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Abstract

Background: Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the
algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While
hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG
data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods.
Existing ICA-based removal strategies depend on explicit recordings of an individual’s artifacts or have not been
shown to reliably identify muscle artifacts.

Methods: We propose an automatic method for the classification of general artifactual source components. They
are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based
on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of
features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on
640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain
sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new
data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n =
80) that used data with different channel setups and from new subjects.

Results: Based on six features only, the optimized linear classifier performed on level with the inter-expert
disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-
calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we
demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most
artifactual source components.

Conclusions: We propose a universal and efficient classifier of ICA components for the subject independent
removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and
supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the
detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of
different EEG studies.

Background
Signals of the electroencephalogram (EEG) can reflect
the electrical background activity of the brain as well as
the activity which is specific for a cognitive task during
an experiment. As the electrical field generated by
neural activity is very small, it can only be recognized
by EEG if large assemblies of neurons show a similar
behavior. Resulting neural EEG signals are in the range
of micro volts only and can easily be masked by

artifactual sources. Typical artifacts of the EEG are
caused either by the non-neural physiological activities
of the subject or by external technical sources. Eye
blinks, eye movements, muscle activity in the vicinity of
the head (e.g. face muscles, jaws, tongue, neck), heart
beat, pulse and Mayer waves are examples for physiolo-
gical artifact sources, while swaying cables in the mag-
netic field of the earth, line humming, power supplies or
transformers can be the cause of technical artifacts.
Brain-Computer Interfaces (BCI) are based on the sin-

gle trial classification of the ongoing EEG signal and can
improve the life quality of disabled individuals especially
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in combination with other assitive technology [1]. The
exclusion of artifacts is of special interest for BCI appli-
cations, as the intended or unconscious use of artifacts
for BCI control are usually not desirable when the BCI
system is tested on healthy subjects. Furthermore, as
averaging methods have to be avoided, these real-time
systems BCIs rely on relatively clean EEG signals. The
same holds true for other Mental State Monitoring
applications, that monitor a subject’s mental state con-
tinuously and on a fine granular time resolution to
detect changes e.g. of wakefulness, responsiveness or
mental workload as early as possible [2].
The two physiological artifacts most problematic for

BCI applications are ocular (EOG) and muscle (EMG)
artifacts. EOG activity is either caused by rolling of the
eyes or by eye blinks which occur approx. 20 times per
minute [3]. Both result in a low-frequency activity most
prominent over the anterior head regions, with maximal
frequencies below 4 Hz. In contrast, EMG activity
(caused by chewing, swallowing, head or tongue move-
ments) is usually a high-frequency activity (>20 Hz)
which ranges from rather small to very large amplitudes
[4].
For an extensive review of artifact reduction techni-

ques in the context of BCI-systems, the reader can refer
to Fatourechi et al. [5]. Since the rejection of artifactual
trials amounts to a considerable loss of data, a method
that removes the artifacts while preserving the underly-
ing neural activity is needed. For example, linear filter-
ing is a simple and effective method if artifactual and
neural activity are located in non-overlapping frequency
bands. Unfortunately, artifacts and the brain signal of
interest do usually overlap. Nevertheless, ocular activity
can be partially removed by regression-based methods,
which subtract a part of the activity measured at addi-
tional electrooculogram (EOG) channels from the EEG
(see [6] for a review). Regression-based methods require
the reliable recording of additional EOG channels and
are limited by the fact that the EOG is contaminated by
brain activity which is removed as well. Furthermore,
they cannot eliminate non-eye activity.
If artifactual signal components and neural activity of

interest are not systematically co-activated due to a dis-
advantageous experimental design, methods of Blind
Source Separation (BSS) like Independent Component
Analysis (ICA) are promising approaches for their
separation [7,8]. A common approach is the transforma-
tion of the EEG signals into a space of independent
source components, the hand-selection of non-artifac-
tual neural sources and the reconstruction of the EEG
without the artifactual components (for an example of
independent source components, see Figure 1). While
assumptions for the application of ICA methods are
only approximately met in practice (linear mixture of

independent components, stationarity of the sources and
the mixture, and prior knowledge about the number of
components), their application usually leads to a good
separation, with only a small number of hybrid compo-
nents that contain both, artifacts and neural signals
[9-12].
Existing methods for artifact rejection can be sepa-

rated into hand-optimized, semi-automatic and fully
automatic approaches. Semi-automatic approaches
require user interaction for ambiguous or outlier com-
ponents [13,14]. While fully automated methods were
proposed for the classification of eye artifacts [15,16],
these methods do not easily generalize to non-eye arti-
facts or even require the additional recording of the
EOG [17,18]. Viola et al. and Mognon et al. [19,20] both
developed an EEGLAB plug-in which finds artifactual
independent components. Both plug-ins have a fully
automatic mode that has been shown to recognize and
reject major artifacts like eye blinks, eye movements and
heart beats, while the detection of muscular or more
subtle artifacts has not been reported. The plug-in
developed by Viola et al. relies on a user-defined tem-
plate, while Mognon’s approach does not require user
interaction.
Existing more flexible approaches for the general clas-

sification of different artifact types were reported for
EEG data of epileptic patients [21], where the authors
report a Mean Squared Error (MSE) of approx. 20% for
their system based on a Bayesian classifier. Halder et al.
[22] report a classification error below 10% for their
Support Vector Machine (SVM) based system for a
fixed number of electrodes if dedicated artifact record-
ings are available for the classifier training. But even if
such optimized conditions are present, difficulties of
separating muscle artifact components from neural com-
ponents are common [22].
The review of the existing literature did not reveal a

systematic screening of potentially discriminant features
for the general task of artifact detection/removal. More-
over, most approaches restrict themselves to part of the
available information, e.g. rely on spatial patterns only
[19], or spatial patterns and spectral features [22], or
spatial pattern and temporal features [20].
Our proposed solution for a general artifact detection

method is motivated by the needs of EEG practitioners.
First, it is desirable that a method efficiently and reliably
detects all classes of artifacts, e.g. is not restricted to
eye-, heart beat-, or muscle artifacts. Second, a practical
method must be applicable post-hoc, i.e. without the
need of dedicated artifact recordings at the time of the
experiment. Third, it is difficult to convince EEG practi-
tioners to use a method of artifact rejection if it is a
black box and refuses introspection. As the goal must
be to develop a method, that delivers interpretable and
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easy to understand results, we decided for a linear clas-
sification method. Luckily, linear methods have proven a
high performance for a number of classification tasks in
the field of EEG-based BCI systems. However, to be able
to estimate the performance loss compared to a poten-
tially better, but difficult to interpret, non-linear classifi-
cation method, the results of a Gaussian SVM are
reported in parallel.
We decided to use a sparse approach (sparsity in the

features) although it is a mixed blessing. It leads to a
trade-off between efficiency and interpretability, as
redundant but slightly less discriminative features are
removed with high probability from the overall set of
features. This has to be kept in mind during the analysis
of results. To reach the goal of a sparse method that
delivers physiologically interpretable results, we decided
to incorporate a thorough feature selection procedure in
combination with a linear classification method that is
based on features of all three available information
domains of EEG data: the spatial domain (e.g. patterns
of independent components), the frequency domain and
the temporal domain.
The paper is organized as follows: In the methods sec-

tion, a reaction time (RT) paradigm is introduced, as
data from this study forms the basis for the construction
of the proposed artifact detection method. After the

signal pre-processing methods (including a temporal
variant of ICA) are introduced, we describe 38 features
that are candidates for the artifact discrimination task.
Based on labels provided by EEG experts, a thorough
feature selection procedure is described, that is used to
condense the 38 features to a small subset. Furthermore,
classification methods are introduced. The methods sec-
tion ends with a description of two other EEG para-
digms (auditory Event Related Potential (ERP) and
motor imagery for BCI), that will be used to validate the
generalization approach of the proposed artifact classi-
fier. In the results section, the outcome of the feature
selection procedure is given, together with the artifact
classification performance on unseen data of the RT
paradigm, data of a unseen auditory ERP paradigm.
Finally the method is applied in the context of a motor
imagery BCI setup, before the paper closes with a
discussion.

Methods
In the following subsections, we will describe how the
proposed new artifact classification method is set up.
Then we will introduce two further studies that are uti-
lized to test the classifier’s generalizability.
Participants of the studies described below provided

verbal and written informed consent and were free to

Figure 1 Three example independent source components. Time series (first column), spectrum (second column), filter (third column) and
pattern (fourth column) of three components. The first row (a) shows an alpha generator in the occipital lobe. The second row (b) shows a rare
muscle artifact component with an increased spectrum in higher frequencies. The third line (c) shows an eye artifact component that appears
regularly, has an increases spectrum in lower frequencies and a typical front-back distribution in the pattern.
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stop their participation at any time. All collected data
was anonymized before any subsequent analysis or pre-
sentation took place.

Classifier Construction using a RT study
The artifact classifier is set up based on labeled indepen-
dent components gained from a reaction time (RT)
study.
Experimental Setup
Data from 12 healthy right-handed male subjects were
used to train and to test the proposed automated com-
ponent classification method. Every subject participated
in one EEG recording session of approx. 5 hours dura-
tion. EEG was recorded from 121 approx. equidistant
sensors and high pass filtered at 2 Hz. During this ses-
sion, 4 repeated blocks of 3 different conditions (C0, C1,
C2) were performed. Each block lasted approx. 45 min-
utes. During all three conditions, subjects performed a
forced-choice left or right key press reaction time task
upon two auditory stimuli in an oddball paradigm. The
key press actions were performed with micro switches
attached to the index fingers. During condition C0 sub-
jects had to gaze at a fixation cross without any further
visual task. Condition C1 introduced an additional dis-
traction, as a video of a driving scene had to be watched
passively on a screen. Condition C2 introduced an addi-
tional second task: subjects infrequently had to follow
simple lane change instructions and control a steering
wheel. By design, EEG recordings under condition C2
were inevitably more prone to muscle and eye artifacts,
while C1 possibly stimulated eye movement artifacts,
but not muscle artifacts. However, all subjects had been
instructed during all conditions to avoid producing
artifacts.
Unmixing and data split
To avoid the artificial split of signal components due to
the high dimensionality of the data, the separation of
the EEG signals by an ICA method was preceded by a
dimensionality reduction by Principal Component Ana-
lysis (PCA) from 121 EEG channels in the sensor space
into k = 30 PCA components. This choice of k was
based on previous experience, but was probably not the
optimal choice. The TDSEP algorithm (Temporal Dec-
orrelation source SEParation) [23] was used to trans-
form the 30 PCA components into 30 independent
source components. PCA and TDSEP were applied in a
subject specific way, i.e. PCA and TDSEP matrices were
calculated seperately for each subject.
TDSEP is a BSS algorithm to estimate a linear demix-

ing

WX = S (1)

of a given multivariate time series X = (x1,..., xk)
T into

unknown, assumed mutually independent source com-
ponents S = (s1,..., sk)

T. Note that both the demixing W
and the source components S are unknown, and that
BSS algorithms differ in the definition of independence
between components. While ICA algorithms exploit
higher order statistics, TDSEP relies on second-order
statistics by taking the temporal structure of the time
series into account. TDSEP amounts to finding a demix-
ing W which leads to minimal cross-covariances over
several time-lags between all pairs of components of S.
For a mathematical discussion, let

�(τ ) := E(Xw(t)XT
w(t − τ )) be the cross-covariance

matrix of the whitened data Xw at time-lag τ, where the
whitening transformation linearly decorrellates and
scales the data such that Σ(0) = I. Consider now that (1)
Whitening reduces the BSS problem to finding an
orthogonal demixing matrix W̃; (2) W̃�(τ )W̃T equals
the cross-covariance matrix of the source components S
at time-lag τ; and (3) The independence assumption
yields that the cross-covariance matrix of the source
components S at time-lag τ is a diagonal matrix. TDSEP
thus computes W̃ as the matrix that jointly diagonalizes
a set of whitened cross-covariances Σ(τ). Here we use τ
= 1,..., 99.
In the context of EEG signals, TDSEP finds k indepen-

dent components contributing to the scalp EEG. They
are now characterized by their time course, a spatial
pattern given by the respective column of the mixing
matrix A := W-1, and a spatial filter given by the respec-
tive row of the demixing matrix W. The pattern con-
tains the projection strengths of the respective
component onto the scalp electrodes, whereas the filter
gives the projection strength of the scalp sensors onto
the source component (see, e.g [24]). All resulting
source components were hand labeled into artifactual
and non-artifactual components by two experts who
each labeled one half of the ICA components based on
four plots per component, namely the time series, the
frequency spectrum and one scalp plot of the compo-
nent’s filter and one of its pattern. Not all components
were unambigious but instead contained a mixture of
neural and artifactual activity. Discarding all those com-
ponents which contain traces of artifacts would remove
too much of the relevant neural activity. Therefore, only
those mixed components were labeled as artifacts, that
revealed a relatively small amount of neural activity
compared to the strength of the artifact contained.
For the training of the proposed automated classifica-

tion method, 23 EEG recordings of 10 minutes duration
were taken from the first experimental block only, lead-
ing to 690 labeled source components. Neural
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components and artifact components were approx.
equally distributed (46% vs. 54%). Figure 1 shows typical
examples of two artifacts and one neural component.
The trained classifier was tested on 36 unseen EEG

recordings from the third experimental blocks. Among
these 1080 source components were 47% neuronal com-
ponents and 53% artifact components.
Feature Extraction
In order to provide substantial information to an auto-
mated classification method, we construct an initial fea-
ture set that contains 13 features from a component’s
time series, 9 features from its spectrum and 16 from its
pattern. Based on this collection of 38 features a subset
of the most discriminative features is determined in a
feature selection procedure.
Features derived from a component’s time series

1. Variance of a component’s time series. It is not
possible to determine the variances of the indepen-
dent components, as both S and A := W-1 are
unknown, and the solution is thus undetermined up
to scaling. We estimate the impact one independent
component si has on the original EEG by calculating
Var(std(Ai) · si) where Ai denotes the respective pat-
tern. The idea here is to calculate the standard
deviation of one independent component when its
corresponding pattern has unit variance.
2. Maximum Amplitude
3. Range of the signal amplitude
4. Max First Derivative, approximated for the dis-

crete signal s(t) in ti by s′(ti) ≈ s(ti+1)−s(ti)
1

5. Kurtosis
6. Shannon Entropy
7. Deterministic Entropy, a computationally tract-
able measure related to the Kolmogorov complexity
of a signal [25]
8. Variance of Local Variance of time intervals of 1
s and of 15 s duration (2 separate features)
9. Mean Local Variance of time intervals of 1 s
duration, and of 15 s duration (2 separate features)
10. Mean Local Skewness, the mean absolute local
skewness of time intervals of 1 s and 15 s duration
(2 separate features)

The above 13 features were all logarithmized in a last
step. With exception of the Variance feature all were
calculated after standardization of the time series to var-
iance 1. These features describe outliers in terms of
unusual high amplitude values, as they are typically pre-
sent in blinks and muscle artifacts. Furthermore, they
are sensitive to non-stationarities and non-normal
higher order moments in the time series signal, as they
can be expected by muscle activity which typically is not
present equally strong over the full duration of 10 min.

Features derived from a component’s spectrum
1. k1, l, k2 and Fit Error describe the deviation of a
component’s spectrum from a prototypical 1/fre-
quency curve and its shape. The parameters k1, l, k2
>0 of the curve

f �→ k1

f λ
− k2 (2)

are determined by three points of the log spectrum:
(1) value at 2 Hz, (2) local minimum in the band 5-
13 Hz, (3) local minimum in the band 33-39 Hz.
The logarithm of k1, l, k2 and of the mean squared
error of the approximation to the real spectrum are
used as features.
The spectrum of muscle artifacts, characterized by
unusual high values in the 20-50 Hz range, are thus
approximated by a comparatively steep curve with
high l and low k1.
2. 0-3 Hz, 4-7 Hz, 8-13 Hz, 14-30 Hz, 31-45 Hz,
the average log band power of the δ (0-3 Hz), θ (4-7
Hz), a (8-13 Hz), b (14-30 Hz) and g (31-45 Hz)
band.

Features derived from a component’s pattern
1. Range Within Pattern, logarithm of the differ-
ence between the minimal and the maximal activa-
tion in a pattern
2. Spatial Distance of Extrema, logarithm of the
Euclidean norm of the 2D-coordinates of the mini-
mal and maximal activation in a pattern
3. Spatial Mean Activation Left, Left Frontal,
Frontal, Right Frontal, Right, Occipital, Central,
logarithm of the average activation in 7 groups of
electrodes as depicted in Figure 2
4. 2DDFT. Pattern without a “smooth” activity dis-
tribution do not originate from an easily traceable
psychological source and are thus artifacts or mixed
components. The spatial frequency of a pattern can
be described by means of a two-dimensional discrete
Fourier transformation. As a first step, the pattern is
linearly interpolated to a quadratic 64x64 pattern
matrix. The feature 2DDFT is the average logarith-
mic band power of higher frequencies of the 1st and
4th quadrant (see Figure 3) of the 2D-Fourier spec-
trum of the pattern matrix.
5. Laplace-Filter. Laplace-filtering leads a second
way of finding spatially high frequent patterns, as
these have more defined edges. Similar to the
2DDFT-Feature, the pattern is linearly interpolated
to a quadratic 64 × 64 pattern matrix. Then, a 3 × 3
Laplace filter is applied. The feature is defined as the
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logarithm of the Frobenius norm of the resulting
matrix.
6. Border Activation. This binary feature captures
the spatial distribution at the borders of a pattern. It
is defined as 1 if either the global maximum of the
pattern is located at one of the outmost electrodes
of the setup in Figure 4 (right), or if the local maxi-
mum of an electrode group in Figure 4 (left) is
located at the outmost electrode of the group and if
that local maximum deviates at least 2 standard
deviations from the group average. Otherwise the
feature is defined as -1. The idea behind this feature
is that a pattern with maximal activation at its bor-
der is unlikely to be generated by a source inside the
brain - it thus indicates an artifact.
7. Current Density Norm of estimated source distri-
bution and strongest source’s position x, y, z. ICA
itself does not provide information about the

locations of the sources S. However, ICA patterns
can be interpreted as EEG potentials for which a
physical model is given by a = Fz. Here, z Î ℝ3m are
current moment vectors of unknown sources at m
locations in the brain and F Î ℝk× 3 m describes the
mapping from sources to k sensors, which is deter-
mined by the shape of the head and the conductiv-
ities of brain, skull and skin tissues. We consider m
= 2142 sources which are arranged in a 1 cm grid.
Source estimation can only be done under additional
constraints since k ≪ m. Commonly, the source dis-
tribution with minimal l2-norm (i.e., the “simplest”
solution) is sought [26]. This leads to estimates

min
z

||Fz − a||2 + λ||�z||2 = (FTF + λ�T�)−1FTa := Jλa (3)

where Γ approximately equalizes the cost of dipoles
at different depths [27] and l defines a trade-off
between the simplicity of the sources and the fidelity
of the model.

Since Eq. 3 models only cerebral sources, it is nat-
ural that noisy patterns and patterns originating out-
side the brain can only be described by rather
complicated sources, which are characterized by a
large l2-norm. For an example, see Figure 5. We pro-
pose to use f := log||�z|| = log||�Jλã|| as a feature
for discriminating physiological from noisy or arti-
factual patterns. Here ã := a/||a|| are normalized ICA
patterns and l = 100 was chosen from
{0,1,10,100,1000} by cross-validation. To allow for a
meaningful comparison of different f values over set-
tings of varying numbers of electrodes, we pre-calcu-
lated ΓJl on 115 electrodes and used only those rows
that corresponded to the recorded electrodes. Note
that while this approach is simple, it may not be the
optimal choice when the set of electrodes varies.
Assuming a pattern is generated by only one source,
we can estimate its 3D-coordinates x, y, z as the

Figure 2 Scalp electrode sets. Mean activation in the 7 colored
electrode groups are used as features.

Figure 3 The feature 2DDFT. The feature 2DDFT is the average
logarithmic band power of higher frequencies of the 1st and 4th
quadrant of the 2D-Fourier spectrum of the pattern matrix.

Figure 4 The feature Border Activation. Electrode groups (left)
and electrodes (right) used to determine the feature Border
Activation.
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location of maximal current density. Note that this is
only a very simple source localization method.

Feature Selection and Classification
We conduct an embedded feature selection by using the
weight vector of a Linear Programming Machine (LPM)
[28]. Like all binary linear classifiers it finds a separating
hyperplane H : ℝd ∋ x ↦ sign(wT · x + b) Î {-1, 1} char-
acterized by a weight vector w and a bias term b. If the
features are zero-mean and have same variance, their
importance for the classification task can be ranked by
their respective absolute weights |wi|. The LPM is
known to produce a sparse weight vector w by solving
the following minimization problem:

min ||w||1 + C
n∑

i=1

ξi

s.t. yi(wT · x + b) ≥ 1 − ξi (i = 1, . . . , n)

ξi ≥ 0 (i = 1, . . . , n)

(4)

We thus apply a LPM to the training data in a 5 × 10
cross-validation procedure with the goal to obtain a
ranking of the features according to |E(wi/||w||)|.
Beforehand, the LPM-hyperparameter C was set to C =
0.1 by a 5 × 10 cross-validation heuristic, such that
LPM yielded good classification results while using a
sparse feature vector, i.e. we selected C with the mini-
mal number of features essential for the classification

task (defined by |E(wi/||wi||)| >0.1) while the cross-vali-
dation error deviates less than one standard error from
the minimal cross-validation error.
Having obtained a ranking of the features, the addi-

tional information needed is how many of the best-
ranked features are optimal for classification. With the
goal in mind to find a good trade-off between feature
size and error we proceed as follows: For every rank
position, we compute the cross-validation error obtained
by a classification based on the best-ranked features.
Then the number of best ranked features is selected to
be the minimum number of features yielding a cross-
validation error which deviates less than one standard
error from the minimal cross-validation error.
Obviously, the number of features depends on the

classification method. We compare a LPM, a non-linear
Support Vector Machine (SVM) with Gaussian kernel
[29] and a regularized Linear Discriminant Analysis
(RLDA) [24], where we use a recently developed
method to analytically calculate the optimal shrinkage
parameter for regularization of LDA [30,31]. Since a
nested cross-validation is computational expensive, the
hyperparameters of SVM and LPM are set by an outer
cross-validation, i.e. they are estimated on the whole
training set which leads to a slight overfitting on the
training data.
As a last step, the final classifier was trained on the

full training data (690 examples) on the selected fea-
tures, and tested on unseen test data (1080 examples).

Validation in an auditory ERP study
To evaluate the artifact detection performance beyond
the training domain, data from 18 healthy subjects were
used to test the proposed automated component classifi-
cation method in a completely different setup of an
auditory ERP study.
Experimental Setup
A group of 18 subjects of 20 to 57 years of age (mean =
34.1, SD = 11.4) underwent an EEG recording of
approx. 30 min duration using 64 Ag/AgCl electrodes of
approx. equidistant sensors. EEG was band-pass filtered
between 0.1-40 Hz. Note that this setup differs from the
RT experiment, where EEG was recorded from 121 elec-
trodes and high-pass filtered at 2 Hz.
The subjects were situated in the center of a ring of

six speakers (at ear height). During several short trials
they listened to a rapid sequence (Stimulus Onset Asyn-
chrony = 175 ms) of six auditory stimuli of 40 ms dura-
tion. The six stimuli varied in pitch and noise. Each
stimulus type was presented from one speaker only, and
each speaker emitted one stimulus type only such that
direction was a discriminant cue in addition to the
pitch/noise characteristics. Subjects had to count the
number of appearances of a rare target tone, that was

Figure 5 The feature Current Density Norm. (a) Two example
patterns with high Current Density Norm f = log ||Γz||. (b) Two
example patterns with low Current Density Norm.
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presented in a pseudo-random sequence together with 5
frequent non-target tones (ratio 1:5).
Unmixing and Classification
A PCA reduced the dimensionality of the EEG channels
to 30 PCA components. Then, the TDSEP algorithm
was used to transform the 30 PCA components into 30
independent source components. The resulting 540
source components were hand labeled by two experts
into artifactual and non-artifactual source components.
One of the experts had participated in the rating of the
RT-study. Both experts rated all independent compo-
nents. On average, the experts identified 28% neuronal
components and 72% artifactual components (expert 1:
25% neuronal components, expert 2: 31% neuronal com-
ponents). The labeled data was used to test how the
artifact classifier generalizes to new data acquired in a
different experimental setup by training the classifier
solely on the training data from the RT experiment and
applying it to this unseen data set.

Application to Motor Imagery BCI
To investigate the possibility of removing relevant
neural activity, we incorporated our automatic ICA-clas-
sification step in a motor-imagery BCI system. In this
offine analysis we investigate how an ICA-artifact reduc-
tion step affects the classification performance of a
motor imagery BCI system based on the Common Spa-
tial Patterns (CSP) method. For a detailed discussion of
CSP the reader is referred to [32].
Experimental Setup
Eighty healthy BCI-novices performed first motor ima-
gery with the left hand, right hand and both feet in a
calibration (i.e. without feedback) measurement. Every 8
s one of three different visual cues (arrows pointing left,
right, down) indicated to the subject which type of
motor imagery to perform. Three runs with 25 trials of
each motor condition were recorded. A classifier was
trained using the pair of classes that provided best dis-
crimination: CSP filters were calculated on the band-
pass filtered signals and the log-variance of the spatially
filtered signals were used to train a LDA. In a feedback
measurement subjects could control a 1D cursor appli-
cation in three runs of 100 trials [33].
Motor Imagery BCI preceded by ICA-based artifact
reduction
The steps conducted to incorporate the artifact reduc-
tion are illustrated in Figure 6. The first step consists of
a dimensionality reduction from about 90 EEG channels
in the sensor space into k = 30 PCA components. As in
the previous experiments, TDSEP was used to transform
the 30 PCA components into 30 independent source
components. Then, the component classifier trained on
the RT experiment was applied. The components were
ranked based on the classifiers output, which was used

as a surrogate for the probability of being an artifact.
Retaining a smaller or larger number of sources corre-
sponds to an either very strict or soft policy for the
removal of potential artifactual sources. We retained 6
to 30 source components of the most probable true
neural sources, and removed the others. Further analysis
was performed on the remaining sources, i.e. CSP filters
were determined on the remaining independent source
components and the log-variance of the spatially filtered
signals were used to train an LDA.
Note that ICA artifact reduction methods usually

reconstruct the EEG from the remaining neural sources.
However, CSP solves an eigenvalue problem and
requires the covariance matrix of the data to have full
rank. Thus, CSP cannot be applied to the reconstructed
EEG.
The application to the feedback measurement in a

manner that allows for real-time BCI applications is
straightforward: After un-mixing the original data
according to the ICA filters determined on the calibra-
tion measurement, the previously determined 6 to 30
sources were selected for band-pass and CSP filtering
and log-variance determination in order to form the test
data features. To estimate the influence of the artifact
reduction step on BCI performance, we compared the
classification performance with artifact reduction
(depending on the number of selected sources) with the
standard CSP procedure using no artifact reduction.

Results
In the following subsections, the results of the classifier
model selection and its additional validation on new
data sets is presented.

Model Selection: RT study
The ranking of the features obtained by applying a LPM
to the training data set of the RT study is shown in
Table 1. Figure 7 shows the cross-validation errors for
SVM, RLDA and LPM plotted against the size of the
feature sub-set used for classification. The shape of the
three curves reveals that at first, classification perfor-
mance improves when adding features to the feature set.
These features contain necessary but not redundant
information. However, adding more than a certain num-
ber of features does not improve classification perfor-
mance - these features only contain redundant
information. Classification error slightly increases when
more features are used for the classification task, which
indicates that the classifier overfits on noisy and irrele-
vant features.
The fact that LPM performance is in the range of the

RLDA classifier indicates that the feature ranking was
suitable for our analysis (and not just for the LPM clas-
sifier). Given the ranking, the minimum number of
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features yielding a cross-validation error which deviates
less than one standard error from the minimal cross-
validation error is 9 for the SVM and only 6 for the
RLDA. The SVM classifier slightly outperforms the
RLDA classifier on the training data, but since our goal
is to construct a simple linear classifier, we decided to
use the RLDA classifier with the 6 best-ranked features.
Notice that while SVM outperforms RLDA on the train-
ing data, this effect might be due to overfitting and dis-
appears on the test data, as is shown in the next section.
The 6 best-ranked features are Current Density Norm,

Range Within Pattern, Mean Local Skewness 15 s, l, 8-
13 Hz and FitError. They incorporate information from
the temporal, spatial and frequency domain.

Validation 1: RT study
Testing the trained classifier on unseen data from the
RT study (1080 examples from experimental block 3)
leads to an mean-squared error (MSE) of 8.9% only,
which corresponds to a high agreement with the expert’s
labeling. Interestingly, testing a trained SVM classifier
(based on 9 selected features) leads to an error of 9.5%.
Thus, after feature selection, the RLDA classifier per-
forms as good as a SVM classifier on unseen test data.
Let’s take a moment to interpret the obtained classi-

fier: The weight vector w is given in Table 2. It shows

that a high current density norm of a component indi-
cates an artifactual component. Recall from the defini-
tion of the Current Density Norm feature that these
components are in fact difficult to explain by a promi-
nent source within the brain. Furthermore, components
with a high range within the pattern (i.e. outliers in the
pattern), a high local skewness (i.e. outliers in the time
series), high l (i.e. a steep spectrum typical for muscle
artifacts) and low spectral power in the 8-13 Hz range
(i.e. no prominent alpha peak) are rated as artifacts by
the classifier. Interestingly, a low FitError, i.e. a low
error when approximating the spectrum by a 1/f curve,
indicates an artifact for the classifier. This is due to the
fact that components which have no alpha peak in the
spectrum are most probably artifacts. Notice that the
FitError feature in itself is not very informative, because
a high FitError cannot distinguish between components
with a large alpha peak (which contain most probably
neural activity) and components with an unusual high
spectrum in higher frequency (which indicates muscle
activity). However, in combination with the other five
features, the FitError feature carries additional informa-
tion which improve classification performance.
It is interesting to take a closer look at the perfor-

mance of single features, which is also given in Table 2.
The best one, Current Density Norm, leads to a MSE of

Figure 6 Artifact reduction step included in the standard CSP-procedure. The linear artifactreduction transformation of the original EEG into
6 - 30 signal components is calculated in the calibration phase. This transformation is applied to the feedback data.
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14.1% on the test data of the RT study. The combina-
tion of the six features from all three domains improves
the error substantially compared to even the best single
feature. This shows that features which are far from
optimal in single classification have a positive contribu-
tion in combination with other features.
Looking at the complete test set of 1080 components,

75 of them were misclassified as artifacts and 21 compo-
nents were misclassified as neural sources. A detailed

visual analysis of these cases reveals, that most of them
were mixed components that contained both, artifacts
and brain activity. Out of the 21 components which
were misclassified as neural activity only two were eye
movements and none were blinks. In some rare cases,
examples which had been mislabeled by the expert
could be identified. Figure 8 shows an example of a mis-
classified mixed component.
To quantify the classification performance on muscle

artifacts, we asked one expert to review the 574 artifac-
tual components of the test set for muscle activity. The
expert identified 388 components which contained mus-
cle activity (which corresponds to 67.5% of the artifac-
tual components and 17.2% of all the components). Out
of the 21 artifactual components which were

Table 1 Ranking of features obtained by LPM.

Feature Weight

Current Density Norm

Range Within Pattern

Mean Local Skewness 15 s

l
8-13 Hz

FitError

Border Activation

2DDFT

Spatial Mean Activation Central

Max First Derivative

Variance

k2
Spatial Mean Activation Left

Spatial Mean Activation Left Frontal

Laplace-Filter

Mean Local Variance 15 s

14-30 Hz

4-7 Hz

Mean Local Variance 1 s

Spatial Distance of Extrema

Spatial Mean Activation Occipital

k1
Maximum Amplitude

y

Spatial Mean Activation Right

Kurtosis

x

0-3 Hz

Deterministic Entropy

Spatial Mean Activation Frontal

z

Variance of Local Variance 1 s

Range

Spatial Mean Activation Right Frontal

Variance of Local Variance 15 s

Mean Local Skewness 1 s

31-45 Hz

Shannon Entropy

The diameter of the black circles visualizes the absolute LPM weights |E(wi/||
w||)| per feature after learning on the training data set. (The LPM-
hyperparameter C had been set to C = 0.1 based on the cross-validation
performance.)
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Figure 7 Cross-validation error for SVM, RLDA and LPM against
the number of best-ranked features. A 10-fold cross-validation
was repeated 5 times and standard errors are plotted. The SVM and
LPM hyperparameters were selected by an outer cross validation.
The number of 6 best-ranked features was determined for building
the final classifier, as the estimated error of the RLDA starts to
increase significantly for higher numbers of features.

Table 2 Feature weight vector and test errors.

Feature Feature
weight

Test Error
RT

Test Error
ERP

Current Density Norm 0.342 0.141 0.488

Range Within Pattern 0.574 0.151 0.186

Mean Local Skewness
15 s

0.317 0.309 0.442

l 0.569 0.177 0.144

8-13 Hz -0.219 0.166 0.138

FitError -0.286 0.424 0.640

Combined 0.089 0.147

Feature weights wi for each feature xi of the classifier H : ℝ6 ∋ x a sign(wT · x
+ b) Î {-1, 1} with 1 ≙ Artifact and -1 ≙ Neuronal activity. Test error (MSE) for
the 6 single features and for the combined classification for the RT
experiment and the ERP experiment.
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misclassified as neuronal components, only 12 contained
muscle activity (57.1%). This indicates that muscle arti-
facts were handled equally well by the classifier as other
types of artifacts.
The performance of a system on the classification task

has to be judged in the light of the fact that inter-expert
disagreements on EEG signals are often above 10% [34].
For our data, we asked one expert to re-label the 690
components of the training set, two years after the origi-
nal labeling. The MSE between the new and the former
rating was 13.2%. Thus, the prediction performance of
our proposed classification method was comparable to
the ranking of an human expert.

Validation 2: Auditory ERP study
The classifier trained on RT data and applied to 540
components of the auditory ERP study leads to an aver-
age MSE of 14.7% only for the classification of artifacts
(expert 1: 15.7%, expert 2: 13.7%). On average over both
experts, 18 of the 540 components were misclassified as
artifacts and 61.5 components were misclassifed as
neural sources (expert 1: 12 - 73, expert 2: 24 - 50).
Table 2 also shows the classification results for every

single feature and for the combined classification for the
auditory ERP data. The classification performance of the
three features Range Within Pattern, l and 8-13 Hz is
comparable to those in the RT experiment. They general-
ize very well over different experimental setups. However,
the single feature classification performance for the
remaining three features, Current Density Norm, Mean
Local Skewness 15 s, and FitError, was close to chance
level. This does not imply, however, that these features
are unimportant for the classification tasks in the com-
bined feature set. To asses the relevance of each feature
in the combined feature set, we trained a RLDA on the
ERP data using the labels of expert 1 and report the fea-
ture weights of the weight vector - Current Density Norm
0.139; Range Within Pattern 0.355; Mean Local Skewness
15 s 0.255; l 0.531; 8-13 Hz -0.710; FitError 0.059. We
found that while the feature weight of Current Density
Norm and Mean Local Skewness 15 s slightly decreased
compared to the feature vector trained on the RT data,
these were still far away from zero and thus carry infor-
mation for the classification task.

Validation 3: Application to Motor Imagery BCI
Figure 9 (left) plots the BCI classification error (1-AUC)
against the number of remaining independent

Figure 8 Example for a misclassified component . Mixed
component that combines central alpha activity and slow Mayer
Waves [35]. The human expert considered the mixed component a
neural source, but the classifier labeld it as an artifact.

Figure 9 Influence of ICA-based artifact reduction in a motor imagery BCI tested with 80 subjects. Left: box plot of classifition errors (1-
AUC) against the number of remaining independent sources compared with no artifact reduction. Right: scatter plot of classification errors (1-
AUC) of each subject when removing 10 source components vs. using all 30 source components.
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components, including one entry for the standard proce-
dure without artifact reduction. Reducing the dimen-
sionality of the data to 30 dimensions by PCA does not
affect BCI performance. Moreover, consecutively remov-
ing components does not impair BCI performance at
first, as these are artifactual components according to
the classifier. Performance breaks down only when a
strict removing policy is applied and less than about 12
sources (out of ~90 original channels) are retained,
which have been ranked as neural sources by the classi-
fier. The ranking of the classifier was confirmed by a
visual analysis of the source components. Following the
ranking of very probable artifacts to less probable arti-
facts, the inspection resulted in clear artifactual compo-
nents to components that contained mixtures of neural
and artifactual activity.
Figure 9 (right) shows a scatter plot of classification

errors (1-AUC) for each subject when removing 10
source components vs. using all 30 source components.
For this soft policy for removing artifactual components
the variance between subjects is very small, especially
for subjects with good classification rates.

Discussion
To summarize, we have constructed a subject-indepen-
dent, fast, efficient linear component classification
method that automates the process of tedious hand-
selection of e.g. artifactual independent components.
The proposed method is applicable online and gener-
alizes to new subjects without re-calibration. It delivers
physiologically interpretable results, generalizes well
over different experimental setups and is not limited
to a specific type of artifact. In particular, muscle arti-
facts and eye artifacts (besides other types) are
recognized.
The proposed artifact classifier is based on six care-

fully constructed features that incorporate information
from the spatial, the temporal and the spectral domain
of the components and have been selected out of 38 fea-
tures by a thorough feature selection procedure. After
its construction on data from a reaction time experi-
ment, the classifier’s performance was validated on two
different data sets: (1) on unseen data of a second con-
dition of the original reaction time study - here the clas-
sifier achieved a classification error of 8.9%, while
disagreement between two ratings of experts was 13.2%.
(2) on unseen data of an auditory oddball ERP study -
here the classifier showed a classification error of 14.7%
in comparison to 10.6% of disagreement between
experts. The classification error is remarkable low given
that the second study has been recorded with half the
number of electrodes, under a completely different para-
digm, and contained a significantly higher proportion of
artifactual components.

We could show that the generalization over different
EEG studies is possible, which is in line with the find-
ings of Mognon et al. [20] who demonstrated the gener-
alization of an artifact classifier to a different laboratory
and to a different paradigm. Although their method is
simple and efficient, it so far does not recognize muscle
artifacts.
Compared to the classification results of Halder et al.

[22], who reported 8% of error for muscle artifacts and
1% error for eye artifacts, the classification error of our
solution is slightly higher. A major difference between
the two approaches is the way the training data was
generated. Halder et al. reported, that subjects had spe-
cifically been instructed to produce a number of artifacts
under controlled conditions for the classifier training. It
can be speculated that such a training set contains
stronger artifacts and less erroneous labels. Nevertheless,
the results of Halder et al. were generated based on EEG
recordings of only 16 electrodes. Without adjustments,
it can only be applied to EEG recordings with 16 elec-
trodes. In contrast, our method is applicable to different
EEG setups. However, we only tested the generalization
ability over different EEG studies on electrode sets that
covered the whole scalp with approx. equidistant sen-
sors. Whether the classifier is applicable to deal with
EEG data recorded with further reduced electrode sets
remains an open question that could be analyzed in the
future.
To assess the danger of false positives introduced by

our artifact detection method, we evaluated the influ-
ence of a strong artifact reduction on the classification
performance of a standard motor imagery BCI task. An
offline analysis of data acquired from 80 healthy subjects
demonstrated that removing up to 60% of the sources
(that were ranked according to their artifact classifier
rating) did not impair the overall BCI classification per-
formance. Note that we discarded the same number of
components per subject in order to analyse the effect of
false positives. In a practical BCI-system, it would prob-
ably be beneficial to apply a threshold on the propability
of being an artifact per component instead.
While the suitability of our approach to remove large

artifactual subspaces of the data is a welcome result, an
open question remains that addresses the potential per-
formance increase by careful artifact removal. Why
didn’t the removal of few artifactual sources improve
the average motor imagery BCI performance? It is
known that CSP is rather prone to outliers if the train-
ing data set is small [36]. Strategies to overcome this
problem include the use of regularization methods for
CSP (such as invariant CSP [37] or robust CSP [38]),
the explicit removal of outlier trials or channels and reg-
ularization in the following classification step. As the
standard evaluation procedures for motor imagery data
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contained counter measures already (channel rejection
and trial rejection based on variance), and the number
of training data was considerably large, the overall influ-
ence of artifacts on the motor imagery data set probably
was small. Furthermore, we observed, that for subjects
with very good motor imagery classification rates, arti-
facts did not play any role at all. We conjecture that in
the other subjects, artifacts either obstructed the rele-
vant neural activity (cases where a slight improvement
by artifact removal was obtained) or artifacts played
some role in the control of the BCI system (cases where
artifact removal slightly reduced the performance).
In addition to the construction of an efficient, sparse

and interpretable classifier, our feature-selection metho-
dology leads to valuable insights into the question of
which features are best suited for the discrimination of
artifactual and neuronal source components. However,
it needs to be kept in mind that while the six identified
features were arguably an exceptionally suitable feature
set, these features were probably not the overall optimal
choice. Furthermore, the question remains if the
selected features generalize to other EEG data. Single
feature classification performance drops on the ERP
data for three of the six features (Current Density Norm,
Mean Local Skewness 15 s and Fit Error). However, both
Current Density Norm and Mean Local Skewness 15 s
carry important information in the combined classifica-
tion (when used together with the other four features).
Still, the non-redundant information carried by the Cur-
rent Density Norm feature drops substantially – a pro-
blem that may be caused by the use of a fixed matrix
ΓJl which had been determined on the RT setup of 115
electrodes. We found no obvious explanation for the
importance change for the Fit Error feature, however.
In any case, several insights can be gained concerning

the construction of a suitable feature set for the classifi-
cation of artifactual components in general. First, the
spatial, the temporal and the spectral domain of the
components contain non-redundant information. Sec-
ond, features that quantify aspects of the pattern’s activ-
ity distribution, not its single values, are discriminative.
Features that were ranked high in our feature selection
procedure were the range within the pattern, a feature
based on the simplicity of a source separation, features
that analyzed the spatial frequency and a binary feature
which indicates if the maximal activation is on the bor-
der of the pattern. Third, features that model the shape
of the power spectrum as a 1/f-curve as well as the
absolute spectrum in the a range are discriminative.
Fourth, features that quantify outliers in the time series
such as kurtosis, entropy, and mean local skewness,
seem to be important but redundant. We analyzed 12
such features and only one obtained a high ranking in
the feature selection. Last but not least, a linear

classification method seems to be sufficient when the
feature set is carefully constructed.
The classification difficulties of expert raters and of

proposed automatic classification methods reflect the
fundamental fact that any ICA-based artifact reduction
method depends crucially on the quality of the source
separation into clear artifactual and neuronal source
components. A good source separation method avoids
mixed components that contain both, neural and artifac-
tual activity as well as arbitrary splits of a single source
into several components. In the following, both type of
errors are briefly discussed.
Blind source separation is a difficult problem by itself,

and various approaches have been proposed to solve it
(see, e.g. [39] for a review). In the context of EEG sig-
nals, the goal is to find a source separation that mini-
mizes the amount of mixed components. The choice of
TDSEP for the pre-processing of the EEG data was
motivated by the ability of the algorithm to utilize tem-
poral structure in the data. Although this is not a
unique feature of TDSEP, this approach seemed to be
suitable for the processing of EEG data, which is com-
posed of multidimensional time series signals with tem-
poral dependencies. Moreover, research indicates that
methods based on second-order statistics might outper-
form methods based on higher-order statistics in the
removal of ocular artifacts [10,22]. Although, as Fitzgib-
bon stated, “the quality of the separation is highly
dependent on the type of contamination, the degree of
contamination, and the choice of BSS algorithm” [9], a
thorough test of various ICA methods is out of the
scope of this paper.
The second kind of error, the arbitrary split of sources

into several components, can partially be compensated
by combining the ICA with a preceding PCA step for
the dimensionality reduction. This procedure has the
additional advantage of removing noise in the data. We
chose to project the original data into a 30 dimensional
space. The value of 30 was based on rough experience
and on a quick visual inspection of the data, and was
probably not the optimal choice. An improvement of
the quality of separation might be possible by optimiz-
ing the dimensionality reduction, but the effort was not
undertaken here. Future work is needed to analyze the
influence of dimensionality reduction on source
separation.
To conclude, we hope that the source component

classification method presented in this study delivers a
substantial contribution for the BCI community and the
EEG community in general, as a reliable and practical
tool for the removal of artifacts. To support the com-
munity, to encourage the reproduction of our results, or
allow for re-labeling of data we provide the readily
trained classifier, an implementation of the feature
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extraction routines together with example scripts, the
extracted features of the RT data, a visualization of 1770
components together with the expert labels used for the
classifier training, and a visualization of components
misclassified by our method (see Additional File 1 -
MatlabCode; Additional File 2 - TrainComponents;
Additional File 3 - TestComponents; Additional File 4 -
Misclassifications).

Additional material

Additional file 1: MatlabCode. A Matlab implementation of the feature
extraction routines together with example scripts, the readily trained
classifier and the extracted features for all the components of the RT
data set.

Additional file 2: TrainComponents. Visualization of the 690
independent components in the training RT data, together with the
expert’s labels.

Additional file 3: TestComponents. Visualization of the 1080
independent components in the RT test data, together with the expert’s
labels.

Additional file 4: Misclassifications. Visualization of the 75 + 21
misclassified components of the RT test data
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