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Abstract

Biological brain age predicted using machine learning models based on high-

resolution imaging data has been suggested as a potential biomarker for neurological

and cerebrovascular diseases. In this work, we aimed to develop deep learning

models to predict the biological brain age using structural magnetic resonance imag-

ing and angiography datasets from a large database of 2074 adults (21–81 years).

Since different imaging modalities can provide complementary information, combin-

ing them might allow to identify more complex aging patterns, with angiography data,

for instance, showing vascular aging effects complementary to the atrophic brain tis-

sue changes seen in T1-weighted MRI sequences. We used saliency maps to investi-

gate the contribution of cortical, subcortical, and arterial structures to the prediction.

Our results show that combining T1-weighted and angiography MR data led to a sig-

nificantly improved brain age prediction accuracy, with a mean absolute error of

3.85 years comparing the predicted and chronological age. The most predictive brain

regions included the lateral sulcus, the fourth ventricle, and the amygdala, while the

brain arteries contributing the most to the prediction included the basilar artery, the

middle cerebral artery M2 segments, and the left posterior cerebral artery. Our study

proposes a framework for brain age prediction using multimodal imaging, which gives

accurate predictions and allows identifying the most predictive regions for this task,

which can serve as a surrogate for the brain regions that are most affected by aging.
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1 | INTRODUCTION

Normal brain aging is generally associated with morphological changes

of the cortical, subcortical (Potvin et al., 2016; Potvin, Dieumegarde, &

Duchesne, 2017), and cerebrovascular structures (Bullitt et al., 2010).

More precisely, aging was found to be associated with a decrease of

brain tissue (atrophy) and a blood vessel loss in adults, although it is

not clear if the vessels actually disappear or if they become invisible

on magnetic resonance angiography due to decreased blood flow

(Amin-Hanjani, Du, Pandey, Thulborn, & Charbel, 2015) or
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atherosclerosis reducing the inner lumen. Across the various brain and

vascular structures, these changes are often reported to have a

nonlinear trend with respect to age (Peters, 2006), with some struc-

tures undergoing increasing atrophy rate with increasing age, such as

the hippocampus, or following a U-shape volume change with aging,

such as the caudate (Potvin et al., 2016). However, these morphologi-

cal changes do not only occur due to normal brain aging but are also

associated with neurological or cerebrovascular diseases such as

Alzheimer's disease, transient ischemic attacks, or stenoses (Fotenos,

Snyder, Girton, Morris, & Buckner, 2005; Ritz, Denswil, Stam, van

Lieshout, & Daemen, 2014; Wardlaw et al., 2013) with significantly

accelerated brain aging effects. For clinical diagnosis and decision

making, it is important to improve our understanding of normal brain

aging to enable a precise diagnosis of any pathological deviation

(i.e., accelerated or abnormal aging) at an early time point when poten-

tial treatments and interventions are arguably the most effective.

The morphology of cortical and subcortical structures is typically

assessed using structural high-resolution T1-weighted magnetic reso-

nance imaging (MRI) scans, while the diameter and density of cerebro-

vascular structures can be measured, for example, using time-of-flight

magnetic resonance angiography (TOF MRA). TOF MRA imaging pro-

vides a good blood-to-background contrast even without any exoge-

nous contrast agent (Forkert et al., 2013). However, extracting artery-

related quantitative features from TOF MRA datasets, such as the

artery diameter or density, requires a lot of processing steps, including

generating a segmentation of the cerebrovascular system, that can

bias the measurements. The same is also true for the segmentation of

high-resolution T1-weighted datasets, although to a lesser extent.

Therefore, being able to analyze the raw T1-weighted MRI and TOF

MRA datasets directly has the potential to significantly reduce the

data preprocessing time needed when manually extracting measure-

ments and allows the model to automatically select the most relevant

features from the images.

In the brain aging literature, it has been suggested that the biolog-

ical brain age might be a sensitive biomarker for several neurological

diseases associated with accelerated or abnormal brain aging (Cole &

Franke, 2017; Rokicki et al., 2020). More precisely, abnormal aging

can be identified and quantified by calculating the difference between

the chronological and the biological brain age of a person. The biologi-

cal brain age is typically estimated using predictive models based on

neuroimaging data as input. Such predictive models are typically

trained using data from healthy subjects, assuming that the biological

brain age is equal to the chronological age in a healthy individual. Vari-

ous statistical and machine learning methods and types of input data

have been used for biological brain age prediction so far. Among

others, previous research has aimed to predict biological brain age

based on numerical features extracted from T1-weighted MRI scans

(Valizadeh, Hänggi, Mérillat, & Jäncke, 2017), raw T1-weighted MRI

scans (Cole et al., 2017; Peng, Gong, Beckmann, Vedaldi, &

Smith, 2021), multimodal neuroimaging data often combining various

numerical features extracted from structural and functional MRI

modalities (Cole, 2020; de Lange et al., 2020; Niu, Zhang, Kounios, &

Liang, 2020), and cerebral blood flow information using arterial spin

labeling data (MacDonald et al., 2020; Rokicki et al., 2020). While

brain age prediction using T1-weighted MRI data has been of high

interest in past studies, only one study (to the best of our knowledge)

has attempted to predict the biological brain age using TOF MRA

datasets (Nam et al., 2020), although vascular changes due to aging

are well documented (Mouches, Langner, Domin, Hill, &

Forkert, 2021). However, the contributions of the different arteries to

the age prediction result have not been investigated yet. Additionally,

the TOF MRA datasets were used as the only imaging modality in this

case, thereby, potentially missing the highly informative complemen-

tary value of T1-weighted MRI datasets. Finally, most studies use data

collected at different sites, acquired on different scanners, and with

varying scanning parameters (Levakov, Rosenthal, Shelef, Raviv, &

Avidan, 2020). While combining data from different sources results in

larger training populations, it can also introduce different biases

related to scanning protocols and hardware (Kruggel, Turner, &

Muftuler, 2010). These biases are known to negatively affect brain

age prediction accuracies. Hence, specific model architectures were

proposed to reduce the impact of, for example, scanning parameters

on the predictions (Dinsdale, Jenkinson, & Namburete, 2021). Further-

more, various data harmonization techniques have been proposed in

the past to remove site- and scanner-related effects (Pomponio

et al., 2020; Wrobel et al., 2020).

Recent brain age estimation approaches that use imaging data

directly without requiring any explicit feature engineering mostly

employ convolutional neural networks (CNNs) with T1-weighted MRI

data as the only input (Bashyam et al., 2020; Cole et al., 2017; Peng

et al., 2021). Briefly, CNNs are a class of deep artificial neural net-

works that use imaging data as inputs and transform them into the

desired outputs through layers of convolution operations with many

different convolution kernels. The convolution kernels are similar to

feature extractors in more traditional machine learning models, but

they are automatically learned/optimized during model training

instead of being hand-crafted by the user (Lo Vercio et al., 2020). In

the context of brain aging, this allows the CNN to learn to use optimal

features directly from the image to predict the biological brain age

more accurately (O'Shea & Nash, 2015). However, such models are

usually deemed black boxes as the user does not know which parts of

the input image particularly contributed to make the prediction. This

is in stark contrast to traditional machine learning models for which

several methods can be applied for assessing the feature importance

(Lo Vercio et al., 2020). To overcome this issue and to add

explainability to CNN models, saliency map techniques (Samek,

Montavon, Lapuschkin, Anders, & Müller, 2021; Simonyan, Vedaldi, &

Zisserman, 2013) can be used to identify the regions of the input

image that contribute the most to the brain age prediction. Saliency

maps provide an established approach in the machine learning domain

for visualizing the importance of each input image voxel for the pre-

diction made by a trained CNN. Technically, this is achieved by com-

puting the gradient of the function parameterized by the CNN with

respect to the individual voxels (i.e., answering the question “How

would changing this voxel affect the predicted age?”). For this specific
task, such techniques were, for example, used in Levakov et al. (2020)
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to identify the most important regions in a brain age prediction

method based on T1-weighted MRI datasets. However, this

explainability method has not been investigated for the use with mul-

timodal imaging inputs to understand the relative contribution of each

brain region in each imaging modality.

The primary aim of this work is to develop and evaluate a multi-

modal CNN-based biological brain age prediction model that jointly

uses T1-weighted MRI and TOF MRA scans. The major technical con-

tributions of this article are as follows: (a) the validation of an existing

brain age prediction model architecture and (b) the use of saliency

maps in the context of multimodal biological brain age prediction. The

clinically relevant contributions include (a) the investigation of the

added benefit of combining two modalities that provide complemen-

tary brain tissue and artery information, (b) the age-specific identifica-

tion of important brain regions and arteries contributing most to the

brain age estimation, and (c) the use of a large database of adults with-

out any known brain pathologies or neurological diseases (21–

82 years old), collected on a single scanner with the same scanning

parameters, which avoids data acquisition-induced biases often

encountered when combining data from different centers and/or dif-

ferent studies.

2 | MATERIAL AND METHODS

2.1 | Database

All datasets used for this study were acquired within the Study of

Health in Pomerania (SHIP). All SHIP participants were randomly

selected in the region of Pomerania in Germany, with the aim of

obtaining a representative general population sample (Völzke

et al., 2011). Thus, the database includes predominantly Caucasian

participants with no known pathologies in brain MRI scans or pres-

ence of any neurodegenerative diseases. For this secondary study,

T1-weighted MRI and TOF MRA datasets from 2,118 adults (1,029

males and 1,089 females), aged between 21 and 82 years (mean: 51

± 14) were used.

2.2 | Data acquisition and preprocessing

All scans for each participant were acquired on a single 1.5T system

(Magnetom Avanto; Siemens Medical Solutions, Erlangen, Germany) with

the following acquisition parameters: T1-weighted MRI: TR = 1900 ms,

TE = 3.4 ms, flip angle = 15�, spacing = 1.0 � 1.0 � 1.0 mm3; TOF

MRA: TR = 23 ms, TE = 7 ms, flip angle = 25�,

spacing = 0.7 � 0.7 � 0.7 mm3.

All datasets were corrected for bias field inhomogeneities using

the N4 algorithm (Tustison et al., 2010), skull stripped (Isensee

et al., 2019) to remove any nonbrain tissues, and affinely registered to

the MNI brain atlas (Mazziotta et al., 2001). Using an affine registra-

tion allows to align the images while preserving participant-specific

brain morphology, as opposed to nonlinear registration (Dinsdale,

Bluemke, 2021). Finally, and following common practice in machine

learning, the intensities of all images were rescaled to have zero mean

and unit variance to ensure that all datasets have a similar intensity

range. Figure 1 shows an example of preprocessed data, as well as the

maximum intensity projection of a TOF MRA dataset showing the

arteries visible in the dataset.

For the TOF MRA datasets, a custom brain mask that also

includes the arteries at the base of the brain (the petrous segment of

the internal carotid arteries) was used to perform the skull stripping.

More precisely, the custom brain mask was delineated in the MNI

brain atlas space, using the cerebrovascular atlas from Mouches and

Forkert (2019), and transformed to each TOF MRA dataset. This was

achieved by computing a nonlinear transformation between the MNI

brain atlas and each T1-weighted MRI dataset and a rigid transforma-

tion between each T1-weighted MRI dataset and its corresponding

TOF MRA dataset. After this, the two transformations were

concatenated and used to transform the brain mask to each TOF

MRA dataset. The same principle of concatenating registration trans-

formations was used to affinely register the TOF MRA datasets to the

MNI brain atlas space. All registrations were performed using the

Advanced Normalization Tools (ANTs) toolkit (Avants, Tustison, &

Johnson, 2009).

Finally, all affinely aligned datasets were cropped to remove back-

ground voxels. Considering that the field of view in the craniocaudal

direction was considerably smaller for the TOF MRA datasets than for

the T1-weighted MRI datasets, the final image size was

155 � 190 � 50 for the TOF MRA datasets and 144 � 192 � 160

for the T1-weighted MRI datasets.

All preprocessed TOF MRA datasets were visually inspected to

exclude datasets in which the image acquisition was incomplete and

did not cover the full cropping mask extent in the craniocaudal direc-

tion. Consequently, 44 of the initial 2,118 participants were excluded

resulting in a total sample size of 2,074 participants.

2.3 | Brain age prediction

Three different models predicting the brain age were developed in

this work. In a first step, two models with the same architecture,

inspired by the Simple Fully Convolutional Neural Network (SFCN)

model (Peng et al., 2021), were trained using different inputs:

T1-weighted MRI (CNNT1) and TOF MRA (CNNTOF) datasets. This

architecture was chosen as it was specifically designed for the brain

age prediction task and is one of the best performing models on the

UK Biobank data (Sudlow et al., 2015). The model architecture con-

sists of six blocks. The first four blocks include one 3-dimensional con-

volutional layer with (3 � 3 � 3) kernels, one batch normalization

layer, and one (2 � 2 � 2) max pooling layer followed by a ReLU

nonlinear activation (Nair & Hinton, 2010). The convolutional layers

for the first four blocks have 32, 64, 128, and 256 filters, respectively.

The fifth block consists of one 3-dimensional convolutional layer with

a (1 � 1 � 1) kernel and 64 filters, followed by a batch normalization

layer and ReLU activation. The model ends with a sixth block

2556 MOUCHES ET AL.



consisting of an averaging pooling layer, a dropout layer with 0.5

dropout rate, and a dense layer with linear activation outputting the

age prediction (Figure 2b). The models were optimized during training

using the mean squared error between the predicted and chronologi-

cal brain age as loss function.

The CNN models were trained from scratch using the available

data. The data were split into 65% training data (1,340 datasets), 15%

validation data (334 datasets), and 20% testing data (400 datasets),

with an equivalent percentage of participants of each age in each split,

as illustrated in Figure 2a. A data augmentation strategy applying ran-

dom ±5� rotations and ±10 voxel translations on 50% of the datasets

in each batch was employed to reduce the risk of model overfitting,

which led to slightly improved results (Table S1, Supporting Informa-

tion). The two models were trained using the Adam optimizer

(Kingma & Ba, 2017) with a learning rate of 0.001, which was empiri-

cally determined, a weight decay of 0.0003, and a batch size of 8 using

TensorFlow (Abadi et al., 2016). The validation set was used for early

stopping of the optimization process.

Next, the outputs from the CNNT1 and CNNTOF models were

combined using a multiple linear regression model, following the

approach described in Jonsson et al. (2019). Therefore, the biological

brain age of the 334 validation datasets was estimated using the

trained CNNT1 and CNNTOF models. Then, a multiple linear regression

model with the brain age prediction from the CNNT1 and CNNTOF

models as predictor variables and the chronological age as target vari-

able was trained using the 334 validation datasets (see Figure 2a).

Once trained, the linear regression model was concatenated with the

previously trained CNNT1 and CNNTOF models to form the

CNNCombined model, which is used to predict the brain age of the test

data and to generate saliency maps as described in the following.

Combining both modality-specific models at the decision level allows

to generate saliency maps representing the relative contribution of

each modality and circumvent problems previously observed when

combining modalities at the input level (Jin, Li, & Hamarneh, 2021).

Figure 2b illustrates the three different models and their architecture.

2.4 | Saliency maps generation

Individual saliency maps were computed for each participant of the

test set using the CNNCombined model. To do so, the SmoothGrad algo-

rithm (Smilkov, Thorat, Kim, Viégas, & Wattenberg, 2017) was

adapted to this regression problem. This method was specially chosen

as it is simple, has previously shown to lead to good results in the

brain age prediction context (Levakov et al., 2020), and directly out-

puts voxel-wise gradient values. In comparison, methods using class

activation maps, such as Grad-Cam (Selvaraju et al., 2020), should be

applied on the last convolutional layer of a CNN model, which in the

current model contains highly downsampled activation maps com-

pared to the input image size and would result in spatially inaccurate

saliency maps. Briefly described, this method applies random noise

from a normal distribution N(0,0.1) to each test dataset and passes

the noisy image as input through the trained model. Then, the partial

derivative of the loss function with respect to the noisy input image is

backpropagated through the model, resulting in one value per image

voxel representing the voxel importance. This process is repeated

10 times for each dataset and the output maps are averaged. For the

CNNCombined model, the gradient going through the linear regression

model used to combine the two modality-specific models was

included in the calculations. In this multimodal input setting, the noise

was applied to both inputs and the output consists of one saliency

map per modality per test participant, in which the gradient values

account for the relative importance of each modality.

As saliency maps have been shown to be not reliable in some

cases, it is important to ensure their robustness against the model

weights, label randomization, as well as their repeatability and

F IGURE 1 Example of preprocessed datasets used as input for the brain age prediction models. (a) T1-weighted MRI dataset; (b) TOF MRA
dataset; (c) maximum intensity projection of the TOF MRA dataset in cranio-caudal direction showing the arteries included in the TOF MRA
dataset
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localization relevance (Arun et al., 2021). Therefore, sanity checks

were conducted, following Adebayo et al. (2018). The first sanity

check consists of instantiating a model with the proposed architecture

but random weights and generating the saliency maps on the test data

with this untrained model. By doing so, it is possible to check if the

saliency maps are sensitive to the model weights. The second sanity

check consists of training a new model with the proposed architecture

but using randomized input data where the age information is ran-

domly permuted across samples. This second sanity check ensures

that the maps truly reflect the dependency between the input data

and the outcome. Finally, generating maps for a large number of par-

ticipants demonstrate the repeatability aspect and comparing the

regions showing high importance to the literature ensures localization

relevance.

2.5 | Regions of importance identification

In the next step, z-score maps of the T1-weighted MRI and TOF MRA

saliency maps of each participant in the test set were computed con-

jointly to preserve the information about the relative importance of

each modality. The z-score maps were then nonlinearly transformed

to the MNI brain atlas space (using the already available registration-

derived transformations; see section 2.2) and averaged for all partici-

pants per age decade. This process resulted in six age-specific average

saliency maps corresponding to participants aged below 30, between

30 and 40, between 40 and 50, between 50 and 60, between 60 and

70, and over 70. The six age-specific average saliency maps were

finally used as the input to the popular probabilistic threshold free

cluster enhancement algorithm (Spisák et al., 2019) with the aim of

F IGURE 2 Flowchart of the proposed approach (a) and model (b). CNNT1 and CNNTOF are two sub-models using 3-dimensional T1-weighted
MRI and TOF MRA datasets as input, respectively, and outputting the estimated brain age. CNNCombined combines the estimations from the two
single modality models and outputs the final estimated brain age
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determining significant clusters of predictive voxels (p < .05, corrected

for multiple comparisons) within each map.

To identify the most important brain regions for the brain age pre-

diction task, brain atlas regions of interest (ROIs) defined in the MNI

space were used. For the T1-weighted MRI data, the cortical and subcor-

tical regions described in the CerebrA atlas (Manera, Dadar, Fonov, &

Collins, 2020), which is a corrected and improved version of the

Mindboggle-101 atlas (Klein & Tourville, 2012), and the cortical regions

described in the human finer grain cerebral cortex atlas (Glasser

et al., 2016), were used as parcellations. These specific atlases were cho-

sen as the CerebrA atlas contains the cerebrospinal fluid filled structures,

which were previously identified as important markers of brain aging

(Lemaître et al., 2005; Levakov et al., 2020), and the human cerebral cor-

tex atlas provides a fine parcellation of biologically relevant regions of

the cortex. For the TOF MRA datasets, masks of the main arteries,

including the basilar artery (BA), the anterior cerebral arteries (ACA) A1

and A2 segments, the middle cerebral arteries (MCA) M1 and M2 seg-

ments, the posterior cerebral arteries (PCA), and the internal carotid

arteries (ICA) were manually defined using the cerebrovascular statistical

atlas described in Mouches and Forkert (2019). These ROIs were used in

combination with the clusters extracted from the age-specific average

maps to identify the ROIs in which the clusters are located.

3 | RESULTS

3.1 | Brain age prediction

Table 1 shows the prediction accuracies of the CNNT1, CNNTOF, and

CNNCombined biological brain age prediction models in terms of mean

absolute error and R2 comparing the chronological and estimated biologi-

cal age. The combination of both imaging modalities (CNNCombined)

results in the best age prediction performance (mean absolute error

[MAE] = 3.85 years, R2 = 0.88) and shows a significant absolute error

improvement, using a 2-tailed paired t test, compared to the models

using a single imaging modality (T1-weighted MRI: p < .05; TOF MRA:

p < .0001). The model training and validation loss curves (Figure S1) indi-

cate no overfitting (i.e., increased validation loss over the epochs) but a

gap between the training and validation loss, which was also previously

observed with the SFCN model architecture (Peng et al., 2021).

Figure 3 illustrates the performance of the different models. The

Bland–Altman plot for the CNNCombined model (Figure 3c) shows a

tighter limit of agreement (�9.57; 9.32) compared to the two other

plots (Figure 3a,b)), again demonstrating the benefits of combining the

two imaging modalities. This observation is further supported by the

plots directly comparing the predicted and true chronological age,

which are presented in Figure S2. All models show small mean differ-

ences between the chronological and predicted age, with the highest

difference found for the CNNT1 model (�0.39) indicating no system-

atic biases although the three models seem to slightly overpredict the

age of young adults and underpredict the age of elderly, which has

also been previously observed (de Lange & Cole, 2020; Le et al., 2018;

Liang, Zhang, & Niu, 2019; Treder et al., 2021).

3.2 | Saliency maps and regions of importance

Figure 4 shows the age-specific average saliency maps for each imaging

modality of the combined model (CNNCombined). Furthermore, significant

clusters detected within each map can be found in Figure S6. For the

T1-weighted age-specific average saliency maps, Figures 5 and S7 show

TABLE 1 Biological brain age prediction results of the different
models computed for the 400 test datasets

Model input Mean absolute error (SD) R2

T1-weighted MRI (CNNT1) 4.01 (3.08)* 0.872

TOF MRA (CNNTOF) 4.91 (3.75)** 0.805

All (CNNCombined) 3.85 (2.90) 0.882

Note: Significant difference with the CNNCombined model is indicated.

*p < .05; **p < .01.

F IGURE 3 Bland–Altman plots comparing the participants
chronological age and predicted age from the (a) CNNT1, (b) CNNTOF,
and (c) CNNCombined model. The x-axis shows the mean of the
chronological and predicted age (in years) and the y-axis shows the
difference (chronological age-predicted age)
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F IGURE 4 Legend on next page.
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heatmaps illustrating the number of significant clusters overlapping with

the different ROIs when using either the CerebrA or the finer human

cerebral cortex atlases. The heatmaps only display the brain regions with

at least one cluster of important voxels. Overall, three brain areas located

around (a) the fourth ventricle, (b) the amygdala, and (c) the lateral sulci

contained clusters of voxels with high importance. Figures 5 and S7 also

show fewer ROIs containing clusters in older participants, as well as vary-

ing ROIs containing clusters of important voxels across the different age

ranges. For instance, the cerebellar vermis and white matter are indicated

in the saliency maps of young participants but not in those generated

from older participants. This shift in focus of the CNNmodel is also visible

in Figure 4 where the importance in these regions decreases with aging.

For the brain arteries, no cluster was overlapping with any of the defined

ROIs, and the few significant clusters were very small (see Figure S6).

However, the age-specific average saliency maps (Figure 4) show impor-

tant regions around the BA, MCA M2, and PCA, although the importance

in the TOF MRA age-specific average saliency maps was overall lower

than that in the T1-weighted age-specific average saliency maps.

Finally, the results of the two saliency map sanity checks that

were performed are presented along with the raw saliency maps

obtained using the proposed model in Figure S4 for randomly sampled

participants at different ages. The first sanity check resulted in noisy

maps with regions of high contrast being more important while the

second sanity check resulted in random brain regions being important,

thus suggesting that the saliency maps generated using the original

data are informative and trustworthy. When averaging the saliency

maps generated as part of the sanity checks per age range (Figure S5),

the averaged maps show no differences between the age ranges and

are very different from the averaged maps obtained with the pro-

posed model (Figure 4), again supporting the trustworthiness of the

age dependences observed with the proposed model.

4 | DISCUSSION

The primary aim of this work was to investigate the benefits of com-

bining the information from cortical, subcortical, and cerebrovascular

structures to solve the biological brain age prediction task by combin-

ing T1-weighted MRI and TOF MRA datasets. Therefore, the technical

and clinical contributions of this work include (a) The validation of the

state-of-the-art brain age prediction SFCN model (Peng et al., 2021)

in a multimodal setting, and with different imaging modalities (origi-

nally implemented using T1-weighted MRI datasets only), which trans-

lated to an improved accuracy when using T1-weighted MRI and TOF

MRA modalities together and (b) the use of saliency maps in a multi-

modal setting that eventually enable the identification of brain regions

and arteries that are most strongly associated with aging.

4.1 | Brain age prediction

In this study, the biological brain age prediction model shows signifi-

cantly improved results when combining T1-weighted MRI and TOF

MRA datasets. The T1-weighted MRI scans, containing macro-

structural brain tissue information, provide a better age prediction

than the TOF MRA scans, in which the brain tissue contrast is low,

but arteries are enhanced. Interestingly, despite the rather low ana-

tomical brain tissue contrast, the TOF MRA scans alone allow

predicting the brain age with a reasonable MAE of 4.9 years, which is

slightly better compared to results described in literature where a

MAE of 5.23 years was reported when using similar data (Nam

et al., 2020). This result shows that the used model architecture is

robust when applied for brain age prediction based on different imag-

ing modalities although it was originally developed for T1-weighted

MRI data (Peng et al., 2021). Moreover, it is important to note that

the TOF MRA image acquisition does not include the full brain, but

only the inferior part, where the major arteries are located (see

Figure 1c), while the superior part (above the lateral ventricles) is typi-

cally missing in the datasets due to the field of view of the acquisition.

Thus, the fact that the TOF MRA datasets include less information

than the T1-weighted MRI datasets might partly explain the differ-

ence in accuracy between the CNNT1 and CNNTOF models. When

combining both modalities, the resulting mean absolute error signifi-

cantly improves and is comparable to the results described in litera-

ture, with reported MAEs mostly varying between 3 to 5 years when

using T1-weighted MRI datasets (Bashyam et al., 2020; Cole

et al., 2017; Jonsson et al., 2019; Levakov et al., 2020; Mouches,

Wilms, Rajashekar, Langner, & Forkert, 2021; Peng et al., 2021; Wilms

et al., 2020), but often using considerably more training data, and par-

ticipants with a much narrower age range, which hinders a direct com-

parison of the results (de Lange et al., 2021). Moreover, Bashyam

et al. (2020) who previously trained a deep learning brain age predic-

tion model using more than 11,000 datasets and tested it on the SHIP

database reported a MAE of 4.12 years, showing that this database is

rather challenging for the brain age prediction task. Recent studies

attempted to explain the observed difference between the chronolog-

ical and predicted brain age by using clinical and life behavioral factors

differences between participants. For example, previous studies found

that the difference between the chronological and predicted brain age

is correlated with blood pressure, smoking status, and alcohol con-

sumption (Cole, 2020; de Lange et al., 2020). Although this kind of

analysis using TOF MRA data has not been described in the literature

yet, such correlations can be expected as brain artery measurements

extracted from TOF MRA data were previously shown to be associ-

ated with several of these factors (Mouches et al., 2021). However,

this hypothesis needs to be investigated in future work.

F IGURE 4 Age-specific average T1-weighted MRI and TOF MRA saliency maps overlaid onto the MNI T1-weighted brain template and the
cerebrovascular statistical atlas described in Mouches and Forkert (2019), respectively. T1-weighted MRI arrows: blue, lateral sulcus; red,
amygdala/entorhinal cortex/optic chiasm; yellow, fourth ventricle. TOF MRA arrows: orange, middle cerebral artery (MCA) M2 segment; pink, left
posterior cerebral artery (PCA); green, basilar artery (BA)
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The observed age prediction improvement when using multiple

modalities is also in line with previous results from multimodal brain

age prediction studies. For example, in Cole (2020), hand-crafted fea-

tures from six different modalities were used, whereas combining

them resulted in a substantially improved MAE (T1-weighted only:

4.14, all modalities: 3.52). Similarly, Rokicki et al. (2020) found that

combining hand-crafted features from T1- and T2-weighted MRI and

cerebral blood flow information from arterial spin labeling imaging led

to significantly improved brain age predictions. Finally, Jonsson

et al. (2019) used a single modality, T1-weighted MRI, but generated

four types of images from it and trained four 3D CNN models on each

of them. Combining the output of all the CNNs resulted in the best

accuracy, supporting the relevance of ensembling multiple CNN

results.

4.2 | Brain structures importance

The generated saliency maps indicate brain regions that are important

for the model for the brain age prediction task. These regions bring

complementary and nonredundant information from both imaging

sequences allowing the CNNCombined model to perform better than

F IGURE 5 Heatmap of the
number of clusters overlapping
with each brain region, as
described in the CerebrA atlas
(Manera et al., 2020), for each
age-specific T1-weighted MRI
average saliency map. Only brain
regions with at least one cluster
of important voxels are displayed
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the single modality models. Thus, the regions identified can be

assumed to be impacted by aging in a unique and informative way.

In the T1-weighted datasets, three brain areas were primarily

used by the model to make the prediction: the lateral sulcus (trans-

verse temporal and insula), the fourth ventricle, and the medial tempo-

ral lobe (amygdala and entorhinal cortex, expanding to the optic

chiasm). The lateral sulcus was previously identified as one of the

regions most affected by cerebrospinal fluid volume increase in

elderly (Lemaître et al., 2005). This finding is in line with the higher

importance of the voxels around this area observed in the age-specific

average saliency maps of older adults. This observed increased impor-

tance could also be associated with the accelerated reduction of corti-

cal thickness after the age of 60 years, which is widely reported in the

brain aging community (Potvin et al., 2017). The fourth ventricle previ-

ously showed low volume change with age (Fjell et al., 2009), but was

identified as a region of interest by the model. The saliency maps also

highlight surrounding structures, including the cerebellum, which has

been previously identified displaying an accelerated volume change

with age (Han, An, Carass, Prince, & Resnick, 2020). Interestingly, the

lateral sulcus and fourth ventricles were also identified as important in

Levakov et al. (2020) where a different brain age prediction model

architecture and a population with a wider age range (4–94 years old)

were used. Finally, the area around the amygdala was also identified

as important, whereas this structure was previously found to have a

decreasing volume with aging (Potvin et al., 2016).

For the TOF MRA datasets as an input, the important regions

identified in the average age-specific saliency maps are sparser, possi-

bly due to the intersubject variability in vessel morphology, and only

very small clusters were identified as significant. This finding is to be

expected given the highly variable vascular system consisting of small

arteries, rather than large brain regions, that can differ quite a bit even

between healthy subjects (Mouches & Forkert, 2019). Overall, the cis-

terns, spaces filled with cerebrospinal fluid, seem to be the most

important regions for the model, with the arteries located within the

cisterns (the MCA M2 perforating the lateral sulcus and the PCA in

the ambient and quadrigeminal cistern) showing the highest impor-

tance among the arteries in the age-specific average saliency maps.

Additionally, the region around the BA also shows some importance,

although none of the significant clusters were found in these areas.

Indeed, these arteries were previously reported to be affected by

aging, with age having a significant effect on their diameter and on

the vessel number in their associated flow territories (Bullitt

et al., 2010; Mouches, Langner, et al., 2021). In Mouches, Langner,

et al. (2021), the SHIP database was also used to extract artery-

related measurements from TOF MRA datasets. The reported associa-

tions between these measurements and age are generally in line with

the findings of this study. For example, the arteries in the PCA blood

flow territory were found to be negatively impacted by age whereas

the saliency maps generated in this work also identified predictive

areas in this region for brain age prediction. Additionally, the thickness

of the BA and the MCA M2 segments was found to decrease with age

in Mouches, Langner, et al. (2021), whereas these arteries were also

highlighted as important regions in the saliency maps generated in this

work. Based on the age-specific average saliency maps, it appears that

the model uses more information from the MCA M2 segment to pre-

dict the age of older participants. This finding could be indicative of

greater changes in these arteries in older participants, and in the cis-

terns in which the arteries lie, as this finding was also observed in the

lateral sulcus region in T1-weighted MRI saliency maps.

Moreover, it is important to note that many previously published

brain aging studies used brain measurements that were derived using

advanced image processing methods, such as regional volume or

thickness measurements, to identify the regional morphological

changes associated with aging. In contrast, CNN models can extract

novel, optimal features by combining texture and shape information

and, thus, may reveal regions of interest not identified in previous

works. Moreover, in CNNs, voxel-wise importance can be directly

assessed by retrieving the spatial localization of the important fea-

tures in the input space, as opposed to methods using hand-crafted

features in which the importance is assessed in the feature space.

Therefore, future work is needed to investigate the similarities and

differences in brain regions identified as important when predicting

brain age using features extracted by a CNN versus hand-crafted

features.

4.3 | Limitations

The results of this study show that the proposed approach is general-

izable, could easily be extended to more imaging modalities, and

requires minimal preprocessing steps. The results also show that the

presented approach leads to robust and clinically plausible results

when applied to modalities other than T1-weighted MRI, for which it

was originally developed (Peng et al., 2021). However, some limita-

tions remain. First, while using a single database increases the consis-

tency of the results and reduces biases, leading to more robust

explanations, it also results in a model that is less robust to varying

scanning parameters, and limits the amount of data available. There-

fore, the model prediction accuracy would benefit from training using

a larger sample size, as previously demonstrated in the context of

brain age prediction (de Lange et al., 2021), and data collected from

different centers, especially when using deep learning models, which

are known to be data hungry (Marcus, 2018). Nevertheless, based on

the excellent results of the SFCN architecture on the highly diverse

PAC2019 brain age prediction data reported in Peng et al. (2021), we

assume that the general findings of this study will hold true even for

multicenter datasets, especially when proper harmonization strategies

are implemented to remove possible confounding biases. However,

this assumption should be experimentally confirmed in future work.

Second, although the image preprocessing steps are minimal com-

pared to, for instance, the steps necessary to extract conventional

morphological or artery features, the effect of each preprocessing

step on the prediction accuracy was not assessed. While the

preprocessing steps used in this work follow common practice, their

effect on the brain age prediction accuracy should be investigated in

future work. Third, a simple linear regression model was used to
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combine both single modalities model outputs. However, more com-

plex nonlinear fusion methods could be used, but might require more

data to be trained. Finally, the saliency maps provide some insight of

brain regions affected by aging. However, areas providing redundant

information might have been ignored by the model. Therefore, the

regions identified as important constitute a subset of regions allowing

to accurately predict the biological brain age, but regions not

highlighted on the saliency maps cannot be inferred as nonimportant

or not associated with age. These maps also do not provide informa-

tion about the directionality of the relationship between the brain

regions and the age, which could be improved in future work by using

different explainability methods such as layer-wise relevance propaga-

tion (Bach et al., 2015) or Shapley additive explanations (Lundberg &

Lee, 2017).

5 | CONCLUSION

This study provides a technical contribution by applying and validating

an existing state-of-the-art model architecture originally developed

for the analysis of a single modality image in a multimodal setting, as

well as using saliency maps in the same context. From a medical and

neuroscience perspective, the proposed framework allows identifying

brain regions and arteries contributing the most to the model predic-

tion. The results show that combining brain tissue and artery informa-

tion significantly improves the brain age prediction, whereas the

lateral sulcus, fourth ventricle, and medial temporal lobe brain regions

were identified as especially important morphological features. The

artery-related information showed an overall lower contribution but

still improved the brain age prediction. Overall, it is important to high-

light that the proposed approach can be easily extended to other

imaging modalities to improve our understanding of their relative con-

tribution to biological brain age prediction.
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