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Background. The aim of this study was at investigating the association between major depressive disorder (MDD) and
periodontitis based on crosstalk genes and neuropeptides. Methods. Datasets for periodontitis (GSE10334, GSE16134, and
GSE23586) and MDD (GSE38206 and GSE39653) were downloaded from GEO. Following batch correction, a differential
expression analysis was applied (MDD: ∣log 2FC ∣ >0 and periodontitis ∣log 2FC ∣ ≥0:5, p < 0:05). The neuropeptide data were
downloaded from NeuroPep and NeuroPedia. Intersected genes were potential crosstalk genes. The correlation between
neuropeptides and crosstalk genes in MDD and periodontitis was analyzed with Pearson correlation coefficient. Subsequently,
regression analysis was performed to calculate the differentially regulated link. Cytoscape was used to map the pathways of
crosstalk genes and neuropeptides and to construct the protein-protein interaction network. Lasso regression was applied to
screen neuropeptides, whereby boxplots were created, and receiver operating curve (ROC) analysis was conducted. Results. The
MDD dataset contained 30 case and 33 control samples, and the periodontitis dataset contained 430 case and 139 control
samples. 35 crosstalk genes were obtained. A total of 102 neuropeptides were extracted from the database, which were not
differentially expressed in MDD and periodontitis and had no intersection with crosstalk genes. Through lasso regression, 9
neuropeptides in MDD and 43 neuropeptides in periodontitis were obtained. Four intersected neuropeptide genes were
obtained, i.e., ADM, IGF2, PDYN, and RETN. The results of ROC analysis showed that IGF2 was highly predictive in MDD
and periodontitis. ADM was better than the other three genes in predicting MDD disease. A total of 13 crosstalk genes were
differentially coexpressed with four neuropeptides, whereby FOSB was highly expressed in MDD and periodontitis. Conclusion.
The neuropeptide genes ADM, IGF2, PDYN, and RETN were intersected between periodontitis and MDD, and FOSB was a
crosstalk gene related to these neuropeptides on the transcriptomic level. These results are a basis for future research in the
field, needing further validation.

1. Background

Major depressive disorder (MDD) is a prevalent disease
worldwide, showing a prevalence around 5% and an inci-
dence of approximately 3%, with differences between coun-
tries [1]. Thereby, MDD is the most prevalent mental
disorder in the world [2]. MDD is a disabling condition,

worsening quality of life, limiting patients in their everyday
activities, and resulting in a remarkable morbidity of
patients [2]. Additionally, MDD is often related with comor-
bidities, worsening the general outcome of respective
patients [2]. It has been indicated that MDD is potentially
related to changes in numerous biological pathways and sys-
tems, including the gastrointestinal tract, immune system,
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hormones, and oxidative stress [3, 4]. In this context, an
increased understanding of the etiopathogenesis of MDD
and related cofactors is of high clinical interest to reveal
potential therapeutic strategies in the future [3]; however,
it is difficult to reveal any causalities between other diseases,
biomarkers, and MDD in the clinical context [5].

One potentially associated disease is periodontitis, which
is an inflammatory, multifactorial infectious disease of the
tooth-surrounding tissues [6, 7]. Generally, severe periodon-
titis affects about 11% of the world population, making it a
highly prevalent chronic disease [8]. Different systematic
reviews and meta-analyses are available, which indicated
an association between periodontitis and MDD, although
results are quite heterogeneous regarding the magnitude of
correlation [6, 9, 10]. A Brazilian birth cohort study revealed
a risk ratio of patients with MDD to suffer from periodonti-
tis of 1.19 [11]. Another observational study including 60000
individuals over a 10-year follow-up showed a higher inci-
dence of MDD in periodontally diseased individuals, sup-
ported by a hazard ratio of 1.73 [12]. Thereby, it is of
interest, whether there is a primary association between peri-
odontitis and MDD based on psychosocial mechanisms or
even a causal link [13]. The potential role of neuroinflamma-
tion induced by chronic inflammatory periodontal diseases,
especially due to the expression of proinflammatory cyto-
kines, has been discussed as potential causal link [13, 14].
Thereby, a role of periodontal pathogenic bacteria has been
presumed, which is supported by the induction of neuroin-
flammation by Fusobacterium nucleatum [15].

Although these approaches are interesting and appear
plausible, there is more research needed to support the
causal interlink between periodontitis and MDD [13]. One
potential approach could be the application of bioinformat-
ics to reveal a potential interlink on the transcriptomic level;
this has been established for other potential interlinks, e.g.,
between periodontitis and Alzheimer’s disease [16]. Thereby,
the potential integration of crosstalk genes, alongside with
neuropeptides could be a promising approach to gain insight
into the interrelationship between MDD and periodontitis.
Thereby, neuropeptides could be of particular interest,
because they are involved in a magnitude of processes and
were not examined in the context of MDD and periodontitis,
yet. Accordingly, this current study is aimed at investigating
the association between MDD and periodontitis based on
crosstalk genes and their potential link to neuropeptides in
these two diseases.

2. Materials and Methods

2.1. Data Download. The expression data of periodontitis
and MDD was downloaded from GEO (https://www.ncbi
.nlm.nih.gov/geo/). For periodontal disease (PD), gingival
tissue samples were used, whereby datasets GSE10334,
GSE16134, and GSE23586 were obtained. Whole-blood
peripheral blood mononuclear cell (PBMC) samples were
used for MDD, where two datasets, i.e., GSE38206 and
GSE39653, are obtained. For the dataset GSE38206, the
experimental group id MDE-P-0W and the control group
id C-0W were included. Data from the experimental group

and control group at 8 weeks of follow-up were not used.
For GSE39653, MDD and healthy control (HC) samples
were included. The datasets of MDD and PD are shown in
Table 1.

2.2. Data Preprocessing and Differential Expression Analysis.
Firstly, a probe ID was converted into Gene Symbol accord-
ing to their platform information. For the data of multiple
probes corresponding to the same gene, the mean value of
the sample was used as its expression value.

Then, all samples from each disease were combined for
PD and MDD expression profiles. To reduce the differences
of included samples, a batch correction using the ComBat
method in the “sva” package of R project was applied.

The “limma” of R language was used for differential
expression analysis of the corrected MDD and PD datasets.
For MDD, the genes with a p value < 0.05 and ∣log 2FC ∣ >
0 were differentially expressed genes (DEGs). Thereby,
upregulation was evaluated if log 2FC > 0, while log 2FC <
0 was the cutoff for downregulated genes. The genes with a
p value < 0.05 and ∣log 2FC ∣ ≥0:5 in PD were considered
as differentially expressed genes. The log 2FC ≥ 0:5 were
the upregulated genes and log 2FC ≤ −0:5 were the down-
regulated genes.

2.3. Neuropeptide Download. The neuropeptide data were
downloaded from the database NeuroPep (http://www
.neuropeptides.nl/) and NeuroPedia (http://proteomics.ucsd
.edu/Software/NeuroPedia.html). After merging the two
databases, a total of 102 neuropeptide genes were obtained.

2.4. Crosstalk Gene Screening. The intersection of differen-
tially expressed genes obtained from MDD and PD was
taken, while the intersection genes were the potential cross-
talk genes. To analyze the function of these crosstalk genes,
clusterProfiler in R language was used for GO Biological
Process and KEGG Pathway enrichment analysis and func-
tions with p value < 0.05 were significant.

2.5. Differential Coexpression Regulation Links of Crosstalk
Genes and Neuropeptides. First, it was analyzed whether
there were crosstalk genes within the neuropeptides. This
step revealed that none of the genes was both crosstalk gene
and neuropeptide. Then, the correlation between neuropep-
tides and crosstalk genes in MDD and PD was analyzed.
Therefore, Pearson correlation coefficient was calculated to
assess the direct correlation between neuropeptides and
crosstalk genes. The crosstalk gene-neuropeptide pair with
the correlation coefficient (CC) absolute value greater than
0.5 (∣CC ∣ >0:5) was considered as significant relationship

Table 1: Datasets for analysis.

Disease Series Platforms Case Control Total

MDD
GSE38206 GPL13607 9 9 18

GSE39653 GPL10558 21 24 45

PD

GSE10334 GPL570 183 64 247

GSE16134 GPL570 241 69 310

GSE23586 GPL570 3 3 6

2 Disease Markers

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.neuropeptides.nl/
http://www.neuropeptides.nl/
http://proteomics.ucsd.edu/Software/NeuroPedia.html
http://proteomics.ucsd.edu/Software/NeuroPedia.html


pairs. In order to further analyze the regulatory effect of sig-
nificant relationships between crosstalk genes and neuro-
peptides, the expression values of significant relationships
between genes in diseased and healthy groups of MDD and
PD were examined, respectively. Subsequently, regression
analysis was performed to calculate the differentially regu-
lated link (DRL).

In the data of regression analysis, the regulatory effect of
crosstalk genes with neuropeptides was assessed, whereby
the expression of crosstalk genes acted as x and expression
of neuropeptides as y in the formula y ∼ βx + β0.

By calculating this formula, it is possible to obtain the
regression coefficients of the crosstalk gene-neuropeptide

relationship (crossi − neurop j) in the diseased group and
healthy control group of MDD and PD, respectively. Then,
the sum of the standard deviations of the relationships in
the case group and healthy control group was calculated
for both MDD and PD, respectively. The correlation coeffi-
cients in all samples of MDD and PD were calculated.
Finally, the regulation coefficients of the relationship in dif-
ferential coexpression genes were calculated according to the
formula shown below.

DRLi,j =
βcase − βcontrol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sd2case + sd2control + CC i, jð Þall
q

: ð1Þ
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Figure 1: (a, b) PCA analysis results of MDD batches before and after rectification; (c, d) PCA analysis results of PD batch before and
after correction.
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A positive DRL indicates a consistent regulation of the
crosstalk-neuropeptide relationship in case and control sam-
ples, while both are either inhibiting or promoting. If the
value is negative, the relationship is opposite in case and
control regulation modes.

2.6. Functional Analysis of Crosstalk Genes and
Neuropeptides. The human pathway-gene pairs were down-
loaded from KEGG (https://www.kegg.jp/), and the path-
ways corresponding to crosstalk genes and neuropeptides
were extracted. It has been further evaluated whether the
pathway contains both crosstalk genes and neuropeptides,
followed by an analysis of the pathways regulated by cross-
talk genes and neuropeptides. These coacting pathways
may be the key pathways for the interaction of the two genes.
Cytoscape was used to map the pathways of crosstalk genes
and neuropeptides.

2.7. Analysis of Crosstalk Genes and Neuropeptides in the
Protein Interaction Network. For experimental verification
of protein-protein interactions (PPI), data were downloaded
for MINT (http://mint.bio.uniroma2.it/mint/Welcome.do),
HPRD (http://www.hprd.org/index_html), BIOGRID
(http://thebiogrid.org/), DIP (http://dip.doe-mbi.ucla.edu/
dip/Main.cgi), menthe (http://mentha.uniroma2.it/index
.php), PINA (http://cbg.garvan.unsw.edu.au/pina/), Inna-

teDB (http://www.innatedb.com/), and Instruct (http://
instruct.yulab.org/index.html). PPI pairs of crosstalk genes
and neuropeptides were then extracted. In order to further
analyze the relationship between crosstalk genes and neuro-
peptides in the system biological network, one-step PPI was
extended according to the relationship pairs. An indirect
pair (cross-other-neuropeptide) that regulated both cross-
talk genes and neuropeptides was extracted. Then Cytoscape
software was used to construct the PPI network. The
relationship links were displayed in the network and the
topology properties were analyzed.

2.8. Neuropeptide Screening. The expression values of all
neuropeptides in MDD and PD were extracted and the Lasso
regression analysis was applied to screen neuropeptides. The
expression values of specific neuropeptides in PD and MDD
were extracted, boxplots were created, and receiver operating
curve (ROC) analysis was conducted. In addition, the
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Figure 2: Volcano maps of differentially expressed genes in (a) MDD and (b) PD.

Table 2: Statistics of differentially expressed genes.

Disease Up Down Total

MDD 674 237 911

PD 664 461 1125
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differential regulatory weights of these specific neuropep-
tides and their highly correlated crosstalk genes were
extracted in MDD and PD. Finally, the interaction pathways
for these specific neuropeptides and the corresponding
highly correlated crosstalk genes were evaluated, the neuro-
peptides were associated with the crosstalk genes and the
pathways, and the functions influenced by neuropeptides
and crosstalk genes were analyzed.

3. Results

3.1. Data Preprocessing. After data combination and batch
correction, a dataset of MDD and PD was created, wherein
MDD contains 30 case and 33 control samples, while PD
contains 430 case and 139 control samples. At the same
time, PCA analysis results of data before and after correction
(Figure 1) for the two diseases were reviewed.

3.2. Differential Expression Analysis. According to the analy-
sis results, the differentially expressed genes were screened
and the volcano diagram was used to show the cutoff screen-
ing of differentially expressed genes (Figures 2(a) and 2(b)).
The number of differential expressed genes obtained is
shown in Table 2.

3.3. Crosstalk Gene Screening. The intersection of differen-
tially expressed genes obtained from MDD and PD were
the respective crosstalk genes (Figure 3(a)). A total of 35
crosstalk genes were obtained (Figure 3(b)). clusterProfiler
package of R language was used for functional enrichment
analysis of these 35 crosstalk genes (significance level p value
< 0.05). Figure 3(c) shows the biological processes in which
the 35 crosstalk genes were mainly involved (Figure 3(c)).
The 35 crosstalk genes mainly regulated the IL-17 signaling
pathway, NF-Kappa B signaling pathway, and TNF signaling
pathway (Figure 3(d)).

3.4. The Links between Crosstalk Genes and Neuropeptides. A
total of 102 neuropeptides were extracted from the database,
and the expression values of these genes in MDD and
PD were further extracted to construct the heat map
(Figure 4). The results showed that neuropeptides were not
differentially expressed in MDD and PD. Moreover, crosstalk
genes and neuropeptides had no intersection, indicating that
no gene was revealed to be both crosstalk gene and
neuropeptide.

In order to further analyze the role of crosstalk genes and
neuropeptides in the entire biological network, the relation-
ship pairs of the direct interaction between crosstalk genes
and neuropeptides were extracted according to the known
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Figure 3: Regulation function of crosstalk genes. (a) Venn maps of differentially expressed genes obtained from MDD and PD. (b) Heat
maps of 35 crosstalk genes in MDD and PD. (c) Top 20 biological processes of significant enrichment of crosstalk genes. (d) All
significant KEGG pathways were regulated by significant crosstalk genes.
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PPI relationship pairs. As a result, no direct interaction pairs
were obtained. According to the interaction proteins of
crosstalk genes, a step extension and subsequent screening
of the extended proteins as genes of neuropeptides obtained
a total of 164 relationship pairs. Then Cytoscape software
was used to construct the PPI network (Figure 5).

Topological properties of the top 20 genes were screened
out according to the degree in descending order. The results
are shown in Table 3.

From the PPI network, neuropeptide genes NUCB2,
DBI, and UBL5 could interact with more genes, thus indi-
rectly interacting with crosstalk genes.

3.5. Differential Coexpression Regulation Links between
Crosstalk Genes and Neuropeptides. To identify the function
of neuropeptides in MDD and PD, the correlation between
crosstalk genes and neuropeptides in MDD and PD was
assessed firstly. Figure 6 shows the correlation between
crosstalk genes and neuropeptides in the case group of
MDD and PD (Figure 6).

The significant correlation pairs in the case and control
groups of MDD and PD were selected, and the regulatory
relationships of differential coexpression were analyzed.
Finally, a total of 181 significant relationship pairs were
obtained. The pathways jointly regulated by crosstalk genes
and neuropeptides in a significant pair were obtained, and
the crosstalk gene-pathway-neuropeptide network was con-

structed using Cytoscape software (Figure 6(c)). The cross-
talk gene-pathway-neuropeptide network showed that the
crosstalk genes between MDD and PD could act with neuro-
peptides indirectly.

3.6. Screening and Analysis of Neuropeptides. The expression
profiles of 102 neuropeptides in MDD and PD were
obtained and the specific neuropeptides were screened by
lasso regression (Figure 7).

Through lasso regression, 9 neuropeptides in MDD and
43 neuropeptides in PD were obtained. Four intersected
genes were obtained, i.e., ADM, IGF2, PDYN, and RETN.
The expression values of these four genes in MDD and PD
were extracted, and ROC analysis of single genes was per-
formed (Figures 7(e) and 7(f)) to check the accuracy of the
expression values of these genes at the expression level.
The results showed that IGF2 was highly predictive in
MDD and PD. ADM was better than the other three genes
in predicting MDD disease.

According to the differential coexpression regulatory
relationship, the DRL of highly correlated coexpression
relationships between crosstalk genes and neuropeptides
was obtained (Figure 8(a)). Then, the crosstalk genes were
analyzed together with these four neuropeptide genes
(Figure 8(b)). A total of 13 crosstalk genes were differentially
coexpressed with four neuropeptides. The expression pro-
files of these 13 genes in MDD and PD were extracted, and
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Figure 4: Heat maps of neuropeptide expression in (a) MDD and (b) PD.
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the expressions of these crosstalk genes in MDD and PD
were analyzed (Figures 8(c) and 8(d)), showing that FOSB
was highly expressed in MDD and PD.

In addition, pathways related to ADM, IGF2, PDYN,
and RETN were extracted and pathways shared by neuro-

peptides and crosstalk genes were analyzed based on path-
way genes (Figure 9).

Figure 8(b) shows that ADM and RETN are differentially
coexpressed with multiple crosstalk genes. In the functional
analysis, ADM was mainly involved in neuroactive ligand-

Table 3: Topological properties of top 20 genes.

Name Label Degree Average shortest path length Betweenness centrality Closeness centrality Topological coefficient

UBC 418 2.339286 0.553074 0.427481 0.056261

APP 64 3.125 0.160397 0.32 0.114833

ELAVL1 64 2.946429 0.157445 0.339394 0.119835

NUCB2 Neuropeptide 50 3.169643 0.032524 0.315493 0.233333

DBI Neuropeptide 48 3.241071 0.017919 0.30854 0.291667

UBL5 Neuropeptide 42 3.098214 0.018099 0.322767 0.344828

TAC3 Neuropeptide 42 3.276786 0.020327 0.305177 0.356322

CHGA Neuropeptide 42 3.276786 0.013341 0.305177 0.516667

SCT Neuropeptide 38 3.330357 0 0.300268 0

SCG2 Neuropeptide 38 3.330357 0 0.300268 0

PENK Neuropeptide 38 3.330357 0 0.300268 0

CCK Neuropeptide 38 3.330357 0 0.300268 0

ADIPOQ Neuropeptide 38 3.330357 0 0.300268 0

GAL Neuropeptide 22 3.723214 0.011257 0.268585 0.388889

PTGS2 Crosstalk 18 2.758929 0.16726 0.36246 0.133333

PTHLH Neuropeptide 18 3.848214 0.005528 0.259861 0.5

CHGB Neuropeptide 18 3.401786 0.060159 0.293963 0.166667

PDK1 Crosstalk 16 2.830357 0.115809 0.353312 0.146429

IL1B Crosstalk 16 3.0625 0.190297 0.326531 0.132813

MYC 16 3.160714 0.0628 0.316384 0.231579
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Figure 7: Lasso regression, modeling results, and CV search for the best lambda value. (a) Modeling results of neuropeptides in MDD
Lasso regression analysis. The abscissa is log (lambda), and the ordinate corresponds to the correlation coefficient of the modeling
process. (b) Neuropeptide screening the relationship between lambda value and mean square error in MDD Lasso regression analysis. The
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regression analysis. (e) ROC results of ADM, IGF2, PDYN, and RETN in MDD; (f) ROC results of ADM, IGF2, PDYN, and RETN in PD.
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receptor interaction and vascular smooth muscle contrac-
tion. ADM indirectly interacts with FOSB through the neu-
roactive ligand-receptor interaction pathway, thus affecting
the abnormalities of biological processes. ADM and FOSB
were differentially coexpressed at the gene expression level
and had opposite regulation patterns on MDD and PD in
general. In addition, FOSB also regulates the IL-17 signaling
pathway. IGF2 regulated the MAPK signaling pathway,
PI3K-Akt signaling pathway, and Ras signaling pathway. In
the differential coexpression analysis, it was found that IGF2
and ASS1 were highly coexpressed and the regulatory trends
were inconsistent between MDD-diseased and healthy con-
trol groups as well as PD-diseased and healthy control
groups. From the function diagram, it can be seen that

ADM, IGF2, PDYN, and RETN can indirectly affect the
potential biological function between MDD and PD disease
through the function of multiple crosstalk genes.

4. Discussion

The neuropeptide genes ADM, IGF2, PDYN, and RETN
were found to be intersected between PD and MDD. FOSB
was significantly coexpressed with these neuropeptides. Rele-
vant pathways for these genes were the IL-17 signaling path-
way, MAPK signaling pathway, Pi3K-Akt signaling pathway,
Ras signaling pathway, Neuroactive Ligand-receptor interac-
tion, and vascular smooth muscle contraction.
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Figure 8: Analysis of crosstalk genes differentially coexpressed with specific neuropeptides. (a) Heat map of highly correlated differential
coexpression regulation of crosstalk genes and neuropeptides. (b) Pairs of differential coexpression strength of crosstalk genes
differentially coexpressed with specific neuropeptides. The thicker the line, the greater the intensity of regulation; the value on the line
represents the specific intensity of regulation; the positive value indicates that the relationship has a consistent trend of regulation in
diseases and normal tissues; the negative value indicates inconsistent trend of regulation. (c) Expression of crosstalk genes, which were
differentially coexpressed with specific neuropeptides in MDD. In the figure, the relationship between p and ∗ is as follows: ns
indicates p > 0:05, ∗ represents p ≤ 0:05, ∗∗ represents p ≤ 0:01, ∗∗∗ represents p ≤ 0:001, ∗∗∗∗ means p ≤ 0:0001. (d) Expression of
crosstalk genes, which were differentially coexpressed with specific neuropeptides in PD.
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This is the first bioinformatics study, investigating the
crosstalk genes and related neuropeptides between PD and
MDD. A relationship between PD and MDD has been
extensively discussed in literature, whereby a relationship
between these two diseases appear probable [6, 9–12]. The
causal link between those two diseases was supposed to be
within PD-induced systemic inflammation, leading to a neu-
roinflammation due to the expression of proinflammatory
cytokines [13, 14]. This current study revealed several neu-
ropeptide genes on the transcriptomic level, which will be
discussed in the following.

Adrenomedullin (ADM) is a peptide hormone with
important roles in the regulation of the cardiovascular and
lymphatic systems [17]. ADM was revealed to be a potential
biomarker and candidate for therapeutic interventions [17].
A study investigating tissue punches from dentate gyrus
revealed ADM as an inhibitor of angiogenesis to be related
to neuroinflammation in patients with MDD [18]. Another
study revealed that increased levels of ADM and NO in
serum of patients would be associated to MDD and related
psychomotor retardation [19]. The ADM-NO axis was
also elevated due to periodontal pathogenic bacteria, espe-
cially Aggregatibacter actinomycetemcomitans [20]. Simi-
larly, another study found the ADM-NO-axis to be a
functional linkage to PD severity [21]. A lack of sensitivity
to ADM could also be related to the bacterial invasion of
Porphyromonas gingivalis, another periodontal pathogenic
bacterium [22]. Furthermore, ADM was found to affect the
therapeutic efficiency of the antidepressant paroxetine [23].

Altogether, ADM and the ADM-NO-axis support the role
of neuroinflammation as well as the potential relevance of
oral pathogens in the relationship between PD and MDD.

Insulin-like growth factor 2 (IGF2) is a hormone regulat-
ing cell proliferation, migration, differentiation, and survival
[24]. IGF2 was found to mediate depressive behaviors in the
brain of rats [25]. Variable methylation of IGF2 was found
to be related to the clinical manifestation of MDD in mono-
zygotic twins [26]. Additionally, IGF2 binds on insulin
receptor in the brain, whereby dysregulation of IGF2 leads
to neuropathological processes [27]. Alongside with IGF1,
IGF2 was found to be associated to neuroinflammatory pro-
cesses [28]. In this respect, insulin-like growth factor 2
mRNA-binding protein 1 was found to promote the NF-κB
signaling way, what is induced by lipopolysaccharides, which
are important virulence factors of periodontal pathogenic
bacteria [29]. This supports the hypothesis of the role of
PD in inducing neuroinflammation related to MDD.

Prodynorphin (PDYN) is an endogenous agonist of the
k-opioid receptors, having modulatory effects related to
addiction; the expression of this peptide is altered in the
brain of patients with mental disorders [30, 31]. It has been
shown that an impairment of PDYN in the amygdala is asso-
ciated with MDD [32]. Until now, there is no study report-
ing the potential relevance of PYDN in PD, making a
discussion of this issue difficult.

Resistin (RETN) is a peptide that is secreted by adipo-
cytes, playing roles in metabolism [33]. As an adipokine,
RETN is well known to play an important role in
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development of MDD, while a recent meta-analysis showed
that the serum level of resistin was lower in individuals with
MDD compared to healthy participants [34]. In patients
with MDD, RETN was found to be associated to free cortisol
concentrations and therapy outcome [35]. Thereby, a link
between obesity and MDD was reported [36]. Moreover,
RETN is involved in the interrelationship between MDD
and diabetes, whereby neuroinflammation was reported to
be of certain relevance [37]. This is a potential and interest-
ing connecting point of MDD and PD; RETN was found to
be elevated in gingival crevicular fluid and serum of patients
with PD, although this was not related to systemic inflam-
matory diseases [38]. Another review article showed RETN
to be a potential biomarker in the interrelationship between
PD and diabetes [39]. In this axis, a causal relation between
MDD and PD can be supported.

Lastly, FOSB was significantly coexpressed with these neu-
ropeptides. FOSB is a member of the Fos family of transcrip-
tion factors and thereby a regulator of stress and
antidepressant response [40]. The induction of FOSB in the
hippocampus was reported to be critical in addiction and
MDD [41]. A network analysis showed that FOSB was one
hub gene for depressed suicide [42]. For PD, an analysis based
one gene expression data found FOSB to be an inflammation-
related gene that might be involved in the development and
progression of PD [43]. Accordingly, an influence of this gene
on the relation between PD and MDD appears conceivable.
Altogether, the hypothesis of neuroinflammation as well as
the effect of cofactors like diabetes and obesity in the interplay
between PD andMDD can be supported by the bioinformatics
data within the current study. Accordingly, interdisciplinary
therapeutic and preventive approaches would be needed to
comprehensively manage the complex problem of patients
suffering from those diseases.

This is the first bioinformatics study investigating the
crosstalk and related neuropeptides between PD and MDD.
The methodology was comprehensive and revealed a variety
of results. However, the bioinformatics approach has several
limitations, especially the missing validation of the findings.
This must be recognized in the interpretation of the findings.
Moreover, there are no data available regarding the included
patients. Different patients with MDD and PD were included
in this analysis, and thereby, the cohort could be very hetero-
geneous. Based on these limitations, clinical studies, which
evaluate the findings on patients suffering from MDD and
PD, are needed. As long as these findings are not available,
the results and respective conclusions of this bioinformatics
study remain speculative. Thereby, it must be recognized that
all findings in the current study were only revealed on the
transcriptomic level.

5. Conclusion

The neuropeptide genes ADM, IGF2, PDYN, and RETN
were found to be intersected between PD and MDD, and
FOSB was a crosstalk gene, which was related to these neu-
ropeptides on the transcriptomic level. These findings could
be a basis for future research in the field, needing further
validation.
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