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Objectives: The objective of this study was to investigate common functional near-
infrared spectroscopy (fNIRS) features of mental fatigue induced by different tasks. In
addition to distinguishing fatigue from non-fatigue state, the early signs of fatigue were
also studied so as to give an early warning of fatigue.

Methods: fNIRS data from 36 participants were used to investigate the common
character of functional connectivity network corresponding to mental fatigue, which was
induced by psychomotor vigilance test (PVT), cognitive work, or simulated driving. To
analyze the network reorganizations quantitatively, clustering coefficient, characteristic
path length, and small worldness were calculated in five sub-bands (0.6–2.0, 0.145–
0.600, 0.052–0.145, 0.021–0.052, and 0.005–0.021 Hz). Moreover, we applied a
random forest method to classify three fatigue states.

Results: In a moderate fatigue state: the functional connectivity strength between
brain regions increased overall in 0.021–0.052 Hz, and an asymmetrical pattern of
connectivity (right hemisphere > left hemisphere) was presented. In 0.052–0.145 Hz,
the connectivity strength decreased overall, the clustering coefficient decreased,
and the characteristic path length increased significantly. In severe fatigue state: in
0.021–0.052 Hz, the brain network began to deviate from a small-world pattern.
The classification accuracy of fatigue and non-fatigue was 85.4%. The classification
accuracy of moderate fatigue and severe fatigue was 82.8%.

Conclusion: The preliminary research demonstrates the feasibility of detecting mental
fatigue induced by different tasks, by applying the functional network features of
cerebral hemoglobin signal. This universal and robust method has the potential to
detect early signs of mental fatigue and prevent relative human error in various
working environments.

Keywords: mental fatigue detection, functional near-infrared spectroscopy, functional network characteristics,
functional connectivity, common signs of fatigue tasks
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INTRODUCTION

Long-term cognitive tasks and attention tasks may lead to mental
fatigue, which is usually manifested by decreased attention,
slower reaction times, and increased aversion to tasks (Boksem
et al., 2006). Mental fatigue and its related decline in brain
physiological function represent an important social problem,
leading to reduced productivity (Tanabe and Nishihara, 2004),
impaired motor and cognitive task execution (Sharma et al.,
2019), reduced risk alertness (Saxby et al., 2013), and an increased
incidence of accidents (Nilsson et al., 1997). To cope with these
adverse but preventable consequences caused by mental fatigue,
a reasonable and accurate assessment of mental fatigue degree
is required. Precise assessment of fatigue degree would allow
developing better strategies to arrange the work intensity and
reduce potential errors or work accidents.

It is noteworthy that the signs of mental fatigue will also be
different under different task situations (Ream and Richardson,
1996). Due to the complexity of the human environment, a
large number of internal or external causes can lead to mental
fatigue. At the same time, mental fatigue and sleepiness are
often difficult to distinguish. Although involving very different
concepts, they are both related in the impairment of attention,
vigilance and cognitive performance (Neu et al., 2011), high
degree of internal consistency among different dimensions of
subjective fatigue (Matthews and Desmond, 1998), and evolution
that is parallel. This paper does not want to clearly distinguish
the differences between mental fatigue and sleepiness, but to
explore the universal character of mental fatigue in the realistic
complex environment and improve the reliability of mental
fatigue indication methods.

Mental fatigue is a complex process involving the changes
in multiple brain regions related to tasks, including local and
global scale changes (Sun et al., 2017). Therefore, functional
connectivity analysis is one of the ideal methods used to research
on the mechanism of mental fatigue. A lot of prior neuroimaging
studies using EEG, fMRI, or fNIRS have shown that mental
fatigue is related to the deviation and reorganization of functional
connectivity (Esposito et al., 2014; Qi et al., 2019; Zhang et al.,
2020). In addition, graph theoretical analysis methods have been
widely used in quantitative research on connectivity network
structure. Sun et al. (2014a) found that in a 20-min continuous
attention task, the characteristic path length of the brain network
was related to the decline in task performance, and the small
worldness decreased during the task. Chua et al. (2017) induced
mental fatigue through a simulated driving task and found that
in a 1-h task, the clustering coefficient of the brain functional
network increased, and the characteristic path length decreased.
In short, local clustering and inter-regional connectivity will
change according to mental fatigue. These characteristics may
reflect cognitive performance during fatigue.

These studies have well summarized the mechanism of
functional connectivity reorganization and evolution according
to mental fatigue state and effectively identify fatigue state.
However, these changes can distinguish fatigue from non-fatigue
state, which is not enough to give an early warning before
excessive fatigue. At the same time, most studies research mental

fatigue under single induced task. Considering the complexity of
realistic environment, it is not applicable in guiding a universal
and robust mental fatigue detection method. Therefore, it is
necessary to find the common change rules of brain activity
concerning the development of mental fatigue in complex work
environments and use them to provide scientific methods and
theoretical support for fatigue monitoring and prevention.

The main purpose of this paper is to explore the common
characteristics of the functional brain network corresponding to
different mental fatigue states under complex fatigue-induced
conditions. Therefore, we repeated three fatigue-inducing tasks,
twice in the afternoon and evening, to simulate the complex
state of mental fatigue that may occur in reality, and the fatigue
may include the disturbance of drowsiness. Multidimensional
Fatigue Inventory (MFI-20) was used to classify three mental
fatigue levels: non-fatigue, moderate fatigue, and severe fatigue.
The correlation between mental fatigue and cognitive decline
was measured by behavioral test results. Functional near-infrared
spectroscopy is a non-invasive neuroimaging technique allowing
the measurement of variations in blood oxygenation in cortical
areas (Borragán et al., 2019) with acceptable spatial and tolerance
to movements. fNIRS is appropriate to track changes in brain
connectivity and reliably reflect cognitive load (Herff et al.,
2014). This study is based on the fNIRS method to detect the
blood oxygen information of the cerebral cortex throughout
the experimental process, construct a functional network in
five frequency bands, and quantitatively analyze the structure
of a fatigue-related functional network by the network analysis
method, and at the same time, extracting the characteristics for
fatigue classification, so as to provide reference for cross-task
mental fatigue early warning method.

MATERIALS AND METHODS

Participants
The fatigue experiment recruited 36 undergraduate and graduate
students (20 ± 2 years old, male:female = 27:9) from Soochow
University. The participants were right-handed, in good health,
and had no history of mental illness or cerebrovascular disease.
Participants were not allowed to use medications, take a
nap, and consume caffeine or stimulus drinks on the day of
the experiment. All participants signed an informed consent
before the experiment.

Experiment Procedure
Participants were randomly divided into three groups for
different fatigue-inducing experiments, including Psychomotor
Vigilance Test (PVT), cognitive work, or simulated driving.
Participants were asked to respect normal sleep schedules before
the experiment. Each participant repeated the test three times:
before starting the day’s work in the morning (7:00–8:00), in
the afternoon (14:00–17:00), and before sleeping in the evening
(20:00–23:00). The specific process is shown in Figure 1. In
the morning, the n-back behavioral test was conducted, then
the Multidimensional Fatigue Inventory (MFI-20) was filled
out (8 min in total). In the afternoon and evening, the above

Frontiers in Neuroscience | www.frontiersin.org 2 March 2022 | Volume 15 | Article 771056

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-771056 March 9, 2022 Time: 14:36 # 3

Peng et al. Functional Connectivity Analysis of Fatigue

FIGURE 1 | Experimental procedure. About 8 min/person in the morning. The afternoon experiment and evening experiment are about 1 h/person.

behavioral tests and scale filling were carried out before and
after the task. Cortical brain activity changes during the whole
experiment were recorded using fNIRS.

Material and Tasks
Before and after the fatigue-inducing task, the participants
filled in the Multidimensional Fatigue Inventory (Smets et al.,
1995) and conducted the n-back (n = 1) behavioral test to
evaluate cognition and vigilance performance associated
with mental fatigue. The n-back task requires coordinated
work across multiple brain regions (Cohen and D’Esposito,
2016). During the n-back test, the monitor displayed a
blue square every 3S and broadcasted one random letter at
the same time. Whenever a location of a square matched
the location of the square presented one instance earlier,
participants were asked to press the “W” key on a computer
keyboard. Whenever an audio matched the last audio
broadcast, participants were asked to press the “S” key on
a computer keyboard. The schematic diagram of N-back is
shown in Figure 2. The reaction time and accuracy of each
comparison task were recorded as the basis for judging cognitive
performance and vigilance.

Mental Fatigue Task
Mental fatigue induction tasks include psychomotor vigilance
test (PVT), cognitive work, or simulated driving. PVT test is a
simple reaction time test with high stimulus load. Participants
were required to pay attention to the monitor. When the stimulus
(red dot) was displayed in the middle of the monitor, they were
supposed to respond with a button press on the keyboard as
quickly as possible. In the test, inter-stimulus interval (ISI) was
random and varied, ranging from 5 to 10 s. PVT task in this
study was used to simulate passive mental fatigue caused by long-
time simple attention tasks (Körber et al., 2015). Cognitive work
included mathematical calculation tasks and foreign language
reading tasks corresponding to the level of the participants, so
as to simulate the mental fatigue state after the realistic learning
task. A semi-immersive simulated driving task was designed.
The route of the task included a motorway and a rural road.
Simulated driving tasks were used to simulate passive fatigue
caused by task underload under highly predictable and stable
driving conditions (Larue et al., 2011; Li et al., 2016) and
active fatigue caused by resource depletion due to high attention
demand (Smit et al., 2004).

Functional Near-Infrared Spectroscopy Acquisition
This study used a multichannel fNIRS system (NirSmart,
HuiChuang, Beijing, China) to record cortical brain activity.
According to Brodmann’s anatomical region system of cerebral
cortex, a 4 ∗ 4 headgear layout was designed, including 24
effective test channels composed of eight light emitters and eight
light receivers, covering the prefrontal cortex (PFC), frontal eye
field (FEF), supplementary motor cortex (SMA), and premotor
cortex (PMC), four brain functional regions. In the experiment,
the 10–20 system (Okamoto et al., 2004) was used as the
positioning standard to locate the brain functional area. The
channel distribution of specific brain imaging is shown in
Figure 3A. The experimental environment is shown in Figure 3B.
The sampling frequency was 16 Hz.

Data Analysis
Considering the different physiological information contained in
different frequency bands of blood oxygen signal (Stefanovska
et al., 1999), the Chebyshev bandpass filter was used to filter
the original blood oxygen signal to (I, 0.005–0.021 Hz; II,
0.021–0.052 Hz; III, 0.052–0.145 Hz; IV, 0.145–0.600 Hz, V, 0.6–
2.0 Hz) five frequency bands, corresponding to the physiological
information of cardiac activity, respiratory activity, myogenic
activity, neurogenic activity, and endogenic activity contained
in hemoglobin signal. At the same time, the influence of high-
frequency noise was eliminated.

In order to evaluate the changes in activity indicators in
different cerebral cortex regions, this paper divides eight regions
of interest (ROI) (as shown in Table 1) and calculates the
overall blood oxygen concentration of each ROI brain region,
which could reduce the individual difference caused by head size.
Considering the differences in individual blood oxygen active
channels, the weighted average method based on entropy weight
was used to calculate the blood oxygen concentration of ROI. The
calculation formula is as follows:

y =
∑

j

Xij ωj (i = 1, 2, ..., N, j = 1, 2, ..., M) (1)

X represents the N rows, M columns matrix composed of the
original hemoglobin concentration, and ωj represents the weight
of each channel calculated by information entropy of channel
blood oxygen concentration (Liu et al., 2017).

In order to study the dynamic interaction between regions in
the process of cortical activity, Pearson correlation coefficient was
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FIGURE 2 | A schematic diagram of the n-back experiment. Participants were required to respond to the same consecutive stimulus and press the button as quickly
as possible. The inter-stimulus interval (ISI) of the stimulus is 3 s.

FIGURE 3 | (A) Probe and functional brain region distribution map; red and blue numbers represent sources and detectors, respectively. (B) Experimental
environment.

used to calculate the correlation of blood oxygen concentration in
each ROI during the task, and a weighted undirected network was
constructed to quantitatively evaluate the changes in functional
connectivity in brain-related regions corresponding to different
fatigue levels. This paper calculated the clustering coefficient,
characteristic path length, and small worldness. The clustering
coefficient is the degree of local correlation of the network,
characteristic path length is a measure of connectivity between
the whole brain interval, and the small worldness reflects the
unity of the overall information transmission of the network

and the local high aggregation (Tononi et al., 1998; Watts and
Strogatz, 1998).

In a weighted network, for node u, the node clustering
coefficient is defined as:

Cu =
1

deg (u)(deg (u)− 1)

∑
vw

(ŵuvŵuwŵvw)1/3 (2)

where deg (u) is the degree of u. For weighted graphs,
clustering coefficient is defined as the geometric average of the
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TABLE 1 | The division of region of interest (ROI).

Name of ROI Channels included

L-PFC 1, 4, 8

M-PFC 2, 5, 6, 9

R-PFC 3, 7, 10

L-FEF 11, 12

R-FEF 13, 14

SMA 15, 18, 22

L-PMC 16, 19, 20, 23

R-PMC 17, 21, 24

L, M, R represent left, medial, right, respectively. For example, L-PFC represents
the left part of PFC.

subgraph edge weights. The edge weights ŵuv are normalized
by the maximum weight in the network ŵuv = wuv/max(w)
(Onnela et al., 2005).

The clustering coefficient of analyzed network is defined as the
mean of the clustering coefficients of all nodes:

C =
1
n

∑
v∈G

Cv (3)

The path length dij from the node i to node j is defined as
the sum of the edge lengths along this path, where the length of
each edge was obtained by computing the reciprocal of the edge
weight. The characteristic path length of a weight directed graph
was defined as the smallest sum of the edge lengths throughout
all the possible paths (Sun et al., 2014a):

L =
1

n(n− 1)

∑
i6=j

dij (4)

Small worldness:

σ =
Creal

Crandom
/

Lreal

Lrandom
(5)

The small worldness could be summarized from the
normalized clustering coefficient (γ = Creal/Crandom) and the
normalized characteristic path length (λ = Lreal/Lrandom), where
Creal and Lreal are the clustering coefficient and characteristic path
length of the analyzed network, Crandom and Lrandom are the mean
clustering coefficient and the mean characteristic path length of
100 matched random networks, respectively.

To compare the topological structure of functional
connectivity without bias from different average connectivity
difference (Sun et al., 2014a), the small worldness of unweighted
network was calculated. Sparsity is defined as the ratio of the
number of actual edges to the number of all possible edges in
a fully connected network. A sparsity of 0.45 was adopted to
convert the full connection matrix to a sparse network.

Three kinds of blood oxygen information, including
oxyhemoglobin, deoxyhemoglobin, and total oxyhemoglobin,
were recorded in the experiment. Characteristics of brain
functional network were calculated under the three kinds of
blood oxygen in this study.

Statistics
All statistical analyses were performed using SPSS version 25.0
(IBM Corp., Armonk, NY, United States). For MFI-20 scores,
N-back test scores, functional connectivity strength, and network
metrics, the primary result was analyzed by two-way analysis of
variance (ANOVA) with three fatigue levels [L1 (non-fatigue),
L2 (moderate fatigue), and L3 (severe fatigue)], and the three
tasks (PVT, cognitive work, and simulated driving) as factors.
If the significant main effects were on the fatigue level, but
no interactions were detected, Tukey-Kramer’s post-hoc test was
used to locate differences between fatigue levels. For all analyses,
the statistical significance was set at p < 0.05.

Mental Fatigue Classification
The levels of mental fatigue were defined by the score of
MFI-20 scale and behavioral test. A clustering analysis of
unsupervised k-means was performed on MFI-20 scale score,
and the participants were grouped into non-fatigue and fatigue.
According to the results of clustering analysis, taking the scale
score of 2.57 as the threshold, the participants with a scale score
less than 2.57 were classified as non-fatigue, and the participants
with a score more than or equal to 2.57 were classified as
fatigue. Then according to the score of n-back behavioral task
(reaction time/accuracy) and MFI-20, the fatigue participants
were further grouped into moderate fatigue and severe fatigue.
This study took the scale score threshold from 2.57 to 5.00 with
step of 0.01; the behavioral test scores of the grouped participants
were statistically analyzed. When the threshold was 3.00, the
statistical difference of behavioral test scores between moderate
fatigue and severe fatigue participants was the largest, so the
participants with a score more than or equal to 3.00 were divided
into severe fatigue.

Machine Learning Method
To verify the feasibility of mental fatigue detection based on
fNIRS data, we performed classification of mental fatigue states
based on the functional connectivity strength and characteristics
of brain functional network. This paper classified three mental
fatigue levels: non-fatigue, moderate fatigue, and severe fatigue.
The features include Pearson correlation coefficient (r) between
eight ROI(3 hemoglobins ∗ 5 frequency bands ∗ 28 channel
pairs), characteristic path length and clustering coefficient
of brain functional network(3 hemoglobins ∗ 5 frequency
bands ∗ 2 network characteristics), and 15 time-domain
features(3 hemoglobins ∗ 5 frequency bands ∗ 8 ROI ∗ 15
time-domain feature). The time-domain features include mean,
standard deviation, coefficient of variation, energy, range,
skewness, kurtosis and peak, Hjorth parameter, information
entropy, root mean square, kurtosis factor, waveform factor, pulse
factor, and margin factor. Considering the unbalanced number
of three-level participants and high feature dimension, this study
used the random forest algorithm based on Python library sklearn
and random forest classifier. Because of the large number of
available features, the key features were selected based on the
Gini coefficient, and then the features were further screened,
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and the parameters of random forest classifier were optimized by
genetic algorithm.

RESULTS

Mental Fatigue Degree and Behavioral
Task Performance
The MFI-20 scale scores corresponding to participants of three
fatigue levels are shown in Figure 4A. The ANOVA results
revealed a significant main effect of fatigue level (F = 305.584;
p < 0.001; η2 = 0.795) on MFI-20 scores, but no significant
main effect of task (p = 0.715) or interaction between fatigue
level and task (p = 0.844) was found. Post-hoc analyses indicated
significant increases in MFI-20 score between non-fatigue and
moderate fatigue (p < 0.001), between moderate fatigue and
severe fatigue (p < 0.001), and between non-fatigue and severe
fatigue (p < 0.001).

The N-back task scores corresponding to participants of three
fatigue levels are shown in Figure 4B. The ANOVA results
revealed a significant main effect of fatigue level (F = 15.759;
p < 0.001; η2 = 0.166) on N-back scores, and no main effect
of task (p = 0.286) or interaction between fatigue level and task
(p = 0.259) was significant. Post-hoc analyses indicated significant
increases on N-back score between non-fatigue and severe fatigue
(p < 0.001), and between moderate fatigue and severe fatigue
(p < 0.001).

Functional Connectivity Network
In five frequency bands, the average functional connectivity
network corresponding to the three mental fatigue levels are
shown in Figures 5–9, respectively. In each band, two-way
ANOVA was conducted on connectivity strength with the two
factors: fatigue level (non-fatigue, moderate fatigue, and severe

fatigue) and task (PVT, cognitive work, and simulated driving).
When there was a significant main effect on fatigue level on
one connectivity, there was no significant interaction between
fatigue level and task; the ANOVA results of that connectivity
will be shown below.

In frequency band I (0.005–0.021 Hz), the average functional
connectivity network corresponding to the three mental fatigue
levels are shown in Figure 5. The results of ANOVA revealed
a significant main effect of fatigue level on the correlations
of PFCM_PFCR (F = 4.655, p = 0.010, η2 = 0.026) and
FEFR_PMCR (F = 4.276, p = 0.015, η2 = 0.024), and no
significant interaction between fatigue level and task (p > 0.311)
was found. Post-hoc analyses indicated a significant decrease
in FEFR_PMCR connection between non-fatigue and moderate
fatigue (p = 0.029), and a significant decrease in PFCM_PFCR
connection between non-fatigue and severe fatigue (p = 0.030).
From non-fatigue to moderate fatigue, the network connectivity
decreased overall, especially between the regions of PFC and
FEF, and between the regions of PFC and PMC. However,
the connectivity strength remained relatively constant among
PFCL, PFCM, and PFCR, as well as between the regions of
SMA and PMC. From moderate fatigue to severe fatigue, the
network connectivity increased overall, and a relatively compact
connectivity was maintained between the left PFC and other
brain regions, especially between PFC and FEF.

In frequency band II (0.021–0.052 Hz), the average functional
connectivity network corresponding to the three mental fatigue
levels are shown in Figure 6. The results of ANOVA revealed
a significant main effect of fatigue level on the correlations
of PFCL_FEFR (F = 5.994, p = 0.003, η2 = 0.034) and
PFCR_PMCR (F = 3.639, p = 0.027, η2 = 0.021); no significant
interaction between fatigue level and task (p > 0.095) was
found. Post-hoc analyses indicated a significant increase in
PFCL_FEFR connection between non-fatigue and moderate

FIGURE 4 | (A) Multidimensional Fatigue Inventory (MFI-20) scale scores correspond to non-fatigue, moderate fatigue, and severe fatigue grade participants; the
mean and standard deviation of each group were calculated; (B) behavioral task performance corresponded to non-fatigue, moderate fatigue, and severe fatigue
participants. The behavioral task scores (reaction time/accuracy) were normalized, and the mean value and standard deviation of each group were calculated.
**p < 0.01.
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FIGURE 5 | Frequency band I (0.005–0.021 Hz), (A) non-fatigue, (B) moderate fatigue, and (C) severe fatigue. The average cortical functional connectivity network
contains eight ROI brain regions. The width and color of the line represent the strength of the connectivity. Functional connectivity was visualized with the BrainNet
Viewer (http://www.nitrc.org/project/bnv/).

FIGURE 6 | In frequency band II (0.021–0.052 Hz), non-fatigue (A,B) moderate fatigue, and (C) severe fatigue. The average cortical functional connectivity network
contains eight ROI brain regions. The width and color of the line represent the strength of the connectivity.

FIGURE 7 | In frequency band III (0.052–0.145 Hz), non-fatigue (A,B) moderate fatigue, (C) severe fatigue. The average cortical functional connectivity network
contains 8 ROI brain regions. The width and color of the line represent the strength of the connectivity.

fatigue (p = 0.013), and between non-fatigue and severe
fatigue (p = 0.049), and a significant increase in PFCR_PMCR
connection between non-fatigue and severe fatigue (p = 0.029).
From non-fatigue to moderate fatigue, the overall connectivity
strength of the right hemisphere increased. The average
functional connectivity strength of the left and right hemispheres
was calculated. The connectivity strength of the right hemisphere

is greater than that of the left hemisphere (p = 0.005). When
severe fatigue occurred, there was no significant difference in
the connectivity strength between the left and right hemispheres
(p = 0.273).

In frequency band III (0.052–0.145 Hz), the average functional
connectivity network corresponding to the three mental fatigue
levels are shown in Figure 7. The results of ANOVA revealed
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FIGURE 8 | In frequency band IV (0.145–0.600 Hz), non-fatigue (A,B) moderate fatigue, (C) severe fatigue. The average cortical functional connectivity network
contains eight ROI brain regions. The width and color of the line represent the strength of the connectivity.

FIGURE 9 | In frequency band V (0.6–2.0 Hz), non-fatigue (A,B) moderate fatigue, and (C) severe fatigue. The average cortical functional connectivity network
contains eight ROI brain regions. The width and color of the line represent the strength of the connectivity.

the significant main effect of fatigue level on the correlations
of PFCL_PFCM, PFCL_PFCR, PFCL_FEFL, PFCL_PMCL, PFCL
_PMCR, PFCM_PFCR, PFCM_PMCL, PFCR_SMA, PFCR_PM
CL, PFCR_PMCR, FEFL_SMA, FEFL_PMCL, FEFL_PMCR,
FEFR_PMCL, and PMCL_PMCR; no significant interaction
between fatigue level and task (p > 0.051) was found. The details
of ANOVA are shown in Table 2.

Post-hoc analyses indicated significant decreases in
PFCL_PFCM, PFCL_FEFL, PFCL_PMCL, PFCL_PMCR, PFCM
_PFCR, PFCR_SMA, PFCR_PMCR, and PMCL_PMCR
connections between non-fatigue and moderate fatigue,
decreases in PFCL_PFCR, PFCL_PMCR, PFCM_PFCR, PFCM
_PMCL, PFCR_PMCL, FEFL_SMA, FEFL_PMCL, FEFL_PMCR,
FEFR_PMCL connections between non-fatigue and severe
fatigue, increase in PFCL_FEFL connection between moderate
fatigue and severe fatigue, and a decrease in PFCM_PMCL,
PMCL_PMCR connection between moderate fatigue and
severe fatigue. The details of post-hoc analyses are shown in
Table 3. From non-fatigue to moderate fatigue, the connectivity
of the whole brain network decreased significantly. From
moderate fatigue to severe fatigue, the whole network
only maintained relatively strong connectivity between the
regions of PFC and FEF.

In frequency band IV (0.145–0.600 Hz), the average functional
connectivity network corresponding to the three mental fatigue

levels are shown in Figure 8. The results of ANOVA revealed
a significant main effect of fatigue level on the correlation
of PFCM_PMCL (F = 4.945, p = 0.008, η2 = 0.028); no
significant interaction between fatigue level and task (p = 0.165)

TABLE 2 | Functional connectivity with significant main effect of fatigue level in
band frequency III.

Functional connectivity F p-value Partial eta squared (η2)

PFCL_PFCM 5.835 0.003 0.033

PFCL_PFCR 5.013 0.007 0.028

PFCL_FEFL 10.848 <0.001 0.059

PFCL_PMCL 6.678 0.001 0.037

PFCL_PMCR 10.571 <0.001 0.058

PFCM_PFCR 10.452 <0.001 0.057

PFCM_PMCL 12.306 <0.001 0.067

PFCR_SMA 4.975 0.007 0.028

PFCR_PMCL 4.610 0.011 0.026

PFCR_PMCR 4.977 0.007 0.028

FEFL_SMA 7.640 0.001 0.042

FEFL_PMCL 4.068 0.018 0.023

FEFL_PMCR 3.901 0.021 0.022

No interaction was significant (all p > 0.05) on functional connectivity above.
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TABLE 3 | Post-hoc analyses among fatigue levels in band frequency III.

Fatigue
level

Fatigue
level

Functional
connectivity

Mean difference
(I–J)

p-values

L1 L2 PFCL_PFCM 0.097 0.002

PFCL_FEFL 0.168 <0.001

PFCL_PMCL 0.137 0.016

PFCL_PMCR 0.202 <0.001

PFCM_PFCR 0.099 0.007

PFCR_SMA 0.149 0.010

PFCR_PMCR 0.137 0.021

PMCL_PMCR 0.100 0.007

L3 PFCL_PFCR 0.061 0.016

PFCL_PMCR 0.157 0.002

PFCM_PFCR 0.121 <0.001

PFCM_PMCL 0.203 <0.001

PFCR_PMCL 0.126 0.015

FEFL_SMA 0.147 <0.001

FEFL_PMCL 0.116 0.027

FEFL_PMCR 0.119 0.019

FEFR_PMCL 0.144 0.013

L2 L3 PFCL_FEFL −0.141 0.001

PFCM_PMCL 0.156 0.009

PMCL_PMCR 0.116 <0.001

was found. Post-hoc analyses indicated a significant decrease
in PFCM_PMCL connection between non-fatigue and severe
fatigue (p = 0.034). From non-fatigue to moderate fatigue,
the functional connectivity of the whole brain network was
weakened. From moderate fatigue to severe fatigue, the whole
network only maintained relatively strong connectivity between
the regions of PFC and FEF.

In frequency band V (0.6–2.0 Hz), the average functional
connectivity network corresponding to the three mental fatigue
levels are shown in Figure 9. The functional connectivity of
the whole brain network did not change significantly. From
moderate fatigue to severe fatigue, the functional connectivity of
the whole brain network decreased, especially between PFC and
other regions of the brain.

Characteristics of Brain Functional
Network
Comparison of clustering coefficient among three fatigue levels
in five frequency bands are shown in Figure 10A. In frequency
band III, the significant main effects of fatigue level on clustering
coefficient (F = 8.670; p < 0.001; η2 = 0.048) are presented, but no
significant interaction between fatigue level and task (p > 0.05)
was found, as shown in Figure 10B. Post-hoc analyses confirmed
the decrease in clustering coefficient between non-fatigue and
moderate fatigue (p = 0.002), and between non-fatigue and severe
fatigue (p = 0.002).

Comparison of characteristic path length among three fatigue
levels in five frequency bands is shown in Figure 10C. In
frequency band III, the significant main effects of fatigue level
on characteristic path length (F = 8.670; p < 0.001; η2 = 0.048)

are presented, but no significant interaction between fatigue
level and task (p > 0.05) was found, as shown in Figure 10D.
Post-hoc analyses confirmed the increase in characteristic path
length between non-fatigue and moderate fatigue (p = 0.006), and
between non-fatigue and severe fatigue (p = 0.003).

As for each fatigue level, average small worldness of weighted
networks was larger than 1 in all the five frequency bands (as
shown in Figure 11A), which indicated that all the connectivity
networks in the three fatigue levels displayed small-world
characteristics. In frequency band II, the significant main effect
of fatigue level on small worldness was presented (F = 4.290;
p = 0.015; η2 = 0.028), but no significant main effect of
task (p = 0.059) or interaction between fatigue level and task
(p = 0.120) was found. As shown in Figure 11B. Post-hoc analyses
confirmed the decrease in small worldness between non-fatigue
and severe fatigue (p = 0.042).

Considering the possible influence of the difference average
connectivity strength among the three fatigue levels on the
network topological structure, a common sparsity has been
considered in each weighted network through a dynamic
threshold. In other words, all unweighted networks were
guaranteed to have the same number of edges. The small
worldness of unweighted networks are shown in Figure 12B.
In frequency bands I and II, the significant main effect of
fatigue level on unweighted small worldness was presented
(band I: F = 3.812; p = 0.023; η2 = 0.030; band II:
F = 4.064; p = 0.018; η2 = 0.032), but no significant main
effect of task (p > 0.419) or interaction between fatigue
level and task (p > 0.101) were found. In frequency band I,
post-hoc analyses confirmed the decrease in small worldness
between non-fatigue and moderate fatigue (p = 0.037). In
frequency band II, post-hoc analyses confirmed the decrease in
unweighted small worldness between non-fatigue and severe
fatigue (p = 0.010).

Mental Fatigue Classification
In this study, the functional connectivity strength, characteristics
of brain functional network, and time-domain characteristics of
blood oxygen signal were used as features to classify the mental
fatigue levels. The classification accuracy of non-fatigue and
fatigue was 85.4%, the recall of fatigue was 89.3%, and the F1 score
was 87.5% with a fivefold cross-validation. The classification
accuracy of moderate fatigue and severe fatigue was 82.8%, the
recall of severe fatigue was 90.5%, and the F1 score is 85.7% with
a fivefold cross-validation.

DISCUSSION

In this study, there were three fatigue-inducing tasks:
psychomotor vigilance test (PVT), cognitive work, and simulated
driving. Based on fNIRS, cerebral hemoglobin information
under different fatigue levels was recorded to construct the
functional networks. Changes in functional connectivity and
functional network reorganization under different fatigue levels
were studied by graph theoretical analysis methods. The main
findings are as follows:
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FIGURE 10 | (A) Comparison of clustering coefficient of three fatigue levels in five frequency bands. (B) Results of post-hoc analyses of clustering coefficient in
frequency band III (0.052–0.14 5 Hz). (C) Comparison of characteristic path length of three fatigue levels in five frequency bands. (D) Results of post-hoc analyses of
characteristic path length in frequency band III (0.052–0.145 Hz). Vertical bars are standard errors scores. **p < 0.01.

FIGURE 11 | (A) Comparison of small worldness in weighted network of three fatigue levels in five frequency bands. (B) Results of post-hoc analyses of small
worldness in weighted network in frequency band II (0.021–0.052 Hz). Vertical bars are standard errors scores. **p < 0.01.

As for moderate fatigue, the adequate behavioral task
performances of participants were maintained, and there was
no significant worsening in response time and accuracy. In
frequency band II associated with neurogenic activity, the
functional connectivity of the right hemisphere was generally
enhanced; an asymmetrical pattern of connectivity (right
hemisphere > left hemisphere) was presented. The most
significant reorganization of functional connectivity network was

in frequency band III associated with myogenic activity, the
functional connectivity strength decreased overall, the clustering
coefficient of brain network decreased, and the characteristic path
length increased significantly.

As for severe fatigue, behavioral test performance decreased
significantly. In frequency band II associated with neurogenic
activity, the functional connectivity strength increased overall,
and there was no significant difference in the connectivity
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FIGURE 12 | (A) Comparison of small worldness in unweighted network of three fatigue levels in five frequency bands. (B) Results of post-hoc analyses of small
worldness in unweighted network in frequency band I (0.005–0.021 Hz). (C) Results of post-hoc analyses of small worldness in unweighted network in frequency
band II (0.021–0.052 Hz). Vertical bars are standard errors scores. *p < 0.05; **p < 0.01.

strength between the left and right hemispheres. Small worldness
showed significant differences in frequency band II, and as fatigue
deepened, the brain network structure began to deviate from
the small-world pattern. In frequency band II associated with
neurogenic activity, the small worldness decreased continuously,
and the small worldness decreased significantly when severe
fatigue occurred.

Moderate Mental Fatigue, Task
Performance, and Changes in Functional
Connectivity
Functional connectivity of the brain network based on regional
cerebral blood flow (rCBF) plays an important role in
information transmission across regions (Liang et al., 2013).
There is a tight coupling between blood supply and brain
functional topology. The functional connectivity strength showed
a striking spatial correlation with rCBF (Liang et al., 2013). The
oscillations in frequency bands I, II, and III reflect the influence of
endothelial-related metabolic activity, intrinsic neuronal activity,
and myogenic activity of the vascular smooth muscle (Shiogai
et al., 2010; Li et al., 2012).

Compared with the non-fatigue state, the performance of
the participants in the n-back test remained adequate in
moderate fatigue, and there was no significant change in response
to time and accuracy. In frequency band II associated with
neurogenic activity, the strength of functional connectivity in
the right hemisphere increased significantly, while the strength
of connectivity between the left PMC and other brain regions
decreased. There was an asymmetric network pattern between the
left and right hemispheres in cortical connectivity. In previous
studies, in the middle of the sleep deprivation experiment,
the cortical activity of the right hemisphere increased mainly,
while the bilateral activity increased in the later stage of the
experiment (Borragán et al., 2019), and an increase in the
frontal cortex oxygenation at the start of the driving task was
found (Li et al., 2009); Asymmetric brain activation according
to different types of mental fatigue was also reported (Shigihara
et al., 2013). Other prior studies reported a major involvement
of the right hemisphere during sustained attention tasks when
tasks remained relatively easy or the participants remained

alert. When the cognitive load increased, unilateral activation
during the task was replaced by a bilateral activation (Klingberg
et al., 1997; Helton et al., 2010), and the brain can obtain
additional processing ability by activating both hemispheres
(Scalf et al., 2009). Our results are similar to those studies.
When the fatigue degree was mild, the same as the task load,
the connectivity strength of the right hemisphere increased
significantly; the connectivity pattern of the left and right
hemispheres presented significant differences. The connectivity
pattern of the left and right hemispheres tends to be the same in
severe fatigue state.

In frequency band I, the functional connectivity strength
decreased overall, and the clustering coefficient decreased
significantly. That means that the connectivity strength between
neighbor nodes decreased, and the degree of coordination in
local brain regions decreased. The decreased clustering coefficient
reflected the lower processing rate of local information.
The oscillations in this frequency band reflect the myogenic
activity of the vascular smooth muscle, and the substances
related to metabolism have a direct effect on the state of
contraction of the vascular musculature (Shiogai et al., 2010).
In previous studies, higher fatigue would result in more
endogenic regulation, and participants with regular exercise
training showed less regulation related to endothelial cell
metabolic activity in fatigue tasks (Lu et al., 2019). Similar
to our study, the lower clustering coefficient may be the
reflection of the lower demand for endogenous regulation in
moderate fatigue.

The oscillations in frequency band III (0.052–0.145 Hz)
reflect the myogenic activity of cerebrovascular smooth muscle,
which plays an important role in the autoregulation of cerebral
blood flow (Osol, 1995; Rowley et al., 2007). In the case of
moderate fatigue, the overall functional connectivity strength of
this frequency band decreased, and the corresponding clustering
coefficient decreased significantly. Similar to our conclusion,
previous studies have shown that the functional connectivity
of myogenic frequency band decreases significantly in fatigue
driving (Xu et al., 2017). It was observed in the early stage
of the grip strength task that the brain directed phase transfer
entropy, and the number of directional connectivity of the
participants undergoing regular exercise were limited, and
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the number of directional connectivity increased significantly
when the fatigue increased in the later stage of the task
(Osol, 1995). Similar to the endogenic frequency band, the
availability of local resources may be the reason for the
decreased connectivity strength between regions. At the same
time, when the degree of fatigue deepened, the relevant areas
must raise more resources from other areas to maintain task
performance, which was also consistent with the increase in
connectivity strength among PFC, FEF, and SMA observed
in severe fatigue.

Severe Mental Fatigue, Task
Performance, and Changes in Functional
Connectivity
Compared with moderate fatigue, the behavior test performance
of participants decreased significantly in severe fatigue. In the
endogenic frequency band I and neurogenic frequency band
II, the overall functional connectivity strength was maintained
or increased, which reflected the additional activation of
brain interval connection in response to resource depletion
(Sun et al., 2014b; Li et al., 2019). The brain required
more functional connectivity to complete the same tasks,
which further exacerbates mental fatigue. At the same time,
it was observed that the small worldness of the weighted
network decreased significantly in neurogenic frequency band
II. Considering the possible influence of the difference in
average functional connectivity strength among three fatigue
levels on the network structure characteristics, we maintain
that each network has the same sparsity through a dynamic
threshold. The small worldness calculated by this method
showed a similar result (as shown in Figure 12). The small
worldness reflects the balance of brain network in regional
local cooperation and information transmission between regions
and represents the best form of brain functional network
structure. The decline in performance in fatigue state is
related to the deviation of the brain network from small
worldness (Sun et al., 2014a; Li et al., 2019). In previous
pathological studies, the loss of small-world pattern has also
been observed in the patient population, such as Alzheimer’s
disease (Stam et al., 2007), schizophrenia (Micheloyannis et al.,
2006), etc. Small worldness is one of the key characteristics
of health network. In severe fatigue, the decrease in small
worldness reflected the decline in local specialized processing
ability of brain network and information transmission efficiency
between regions.

In frequency band IV, the overall connectivity strength
decreased, only relatively weak connectivity remained between
the regions of PFC and PMC, SMA. At the same time,
the performance of the behavioral test decreased significantly.
Anatomically, the prefrontal cortex is located at the top of
the sensory and motor levels (Curtis and D’Esposito, 2003).
The PFC can guide and regulate the functional connectivity
pattern of brain regions by guiding attention, integrating
sensory stimulation and motor planning, exert top–down
influence on perceptual and sensorimotor areas (Hopfinger
et al., 2000; Sarter et al., 2001). Sustained attention is

a direct consequence of top-down signaling (Sun et al.,
2014a). The decrease in connectivity strength between PFC,
FEF, and PMC, SMA reflected that the depletion of brain
resources led to the impairment of interregional information
transmission efficiency, which reduced the ability of interregional
cooperative problem solving and the accuracy of behavioral
performance. Therefore, the behavioral task performance in
severe fatigue declined.

Consistent with the decline in connectivity between regions,
in terms of brain functional network characteristics, the
characteristic path length in frequency band IV and frequency
band V increased during severe fatigue. The change in
clustering coefficient of the brain network is related to cognitive
performance (Struck et al., 2021). In the state of mental fatigue,
more isolation and less aggregation were observed (Li et al.,
2016). Similar to our results, Sun et al. (2014a) found that
the increase in the characteristic path length was related to
the increase in reaction time caused by continuous attention
tasks. Chen et al. (2019) induced mental fatigue through driving
tasks. Significant differences in functional connectivity were
observed between alert state and fatigue state. The frontal-to-
parietal functional connectivity was weakened. Meanwhile, lower
clustering coefficient values and higher characteristic path length
values were observed in fatigue state in comparison with alert
state. The characteristic path length is the embodiment of the
overall connectivity of the brain network, which means that the
information transmission efficiency of the cortical brain region
is reduced (Watts and Strogatz, 1998). In high-frequency bands,
functional connectivity mode was characterized by the decline
in the overall functional connectivity strength and the limited
connectivity between regions.

There are also some limitations in this study. The MFI-20
scale was used as the basis for defining the fatigue level, but there
were deviations in the understanding of different people when
filling in the scale. At the same time, the sensitivity of the scale
to specific fatigue responses caused by different participants may
be different (Di Stasi et al., 2012), which may be partially deviated
from the real fatigue state of the participants. In future research,
we can use a combination of a variety of subjective fatigue scales
(Sun et al., 2017) or fatigue state judgment methods based on
physiological signals and behavioral data.

CONCLUSION

This paper investigated the common character of functional
connectivity network corresponding to mental fatigue induced
by different tasks and classified the fatigue levels based on the
common features. With the deepening of mental fatigue, the
deviation and reorganization of functional connectivity were
observed, and those changes reflected the unique forms of brain
network functional connectivity under different fatigue levels.

In moderate fatigue, the overall functional connectivity of
the neurogenic frequency band increased significantly, and the
connectivity strength of the right hemisphere was greater than
that of the left hemisphere. The connectivity strength of the
endogenic frequency band and the myogenic frequency band
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decreased, and the clustering coefficient decreased significantly;
In severe fatigue, the overall functional connectivity strength of
neurogenic frequency band increased, and the small worldness
decreased. In the high-frequency band, only the PFC and
FEF maintained close connectivity, and the characteristic path
length increased.

Based on the common characteristics, the random forest
classifier was used to distinguish the fatigue level induced
by different tasks. The classification accuracy of non-fatigue
and fatigue is 85.4%, and the recall of fatigue is 89.3%. The
classification accuracy of moderate fatigue and severe fatigue was
82.8%, and the recall of severe fatigue was 90.5%. The common
character of functional connectivity and preliminary fatigue
discrimination results under each fatigue state prove that the
findings of this study have potential application value for mental
fatigue monitoring and early warning under complex conditions.
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