response, inhibition of tumor formation, and
inhibition of viral replication. TNF-α and its receptors are ubiquitously expressed in
developing organs and they regulate the survival, proliferation, and apoptosis of
embryonic stem cells (ESCs) and progenitor cells. TNF-α is an important inflammatory
factor that also regulates the inflammatory response during organogenesis, and its
cytotoxic effects can interfere with normal developmental processes, even leading to the
onset of diseases. This review summarizes the various roles of TNF-α in organogenesis
in terms of its secreting pattern, concentration-dependent activities, and interactions
with other signaling pathways. We also explored new potential functions of TNF-α.
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INTRODUCTION

Tumor necrosis factor alpha (TNF-α) belongs to the TNF superfamily (Aggarwal, 2003) of
proteins with highly similar structures and conserved interaction profiles (Bodmer et al., 2002).
A macrophage cytotoxic factor was originally discovered during 1975 that could kill mouse
fibrosarcoma L-929 cells and was thus termed “tumor necrosis factor” (Carswell et al., 1975).
TNF-α plays important roles in various biological processes, such as immunomodulation, fever,
inflammatory response, inhibition of tumor formation, and inhibition of virus replication (Bradley,
2019). TNF-α is encoded by a 3-kb gene located on chromosome 6p21.3 and it comprises four
exons (Old, 1985). The precursor of TNF-α (pro-TNF-α) is a type II transmembrane protein with
a molecular weight of 26 kDa, consisting of mature TNF-α and a leader sequence, which contains
a cytoplasmic domain, a transmembrane domain, and an extracellular domain. Synthesized pro-
TNF is incorporated into the cell membrane and rapidly forms a homotrimer, which is then
proteolytically cleaved by a multidomain metalloproteinase called TNF-α converting enzyme to
release 17-kDa soluble (mature) TNF-α (Tang et al., 1996). Despite being a precursor, pro-TNF
also exhibits biological activities; for instance, the homolog of pro-TNF, Eiger, induces apoptosis in
compound eyes of Drosophila by activating the c-Jun N-terminal kinases (JNKs) signaling pathway
(Igaki et al., 2002), and concentric cardiac hypertrophy occurs in transgenic mice with up-regulated
pro-TNF expression (Dibbs et al., 2003). The binding of TNF-α to its receptors activates three types
of intracellular signaling pathways, including the NF-κ B-, MAPK- JNK-, and caspase-8-mediated
pathways, to promote various biological functions, such as the inflammatory response, as well as

Abbreviations: ESC, embryonic stem cell; VIC, valve interstitial cell; NPC, neural progenitor cell; BMSC, bone marrow-
derived mesenchymal stem cell; BMP, bone morphogenetic protein.
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cell survival, proliferation, differentiation, and apoptosis (Adrain
et al., 2012). The physiological roles of TNF-α in developmental
processes have recently gained attention. TNF-α promotes the
growth of intestinal epithelium in fetuses by stimulating the
development of intestinal stem cells (Schreurs et al., 2019). TNF-
α also promotes the apoptosis of cardiac valve interstitial cells
(VICs). TNF-α-knockout mice developed VIC hypertrophy at
16 days post-partum, indicating that TNF-α plays an important
role in the development of cardiac valves (Wang et al., 2017).

This review summarizes the roles of TNF-α in the
development of various organs and associated diseases. We
also highlight the mechanisms of TNF-α from multiple aspects,
including its effects on stem cells/progenitor cells, secreted forms,
concentration-dependent activities, and interactions with other
signaling pathways.

ROLES, ACTIONS, AND EFFECTS OF
TNF-α

TNF-α Participates in the Regulation of
Organogenesis
The effects of TNF-α can be traced back to gastrulation,
during which it promotes embryonic differentiation and cell
apoptosis (Sanders et al., 1997). Organogenesis is precisely
regulated by a complex signaling network (Durdu et al., 2014),
in which TNF-α is involved in regulating the development
of multiple organs (Figure 1). TNF-α plays a central role
in the process of neurogenesis in embryos and neonates by
regulating the survival, proliferation, and differentiation of
neural progenitor cells (NPCs) (Bernardino et al., 2008; Lan
et al., 2012). TNF-α participates in various stages of brain
development, by increasing the numbers of neurons in the early
stage of embryonic development through activating the NF-
κB signaling pathway, and induces neuronal apoptosis in the
late stage of embryonic development by activating the caspase
pathway (Figure 1A; Doherty, 2007). TNF-α promotes the
differentiation of keratinocytes in neonates by increasing the rate
of cornified envelope formation. It also promotes progression
of the hair follicle cycle from the growth (anagen) to the
regression (catagen) phase, thus playing important regulatory
roles in epidermal development and hair follicle morphogenesis
(Pillai et al., 1989; Tong and Coulombe, 2006). TNF-α promotes
the proliferation of bone marrow-derived mesenchymal stem
cells (BMSCs), osteoclast progenitor cells, and chondrocytes
(Enomoto et al., 1990; Van Der Pluijm et al., 1991; Fang
et al., 2019). TNF-α also promotes the migration of BMSCs
without relying on the NF-κB signaling pathway (Sullivan et al.,
2014). TNF-α activates the p38 MAPK signaling pathway in
osteoblasts and chondrocytes to enhance bone resorption, thus
promoting bone growth (Figure 1B; Tashjian et al., 1987;
Kumar et al., 2001). TNF-α seemingly exhibits various effects
across different developmental stages; for instance, it inhibits
(Gilbert et al., 2000) and promotes (Sidney et al., 2014)
the differentiation of osteoblasts in fetal and neonatal rats,
respectively. TNF-α secreted by valvular endothelial cells in

embryonic mice induces the apoptosis of VICs, whereby TNF-
α-knockout mice have thickened heart valves (Wang et al., 2017).
Chick embryo chorioallantoic membrane assays have shown
that TNF-α promotes angiogenesis (Figure 1C; Olivo et al.,
1992; Fang et al., 2019). The embryos of TNF-α-knockout mice
are more prone to developing limb deformities after exposure
to cyclophosphamide, confirming that TNF-α functions as a
cytokine that protects embryos against teratogens (Torchinsky
et al., 2003). TNF-α promotes the growth of intestinal stem
cells in the human fetus (Figure 1D; Schreurs et al., 2019).
The onset of severe hepatic dysplasia in embryos of TNF-
α-knockout zebrafish showed that TNF-α plays an important role
in liver development (Qi et al., 2010). TNF-α secreted by tracheal
cartilage regulates the differentiation of airway epithelial cells in
embryos (Figure 1E; Turcatel et al., 2017). Besides, mechanical
ventilation can lead to bronchopulmonary dysplasia in TNF-
α-knockout mice by inducing the transforming growth factor
(TGF) signaling pathway, indicating that the balance between
TNF-α and TGF signaling is essential for airway development
(Ehrhardt et al., 2016). Therefore, TNF-α participates in the
regulation of cell survival and proliferation by activation of NF-
κB signaling, cell differentiation and proliferation by activation
of MAPK signaling, and apoptosis by activation of caspase-8
signaling, so that it plays important roles in the development of
various organs. Further studies are required to gain insights into
the regulatory mechanism of TNF-α in organ development and
cellular signaling pathways.

Effects of TNF-α on Stem
Cells/Progenitors
Tumor necrosis factor alpha might exert different effects on
embryonic stem cells (ESCs), progenitor cells, and differentiated
cells. It not only inhibits the self-renewal of mouse ESCs but
also induces their apoptosis and inhibits their differentiation into
embryos (Figure 2A; Wuu et al., 1998). TNF-α promotes the
migration of ESCs by binding to TNF receptor 2 to activate p38
and JNKs in vivo and in vitro (Chen et al., 2003).

Tumor necrosis factor alpha is also involved in regulating the
proliferation, apoptosis, and differentiation of progenitor cells. It
promotes the proliferation and differentiation of neuroblasts into
astrocytes in the human fetal cortex (Peng et al., 2008; Lan et al.,
2012), inhibits the differentiation of cortical oligodendrocyte
precursor cells and induces their apoptosis in neonatal rats
(Su et al., 2011; Bernardo et al., 2017). TNF-α promotes
the differentiation of NPCs in the subventricular zone of
neonatal mice. Moreover, low and high concentrations of TNF-
α, respectively, promote the proliferation and apoptosis of NPCs
(Bernardino et al., 2008). TNF-α promotes the survival of human
embryonic NPCs by activating NF-κB signaling pathway (Kim
et al., 2018). TNF-α inhibits the proliferation of hippocampal
precursor cells in mice (Wang et al., 2018) and the differentiation
of NPCs into neurons in embryos (Liu et al., 2005), and promotes
the proliferation of osteoclast progenitor cells in embryonic
mice (Van Der Pluijm et al., 1991). TNF-α plays an important
regulatory role in the differentiation of fetal thymic and lymphoid
precursor cells (Zúñiga-Pflücker et al., 1995). TNF-α also inhibits
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FIGURE 1 | TNF-α regulates several important biological processes in organogenesis, such as the neurogenesis (A), osteogenesis (B), angiogenesis (C), intestinal
development (D), and airway development (E).

the differentiation of Schwann cells in neonatal rats, osteoblasts
in fetal rats, and colonic epithelial cells in human fetuses (Gilbert
et al., 2000, 2002; Lisak et al., 2001; Hýžïalová et al., 2008),
and induces the apoptosis of oocytes in neonatal rats (Morrison
and Marcinkiewicz, 2002). Therefore, TNF-α tends to promote
proliferation and inhibit differentiation of the progenitors by
activating NF-κB signaling, while with regards to stem cells and
differentiated cells, TNF-α tends to induce their apoptosis.

Secreted Forms and Biological
Functions of TNF-α
Although transmembrane TNF-α (pro-TNF) is biologically
active, TNF-α primarily exerts autocrine and paracrine functions
in a soluble, trimeric form during developmental processes. TNF-
α acts as an autocrine and paracrine growth factor that stimulates
the proliferation of hematopoietic cells and B cells (Figure 2B;
Boussiotis et al., 1994). Autocrine TNF-α signaling is required for
macrophage maturation (Witsell and Schook, 1992; Boyle et al.,
2003; Chen et al., 2004). Autocrine TNF-α signaling promotes
the survival and differentiation of monocytes into dendritic cells
(Lehner et al., 2012). Autocrine TNF-α signaling is also involved

in the regulation of growth, differentiation, and maturation of
lymphokine-activated killer T cells (Innins et al., 1992). TNF-α
regulates the differentiation of osteoclasts and bone resorption
(Tani-Ishii et al., 1999; Zou et al., 2001), and promotes myoblasts
differentiation through an autocrine process (Li and Schwartz,
2001). TNF-α activates and promotes astrocyte proliferation
through a paracrine process (Rodgers et al., 2020).

Concentration-Dependent Effects of
TNF-α
Low concentrations of TNF-α tend to promote cell proliferation,
whereas high concentrations tend to inhibit cell proliferation and
even induce the apoptosis of neural stem cells/progenitor cells
in the subventricular zone of neonatal mice, and of osteoclast
progenitor cells and intestinal stem cells in fetal mice (Figure 2C;
Van Der Pluijm et al., 1991; Bernardino et al., 2008; Schreurs
et al., 2019). The biological effects of TNF-α are enhanced
in a concentration-dependent manner. For example, higher
concentrations of TNF-α inhibit the proliferation of ESCs in mice
(Wuu et al., 1998), promote NPC proliferation in the human fetal
cortex (Peng et al., 2008), induce the apoptosis of dopaminergic
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FIGURE 2 | (A) TNF-α inhibits the self-renewal of embryonic stem cells and promotes their migration, and inhibits the differentiation of progenitor cells and promotes
their proliferation and survival. (B) TNF-α acts on its secreting cells (autocrine signaling) or surrounding cells (paracrine signaling). (C) TNF-α promotes cell
proliferation at low concentrations and inhibit cell proliferation and induce apoptosis at high concentrations.

neurons in embryonic mice and chondrocytes in chicken
embryos (Aizawa et al., 2001; McGuire et al., 2001; Doherty,
2007), inhibit osteogenic differentiation of BMSCs in rats (Gilbert
et al., 2000, 2002; Fang et al., 2019), and promote lung branching
morphogenesis and expression surfactant proteins in embryonic
mice (Jaskoll et al., 1994).

Crosstalk Between TNF-α and Other
Signaling Pathways
Tumor necrosis factor alpha interacts extensively with
fibroblast growth factor (FGF) family, Wnt family, and TGF-β

superfamily members to co-regulate developmental processes.
It promotes angiogenesis by inducing basic FGF and FGF-1
expression in endothelial cells (Figure 3A; Maier et al., 1996;
Yoshida et al., 1997).

Tumor necrosis factor alpha inhibition promotes the
functional recovery of nerves by activating the Wnt3a
signaling pathway in BMSCs (Peng et al., 2017). TNF-α
inhibits adipogenesis by activating the Wnt signaling pathway
in pre-adipocytes, suggesting that it is involved in determining
the fate of adipocytes (Qadir et al., 2011). TNF-α also suppresses
bone formation by inhibiting the Wnt signaling in osteoblasts
(Jaskoll et al., 1994; Qin et al., 2015; Chen et al., 2020;
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FIGURE 3 | Crosstalk between TNF-α fibroblast growth factor (FGF) family (A), Wnt family (B), and TGF-β superfamily members (C) in the regulation of
organogenesis.

Li et al., 2020). The Wnt signaling pathway is involved in
the activation of TNF-α signaling to ensure the survival of dental
epithelial cells in early tooth development (Figure 3B; Laurikkala
et al., 2001).

Tumor necrosis factor alpha regulates the differentiation of
osteoblasts by affecting the bone morphogenetic proteins (BMP)
signaling pathway (Figure 3C; Singhatanadgit et al., 2006; Mukai
et al., 2007; Yamazaki et al., 2009; Matsumoto et al., 2010). It also
promotes tooth development by upregulating the expression of
BMP-2 and BMP-3 in dental follicles (Yao et al., 2010). Besides,
BMP signaling can promote bone development by inhibiting the
TNF-α-mediated apoptosis of osteoblasts (Chen et al., 2001).
TNF-α induces activin A expression in BMSCs, eosinophils,
lymphatic endothelial cells, and amniotic cells (Takahashi et al.,
1992; Abe et al., 2013; Kelly et al., 2016; Yoshimatsu et al., 2020).

Tumor necrosis factor alpha induces the expression of
hepatocyte growth factor in human bone marrow- or adipose-
derived progenitor cells and in MSCs to promote tissue growth
and repair (Wang et al., 2006; Zhang et al., 2010). TNF-α has
also been demonstrated to promote angiogenesis by inducing
the expression of ephrin A1 and erythropoietin in endothelial
cells (Cheng and Chen, 2001; Wang et al., 2011). Erythropoietin
can promote the proliferation and inhibit the differentiation
of erythroid cells and hematopoietic stem cells by inducing
the biosynthesis and secretion of TNF-α (Jacobs-Helber et al.,
2003; Chen et al., 2004). Notch-activated TNF-α signaling in
endothelial cells helps to prevent heart valve thickening by
promoting VIC apoptosis (Wang et al., 2017).

Inflammatory Response Triggers
Abnormal Organogenesis by Activating
the TNF-α
The cytotoxic effects of TNF-α during inflammation might lead
to abnormal organogenesis. Previous studies have confirmed
that TNF-α exerts neurotoxic effects in vivo and in vitro and

negatively affects brain development in vivo (Chao and Hu,
1994; Peng et al., 2008; Seleme et al., 2017). Microglia activated
during inflammation can inhibit the axon growth of neurons
and induce neuronal apoptosis via TNF-α in neonatal rats
(Bogdan et al., 1997; Cacci et al., 2005; Nimmervoll et al., 2013;
Nolan et al., 2014; Cheng et al., 2016). TNF-α is involved in
the onset of hydrocephalus, and its expression in astrocytes is
associated with the severity of hydrocephalus in animal models
(Jiménez et al., 2014). The induction of TNF-α expression in
embryonic mice by cyclophosphamide (a teratogen) can lead
to craniofacial malformations (Ivnitsky et al., 1998). Moreover,
the finding that TNF-α inhibits neuronal dendritic growth in
the cortex of embryonic mice might indicate increased risk of
mental illness in humans (Gilmore et al., 2004; Babri et al.,
2014). A high-fat diet in female rats can lead to the elevation
of hepatic TNF-α to a level that can cause liver damage in their
newborn infants (Kačarević et al., 2017). TNF-α promotes the
maturation of pancreatic dendritic cells and activates pancreatic
T cells in neonatal mice, causing damage to islet β cells and
triggering the onset of type I diabetes (Lee et al., 2005). TNF-α
might cause metatarsal growth disorder in fetal rats, suggesting
that chronic inflammatory diseases can cause developmental
disorders of bone in children by upregulating TNF-α expression
(Mårtensson et al., 2004). Elevated hepatic and placental levels
of TNF-α in female mice due to intrauterine infections might
lead to delayed fetal bone development (Xu et al., 2006). TNF-
α can increase the methylation levels of myoD CpG island in
proliferating myoblasts, resulting in a reduced number of skeletal
muscle cells (Sharples et al., 2016). TNF-α causes damage to
the intestinal mucosa of neonatal rats by triggering the death of
intestinal epithelial cells, and the subsequent onset of necrotizing
enterocolitis (Halpern et al., 2006; Tayman et al., 2016; Schreurs
et al., 2019). Elevated TNF-α in amniotic fluid can lead to
the apoptosis of alveolar epithelial cells, localized atelectasis,
alveolar inflammation, and premature birth (Sadowsky et al.,
2006). All considered, abnormal factors such as inflammation in
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developmental processes might increase localized levels of TNF-
α, and exerts cytotoxic effects that can disrupt organogenesis and
trigger the onset of associated diseases.

DISCUSSION

This review summarized the progress in understanding the effects
of TNF-α on organogenesis. TNF-α is a multifunctional cytokine
that regulates important biological processes in organogenesis,
such as the proliferation, differentiation, and apoptosis of
neurons, osteoblasts, endothelial cells, hematopoietic progenitor
cells, intestinal epithelial cells, and airway epithelial cells. TNF-
α mainly inhibits the self-renewal of ESCs and promotes their
migration, and inhibits the differentiation of progenitor cells and
promotes their proliferation and survival. During organogenesis,
TNF-α mainly acts on its secreting cells (autocrine signaling)
or surrounding cells (paracrine signaling). TNF-α tends to
promote cell proliferation at low concentrations and inhibit cell
proliferation and induce apoptosis at high concentrations. TNF-
α interacts extensively with the FGF, Wnt, and TGF-β signaling
pathways to co-regulate organogenesis. It is also an important
inflammatory factor that regulates the inflammatory response
and exerts cytotoxic effects. The overwhelming cytotoxic effect of
TNF-α during organogenesis due to inflammation interferes with
normal developmental processes and can trigger disease onset.
Despite considerable knowledge about TNF-α and its functions
in organogenesis, several questions remain. For example,

how TNF-α prevents the activation of undesirable immune
responses during developmental processes remains obscure.
Low concentrations of TNF-α promote the development of
intestinal epithelium without triggering inflammatory response
(Schreurs et al., 2019), but whether a more fine-tuned
regulatory mechanism exists remains unclear. Furthermore,
the regulatory mechanism underlying various effects of TNF-α
(such as promoting proliferation, differentiation, and apoptosis)
on the same type of cells remains unclear. Details of the
regulatory mechanisms of TNF-α during organogenesis requires
further investigation.
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