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Abstract

Background: Electrodermal reactions (EDRs) can be attributed to many origins, including spontaneous fluctuations
of electrodermal activity (EDA) and stimuli such as deep inspirations, voluntary mental activity and startling events.
In fields that use EDA as a measure of psychophysiological state, the fact that EDRs may be elicited from many
different stimuli is often ignored. This study attempts to classify observed EDRs as voluntary (i.e., generated from
intentional respiratory or mental activity) or involuntary (i.e., generated from startling events or spontaneous
electrodermal fluctuations).

Methods: Eight able-bodied participants were subjected to conditions that would cause a change in EDA: music
imagery, startling noises, and deep inspirations. A user-centered cardiorespiratory classifier consisting of 1) an EDR
detector, 2) a respiratory filter and 3) a cardiorespiratory filter was developed to automatically detect a participant’s
EDRs and to classify the origin of their stimulation as voluntary or involuntary.

Results: Detected EDRs were classified with a positive predictive value of 78%, a negative predictive value of 81%
and an overall accuracy of 78%. Without the classifier, EDRs could only be correctly attributed as voluntary or
involuntary with an accuracy of 50%.

Conclusions: The proposed classifier may enable investigators to form more accurate interpretations of
electrodermal activity as a measure of an individual’s psychophysiological state.

Background
Electrodermal activity (EDA) is one of the most popular
methods of measuring arousal, attention and orientation
in fields such as psychology [1], emotion recognition [2]
and psychophysiology [3]. It consists of a slowly evolving
baseline and quick, transient changes known as electro-
dermal reactions (EDRs), defined as increases in EDA of
over 0.05 μS within five seconds [4]. EDRs are a result
of cholinergenic stimulation of the sweat glands, causing
increases in electrical conductance of the skin. These
fluctuations in conductivity are interpreted as a measure
of overall arousal of the sympathetic nervous system.
While amplitude, latency and fall time are routinely
reported, reporting the stimulus of an EDR remains
challenging. In particular, it is difficult to discern among
uncued increases in EDA due to: (1) spontaneous
increase, often referred to as a non-specific EDR; (2)
result of internal stimulation (e.g. mental stimulation, a

large amplitude inspiration, biting the tongue); or (3)
result of external stimulation (e.g. startling noises,
changes in visual stimulation)[3,5-8].
Often, it is important to be able to attribute an EDR

to one of the three aforementioned sources. For exam-
ple; in the field of polygraphy, EDA is often measured as
suspects are administered a series of questions, one of
which pertains to knowledge of the details of the crime
(i.e. the Guilty Knowledge Test or the Concealed Infor-
mation Test). An EDR succeeding a crime-relevant
question indicates that the suspect is lying, and can be
used to detect 94.2% of innocent suspects and 83.9% of
guilty suspects, under controlled conditions [9]. How-
ever, EDRs can be voluntarily generated using a variety
of physical and mental activities, significantly decreasing
the accuracy of the test. Clearly, having a method of dis-
tinguishing the involuntary guilty reaction from the
voluntary mental activities would significantly enhance
the reliability of polygraphy examinations. Differentia-
tion between voluntary and involuntary electrodermal
activity may also useful in the field of access pathways
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for individuals with severe and multiple disabilities.
Numerous options have been explored to enable indivi-
duals without speech or reliable motor movement to
interact with the environment, among them, the use of
electrodermal activity as an access pathway [10,11].
While voluntarily generating EDRs to indicate intent
remains a promising access pathway for these indivi-
duals, the use of this signal for precise and reliable com-
munication has been contested on the grounds of high
incidences of metabolic noise [12]; the ability to distin-
guish involuntary EDRs from voluntary ones would
greatly enhance the robustness of this access pathway.
Despite enormous advancements in the procedures

and equipment involved in recording electrodermal
activity, Landis’s [13] comments eighty years ago on the
inability to attribute psychological significance to a sin-
gle EDR are still applicable today. He provides an exten-
sive list of EDR sources, illustrating the magnitude of
the challenge of determining the origin of a single
observed EDR. To address this challenge, many studies
have been conducted in a controlled environment,
enabling the assumption that all observed EDRs are a
result of varying the stimulus of interest [6,14-16]. The
validity of this assumption is often not discussed; in
addition, many studies occur in environments that are
not controlled. In these situations, Cacioppo and Tassin-
ary [17] have suggested that in order to develop clear
psychophysiological inferences of one signal, it is neces-
sary to consider other physiological signals that may
vary with the psychological event of interest. Studies
that have examined patterns of physiological signals
have clearly established that respiratory and cardiac
artefacts also vary with many of the aforementioned
EDR sources [18,19]. To date, numerous EDA studies
have followed Cacioppo and Tassinary’s suggestion, tak-
ing respiratory and cardiac signals into consideration in
one of three ways:
1) Cardiac and respiratory signals are recorded simul-

taneously with electrodermal activity. However, all sig-
nals are analyzed independently, not taking into account
the interaction among the signals [1,7,20,21].
2) The interaction among cardiac, respiratory and

EDA signals is acknowledged. However, procedures for
removing cardiac and respiratory artefacts are not
described [22-24].
3) Cardiac, respiratory and EDA signals are recorded

simultaneously. Features from each signal are extracted
independently and used as independent inputs into a
classifier that determines the overall source of all the
EDRs recorded within the classification period
[2,3,17,25-30].
The first two methods do not sufficiently account for

the interaction between these physiological signals. The
third method follows in the spirit of Cacioppo and

Tassinary, improving classification accuracy by account-
ing for the changes in more than one physiological sig-
nal. However, while this third method is useful for
classifying an individual’s psychophysiological state
based on a long term recording, it is unable to deter-
mine the source of a single EDR, a process necessary for
the real-time application of polygraphy and access men-
tioned earlier. To date, few efforts have been made
towards single EDR discrimination; Crone et. al [31]
used the respiratory signal to eliminate heart rate and
skin conductance changes associated with gross respira-
tory manoeuvres, and Schneider et. al [32] have devel-
oped a set of rule-based guidelines to eliminate
respiration-related artefacts in EDA recordings.
While the aforementioned techniques exist to elimi-

nate respiratory-related artifacts from the EDA signal,
they typically involve manual, offline analysis of the
respiratory signal, and are unsuited for real-time EDR
classification. Additionally, there currently exists no
means of distinguishing voluntarily generated EDRs
from involuntary EDRs using respiratory information
alone. The purpose of this study is to develop a classifier
that uses information from non-EDA physiological sig-
nals, namely, respiration and heart rate, to classify the
source of a single EDR into one of two categories: (1) a
voluntarily generated EDR, including those generated by
internal physiological processes such as inspiration and
internal mental processes such as music imagery; and
(2) an involuntary EDR, including those generated by
external startling stimuli and non-specific EDRs.

Methods
Participants
A convenience sample of eight able-bodied individuals
(3 males, mean age 26 ± 3 years) participated in this
study. Participants did not have conditions that may
have affected their physiological signals and/or their
ability to perform the required tasks, including meta-
bolic, cardiovascular, respiratory, psychiatric, or drug- or
alcohol-related disorders. Participants also had normal,
or corrected to normal, hearing, were electrodermally
labile and had a periodic baseline respiration pattern.
Ethical approval was received from the relevant institu-
tions and all participants provided written consent.

Instrumentation
Three peripheral physiological signals were recorded
from each subject using the ProComp Infiniti data
acquisition system (Thought Technology). These were:
(1) electrodermal activity, using two Ag/Ag-Cl gel-less
electrodes attached to the medial phalange of the second
and third fingers; (2) respiration, using a piezoelectric
belt positioned around the subject’s thoracic cavity; and
(3) blood volume pulse, measured using an infrared
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sensor attached to the subject’s fourth finger. All sensors
were placed on the subject’s non-dominant hand, and
sampled at a frequency of 256 Hz. No additional filters
or amplifiers other than those intrinsic to the ProComp
Infiniti hardware were employed. Subjects were blind-
folded and asked to don a pair of soundproof ear covers
over a set of headphones, to ensure that the external sti-
muli being presented to each subject were fully con-
trolled by the experimenter. Typical signals that were
recorded from all sensors are presented in Figure 1.

Protocol
Participants were seated comfortably in front of a compu-
ter as the sensors were attached. Prior to the data collec-
tion, participants were asked to choose several songs of
their own preference and of the same valence (i.e. happy
or sad), which they felt elicited a strong emotional reac-
tion. The participants were informed that when cued in
the experiment, they would be required to perform music
imagery of one of their chosen songs, in other words, to
sing the song vividly in their head. They were additionally
informed that the purpose of the imagery was to elicit an
emotional reaction, thus, when they began to feel emo-
tionally habituated to their current song, they were
requested to switch to another song. Visual inspection of

the recorded physiological signals confirmed that music
elicited sympathetic excitation in all participants. After
choosing their songs, the participants performed the four
sets of trials outlined in Table 1. The order of the trial pre-
sentation was randomized for each participant, and the
participants performed the activities over two separate
days to ensure maximum concentration and focus during
each trial.
In Block A trials (quiet resting trials), subjects were

instructed to relax and clear their minds of thought,
keeping their bodies as still as possible. During Block B
trials (music imagery), the investigators cued subjects
every 20 seconds via a gentle tap on their arm to alter-
nate between quiet resting and performing music ima-
gery. For Block C trials (quiet resting with startles),
participants received the same set of instructions as in
Block A. At the time points indicated in Table 1, partici-
pants were presented with one of five auditory startling
stimuli through their headphones. Characteristics of
these stimuli are presented in Table 2. During Block D
trials (music imagery with startles), participants received
the same instructions as Block B trials, and one of the
five auditory stimuli in Table 2 were presented at the
time points indicated in Table 1. Prior to Block A and B
trials, participants were asked to take 3 deep breaths

Figure 1 Typical signals recorded from the Thought Technology equipment. Raw electrodermal activity, respiration and heart rate signals
recorded from the ProComp Infiniti hardware.
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over the course of 1 minute so as to elicit inspiratory-
induced EDRs. Trials in all four blocks were conducted
under two conditions: (1) in silence, and (2) in the pre-
sence of a continuous background noise (an air condi-
tioner), yielding a total of 16 recorded trials. The
presence of background noise has been noted to
enhance startle reactivity in humans [33]; this condition
was included to develop a classifier trained on EDRs
generated in both controlled and naturalistic
environments.

Proposed Cardiorespiratory Classifier
The following section will present the three elements
that constitute the proposed cardiorespiratory classifier
of electrodermal activity (Figure 2).

Automatic EDR detection
To detect EDRs, we employed the rule-based classifier
proposed by Blain et al. [10]. Here, we only review the
main concepts of the method and refer the reader to
the original article for additional details. The gradient of
baseline electrodermal activity is predominantly nega-
tive; during the initiation of an electrodermal reaction,
this gradient becomes sharply positive. As a result, the
first difference of the EDA signal is a discriminatory fea-
ture that indicates the presence of electrodermal reac-
tions. In particular, the mean (C) of the distribution of
the first difference of the EDA signal over a one second
window can be used to detect the presence of an EDR
[10]; this process is summarized in Figure 3.
The threshold (D), as referred to in Figure 3, must be

determined for each individual experimental protocol,

and is defined such that:

If C < D, the EDA signal from (ti, ti + 1) contains no
EDRs.
If C ≥ D, the EDA signal from (ti, ti + 1) is part of
an EDR.

D was chosen via an receiver operating characteristic
analysis to simultaneously maximize sensitivity and spe-
cificity of EDR detection. To this end, a typical EDA sig-
nal was selected at random from a Block A trial of one
of the participants. In this signal, five EDRs of varying
amplitudes were identified manually. A maximum sensi-
tivity and specificity of 100% were achieved at a value of
D = 4 x 10-4. Using this threshold, a sensitivity and spe-
cificity of 100% were achieved for all trials of each of
the eight subjects. This method of identifying EDRs is
similar in principle to other methods that use first deri-
vatives to define the start point, peak and end point of
an observed EDR, but is more general in its abilities
[34]. While it has the same ability to identify EDRs as
the algorithm proposed by Frantzidis et al., this method
does not have the ability to define the characteristics of
the response.

Respiration Filter
Having presented a method to detect EDRs, we now
introduce a respiratory filter whose purpose is to
remove respiration-induced EDRs. Deep inspirations are
known sympathetic stimuli - subjects are often asked to
take a deep breath while EDA equipment is being set up
and calibrated, as it is an established method of generat-
ing an EDR [6,18]. The characteristics of the respiration
signal as recorded via a piezoelectric belt have a large
variance not only between subjects, but within subjects
as well. In addition to natural circadian variations of
respiratory patterns, the position and tension of the belt
is not identical between trials, resulting in a large intra-
subject variability. As a result, specific features cannot
be used to classify a deep inspiration from typical
respiration patterns. Instead, we propose to detect the
point at which respiration patterns deviate significantly
from a baseline respiration model developed for each

Table 1 Summary of Experimental Trials

Trial Block Trial Description Total Time Time of Presentation of Startles (s) Trials without noise Trials with noise Total trials

A Quiet resting 2 min, 10 s N/A 2 2 4

B Music imagery 3 min, 40 s N/A 2 2 4

C Quiet resting with startles 2 min, 10 s 20, 45, 65, 90, 110 2 2 4

D Music imagery with startles 3 min, 40 s 1) 31, 88, 111, 149, 191
2) 28, 82, 91, 128, 151
3) 10, 31, 72, 150, 189
4) 14, 89, 111, 170, 190

2 2 4

Table 2 Auditory Startle Sound Characteristics

Sound Intensity (dB)

Dog bark 80 ± 2

Glass shattering 91 ± 2

Door slam 83 ± 3

Cough 79 ± 1

Sneeze 82 ± 1
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Figure 2 Overview of the cardiorespiratory classifier. Electrodermal reactions are identified from the raw EDA signal by the automatic EDR
detector. These EDRs are subsequently tested by the respiratory and cardiorespiratory filters to determine whether they were voluntarily or
involuntarily generated by the participant.

Figure 3 Automatic EDR detection algorithm. The mean of the histogram of the derivative of the EDA signal (C) is compared to the
threshold (D) to determine whether a one second interval of EDA contains an EDR [10].
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session, for each participant. Details of our algorithm
follow below.
The algorithm uses the respiration length line (RLL)

to characterize each second of the respiration signal.
RLL combines the measures of respiration rate and
amplitude, and is a common measure of respiration sup-
pression [3]. A decreased respiration rate and a decrease
in respiration amplitude result in a shorter length line.
Let the respiration signal generated by the expansion
and contraction of the lung cavity be represented by r(t)
and the sampling frequency of the signal be represented
by f (in this protocol, f = 256 Hz). The respiration
length line is produced by summing the Euclidean dis-
tance between successive points within a five second
window of r(t), as presented in equation (1).

RLL t r t s r t s ds
f

( ) [ ( ) ( )]         2 2

0

5
1

 where (1)

This single measure of RLL is disproportionately
affected by the starting point of measurement on the
curvilinear respiration pattern. Following the solution
outlined by Ben-Shakhar et al. [3] we address this pro-
blem by recalculating the RLL within a five second win-
dow 10 more times, each time beginning the
measurement 0.1 seconds after the previous calculation.
The average of these 10 measurements yields RLLavg(t)
for each second of the recorded signal, as illustrated in
equation (2).

RLL t RLL t iavg

i
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
1

10
0 1

0

9

(2)

The 5% trimmed mean (μtrim) and trimmed standard
deviation (strim) for the resultant RLLavg(t) signal are
then calculated for the baseline signals, yielding robust
measures of the distribution of respiration length lines
during quiet breathing [35]. We define the respiratory
threshold ψ as ψ = μtrim ± 3*strim. For the remainder of
the trials, each RLLavg(t) is compared against this
respiratory threshold, such that if |RLLavg(t)| > ψ, the
respiration signal contained in the 5 second window
beginning at time t contains an irregular breath, i.e., one
that departs from baseline respiration.

The Bootstrap Variability Cardiorespiratory Classifier
Cardiorespiratory cross-correlation
Having screened out respiration-induced EDRs, we now
present a filter to classify the remaining EDRs as volun-
tary (i.e., due to music imagery) or involuntary (i.e., due
to auditory startle or spontaneous EDA fluctuations).
The classification of EDRs into voluntary or involuntary
responses requires several assumptions. The source of

some EDRs, such as those generated by a deep inspira-
tion, can be verified from the record of other physiologi-
cal signals. However, in most other situations, the
source of the EDR is unknown, and we must classify the
EDRs based on the assumption that the participant is
fully compliant, engaging in the specified mental task.
Thus, in this study, all EDRs generated during periods
of rest were assumed to be involuntary, and all electro-
dermal reactions generated during periods of music ima-
gery were assumed to be voluntary. The presented
cardiorespiratory filter tracks respiratory sinus arrhyth-
mia (RSA), a phenomenon whose physiological origins
are still debated wherein heart rate fluctuations at
respiratory frequencies are observed in healthy humans
[36,37]. The filter is based on the premise that we will
observe a momentary lapse in the RSA of an individual
during the generation of voluntary EDRs; in other
words, voluntarily generated EDRs will be accompanied
by a marked decorrelation between heart rate and
respiration. The proposed method creates a statistical
model of the expected correlation of the heart rate and
respiration data while the individual is at rest, and using
bootstrap prediction bands, determines whether a signi-
ficant decorrelation between the two signals has
occurred. This decorrelation is attributed to non-
respiratory influences including the imagery and startle
responses of the participants.
Let R(t), 0 ≤ t ≤ T represent the raw respiration signal,

where T is the duration of the signal in seconds. Instan-
taneous heart rate, HR(t), in beats per minute (bpm),
was computed by inverting the interbeat intervals
extracted from the raw blood volume pulse (BVP) signal.
The first derivative of the respiration signal R’(t) was
estimated by the first difference of the sampled version
of R(t). The relative heart rate changes, HR′(t), were cal-
culated as follows,

HR t
HR t HR t

HR t
’( )

( ( ) ( ))
( )

     100
0

 t T (3)

where δ is defined as in equation 1. Both HR’(t) and
R’(t) were standardized to 0 mean and unit variance,
yielding in HRz(t) and Rz(t), respectively.
The two second cross-correlation in the mth segment,

Cm(t), between HRz(t) and Rz(t) was calculated as

C t HR t s R s dsm z z( ) ( ) ( ) 


1

1

(4)

where m - 1 ≤ t ≤ m + 1, m = 1,2,...,M and M = d T -
δ e - 1 with d e denoting the ceiling function [38]. In
other words, the cross-correlation between HRz(t) and
Rz(t) is calculated within a two-second sliding window
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with 50% overlap between successive windows. In the
above, C1(t) is the cross-correlation between HRz(t) and
Rz(t), from 0 to 2 seconds; C2(t) is the cross-correlation
between the same two signals from 1 to 3 seconds, and
so on. Note that HRz(t) Rz(t) signals change over similar
timescales so that their cross-correlation is meaningful.
Therefore, for a signal of duration T seconds, we will

have T two second cross-correlation curves. These T
curves generated from the resting trial data were
assumed to represent the typical correlation between
heart rate and respiration in the absence of both envir-
onmental and internal stimuli. Following the formula-
tion of Lenhoff et al. [39], we use these resting trial
correlation curves to generate a resting model for the
cardiorespiratory correlation, and use prediction bands
to determine whether or not a test correlation curve
belongs to the same population from which the resting
curves were generated. If the test curve falls within the
prediction bands, i.e., belongs to the population of rest-
ing trials, we conclude that the individual was in a rest-
ing state; if the test correlation curve falls outside of the
prediction band, we conclude that the individual was
affected by an internal or external stimulus. The cross-
correlation curves are low harmonic curves, conse-
quently, this method is reliable using as few as 25 curves
[39]; the authors recommend a minimum of T = 30 sec-
onds to generate a valid population model. The genera-
tion of the population model and the prediction bands
is detailed below.
Generation of resting correlation curve model
The T curves generated from the resting trials are
viewed as perturbations of a true curve that can be
represented by the finite Fourier sum:

f t kt ktk

k

K

( ) ( cos( ) sin( ))  

    2 2

1

(5)

where K is 512, and 0 ≤ t ≤ T. In equation (6), μ is a
constant that represents the overall mean of the cardio-
respiratory correlation curve, and the form of f(t) stipu-
lates that f(0) = f(T) = μ. For each correlation curve, Cm

(t), we compute its Fourier representation Ĉm(t) as fol-
lows

ˆ ( ) ( cos( ) sin( )) { , , , , }, ,C t kt ktm m m k m k

k

K

   

    2 2 1 2 3

1

m T (6)

where am,k and bm,k are the coefficients for the Four-
ier approximation of the mth curve. For each Ĉm(t), we
gather these fitted coefficients into a vector Wm of
length 2K + 1:

Wm m m m K m m K ( ), , , ,    1 1  (7)

The means of each of the coefficients in the T
instances of Wm (1 ≤ m ≤ T) were calculated and gath-
ered into a 1 × (2K + 1) vector denoted W ,

W WM m
m

M



1

1
(8)

and we also define vector ℓ(t) of length 2K + 1,

( ) [ , cos( ), sin( ),..., cos( ), sin( )]t t t Kt Kt 1 2 1 2 1 2 2    (9)

From these two vectors, the sample mean curve M(t)
can be estimated as

M t W tt( ) ( )   (10)

where the superscript t denotes the transpose. The
variability of M(t) is represented by S(t) and defined as,

S t

t t Wi W t Wi W t
i

M

M
( )

( ) [ ( ) ( )] ( )


 


 

1
(11)

The mean and variability curves, i.e., M(t) and S(t),
define the resting curve model for the participant.
Generation of prediction bands
Now that we have a resting cardiorespiratory correlation
curve model, we need to define its boundaries of mem-
bership. In other words, when do we consider a correla-
tion curve as belonging to the resting model? One way
to define this membership is to construct prediction
bands around the mean curve [39-41], such that curves
lying within the prediction bands are considered as
belonging to or arising from the resting model.
The following procedure is used to generate predic-

tion bands. As above, suppose that we have M cross-
correlation curves between resting heart rate and
respiration signals. We randomly select a bootstrap
sample of M - 1 curves, with replacement, from this
population of M resting correlation curves. This is
repeated NB times, where NB > > 1. For the ith boot-
strap sample, i = 1,...,NB, we calculate the mean and
variability curves, Mi(t) and Si(t), as in equations (10)
and (11). For each bootstrap sample, let Ĉj(t) represent
the Fourier approximation to the cross-correlation
between the jth respiration and heart rate signals, j =
1,...,M - 1. We then calculate the standardized differ-
ence, Dij(t), between the jth curve, Ĉj(t), from the ith

bootstrap sample and the mean curve of the same boot-
strap sample, Mi(t),

D t
Cj t Mi t

Si t
j Mij( )

| ( ) ( )|

( )
,...,


 


1 1 (12)
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For the ith bootstrap sample, i = 1,...,NB, we obtain Di*
as the maximum difference over all M - 1 curves, over
time.

D D ti
j t

ij
* max max ( )   (13)

Given a desired confidence level 100(1-a)%, we chose
the constant θ, so that

P D
i

i{max }*    1 (14)

where a is 0.05 in the present study. In other words, θ
is chosen such that there is a 95% probability that the
maximum standardized difference between any curve
and the mean curve is less than or equal to θ. Finally,
the upper and lower 95% prediction bands were calcu-
lated as

U t M t S t

L t M t S t

( ) ( ) ( )

( ) ( ) ( )

  
  




(15)

where M(t), S(t) and θ are given by equations (10),
(11) and (14), respectively. Any correlation curve
bounded by U(t) and L(t) is considered as arising from
the resting curve model given by M(t) and S(t). A rest-
ing model and the associated prediction bands were esti-
mated individually for each participant.
Testing the membership of unknown cardiorespiratory data
For a given participant, each two seconds of cardiore-
spiratory data from the non-resting trials (blocks B, C,
and D) were tested against the prediction bands of the
resting model, thereby determining whether or not
these data resembled the resting cardiorespiratory cor-
relation curves. In essence, we are thus determining
whether or not external influences are mediating car-
diac activity.
For each T seconds of data, where T represents the

total length of the trial in seconds, we calculate Q(s),
0 2≤ t ≤ T and t - 1 ≤ s ≤ t + 1, which is the Fourier
approximation to the cross-correlation between a two
second segment of HRz(t) and the corresponding two
second segment of Rz(t) from a non-resting trial. We
then calculate the standardized difference, D(s), between
the unclassified correlation curve and the resting mean
curve,

D s
Q s MR s

SR s
( )

| ( ) ( )|
( )

 
(16)

where MR and SR are the mean curve and the stan-
dard deviation curves estimated from the resting trials.
If the maximum absolute standardized difference from
the resting mean, max ( )

s
D s is less than or equal to θ,

that is, the unclassified correlation curve is bounded by
the upper and lower prediction bands, then the test seg-
ment of data is classified as resting state. Otherwise, the
test segment is considered as being influenced by exter-
nal processes. For convenience, we created an indicator
pulse spanning the duration of the test signal,

I t
D s

( )
, ( )

,








0

1

        max

        otherwise
s


(17)

where, as before, 0 ≤ t ≤ T and t - 1 ≤ s ≤ t + 1. This
indicator function is used in Section 4.4 to determine
the source of a single, observed EDR.

Classifier Evaluation
All detected EDRs were subsequently validated by visual
inspection. In addition, each electrodermal activity signal
was visually inspected for undetected EDRs. Here, an
EDR was defined as an increase in the EDA signal of
over 0.02 μS within five seconds. When the automatic
detection algorithm flagged an EDR, the heart rate and
respiratory signals were segmented beginning two sec-
onds preceding the onset of EDR detection and ending
one second following the onset of EDR detection. This
window was chosen to account for the difference
between the latency of the heart rate response (0.25 to
2 seconds) [42], and the latency of an electrodermal
response (1.3 to 2.5 seconds) [43]. Segmentation thus
yielded a 3 second segment for analysis by the cardio-
respiratory classifier described in Section 4.3, generating
a corresponding indicator function I(t). If I(t) = 1 (i.e.,
significantly different from the resting model) at any
time within the segmented signal, the detected EDR was
classified as voluntary, otherwise, it was classified as
involuntary. For each subject, the number of true posi-
tives (TP), i.e., correctly classified voluntary reactions,
including EDRs generated by a deep inspiration; true
negatives (TN), i.e., correctly classified involuntary reac-
tions, including EDRs generated from a startling stimu-
lus; false positives (FP), i.e., incorrectly classified
voluntary reactions; and false negatives (FN), i.e., incor-
rectly classified involuntary reactions were recorded.
From these values, the positive predictive value (PPV),
negative predictive value (NPV) and overall accuracy of
the classifier were calculated.
Classification results were compared for EDRs gener-

ated during trials conducted in silence and trials
conducted in the presence of a background noise.
These two conditions were compared with a Pearson’s
chi-squared test (df = 1) to determine whether classifi-
cation accuracy differed significantly between trials
conducted in the presence and absence of background
noise.

Blain et al. BioMedical Engineering OnLine 2010, 9:11
http://www.biomedical-engineering-online.com/content/9/1/11

Page 8 of 13



Results
Automatic EDR Detection
In all the signals across all subjects, 100% of the EDRs pre-
sent in the signals were detected, and no false positives
were generated. The number of detected EDRs varied
between participants; these results are presented in Table 3.

Respiratory and Cardiorespiratory Filter Parameters
The respiratory and cardiorespiratory patterns varied
significantly between participants. As a result, the
threshold values ψ for the respiratory filter and θ for the
cardiorespiratory filter were unique to each individual;
these values are listed in Table 3.

Classification Results
PPV and NPV for each participant were calculated
according to the truth set defined by the rules presented
in Section 4.4. These results along with the overall accu-
racy of single EDR classification are presented for each
participant in Table 4.
Examples of classified trials are presented in Figure 4.

Figure 4a presents a trial wherein the individual alter-
nated between 20 second periods of rest and activity. In
this trial, each detected EDR was correctly classified
with the exception of that generated in the final imagery
period. Figure 4b presents a baseline trial during which

startling noises are presented; four of the five audio sti-
muli produced a startle EDR, all of which were correctly
classified as involuntary reactions. The classifier also
correctly identified the two spontaneous EDRs in this
trial as involuntary. In Figure 4c, the participant alter-
nated between rest and music imagery while audio sti-
muli were presented at random intervals; two of the
audio stimuli (at 10s and 72s) generated EDRs, which
were correctly classified as involuntary. Voluntary EDRs
were correctly classified in all imagery periods with the
exception of the EDR at 100s. All involuntary EDRs
were also correctly identified.

Effect of Presence of Background Noise
Trials conducted in silence were compared to trials con-
ducted in the presence of low-level background noise for
each participant. Table 5 illustrates that for all except
one participant, there was no significant difference in
classification accuracy. However, for partcipant 2, EDRs
generated during trials conducted without background
noise were more accurately classified (p = 0.02) than
those generated in the presence of background noise.

Discussion
This study proposes a method of classifying single EDRs
as voluntary or involuntary by utilizing cardiorespiratory
signals that are recorded simultaneous with electroder-
mal activity. Distinguishing between resting and active
states without the help of the classifier would require the
assumption that all observed EDRs were generated due
to mental imagery. In this situation, classification of the
EDA signal would decrease in accuracy from 79 ± 7% to
50 ± 8%, demonstrating that a cardiorespiratory classifier
based on the respiration length line and the cross-corre-
lation of heart rate and respiration significantly improves
the ability to determine the source of an observed EDR.

Classification Assumptions
The participants recruited to this study were not trained
in mental control techniques, such as meditation.

Table 3 Individual Cardiorespiratory Classifier Parameters

Subject Number of Detected EDRs Respiratory Threshold (ψ) Cardiorespiratory Threshold (θ)

Lower Upper

1 74 0.004 0.01 0.2634

2 80 0.004 0.009 0.1766

3 111 0.004 0.008 0.1988

4 57 0.003 0.014 0.2523

5 88 0.003 0.009 0.1855

6 31 0.003 0.007 0.2252

7 100 0.003 0.005 0.2451

8 33 0.003 0.018 0.1700

Table 4 Cardiorespiratory filter classification results

Participant PPV NPV Accuracy

1 77% 83% 80%

2 79% 82% 80%

3 82% 74% 78%

4 71% 73% 72%

5 69% 71% 72%

6 94% 92% 90%

7 82% 86% 83%

8 67% 83% 70%

Average 78 ± 9% 81 ± 7% 78 ± 7%
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Figure 4 Classification of EDRs. Classification of EDRs within: a) an imagery trial (Block B); b) a quiet resting trial with startles (Block C); and c)
an imagery with startles trial (Block D). Solid vertical lines denote the times at which audio startles were presented.
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Therefore, it is likely that at some point during the peri-
ods of rest, the participants’ minds were not entirely
cleared, and a mentally stimulating thought caused an
EDR. This EDR would be preceded by a decorrelation
between the respiratory and cardiovascular signals, as it
was voluntarily generated by the mental stimulus. How-
ever, as it occurred during the resting period, this EDR
would be considered misclassified under the assumption
that all EDRs generated during a resting period were
involuntary. The converse situation may also occur;
spontaneous EDRs are generated 7.5 times every minute
in the average population [5]; it is likely that during an
imagery period, the participant experienced a sponta-
neous EDR that was not preceded by a decorrelation
between respiratory and cardiovascular patterns. The
presented classifier would correctly label this reaction as
involuntary, yet under the study assumptions, this classi-
fication would be erroneous, as the EDR occurred dur-
ing an imagery period. While the authors recognize this
problematic situation, data have not been gathered to
provide any further information on the true source of
the electrodermal reaction. Consequently, the assump-
tion of full compliance to the required mental task is
necessary, though as a result, the accuracy of the pre-
sented classifier is likely underestimated.
One recurring situation highlights the potential classi-

fication errors due to this assumption. Often, when cued
to switch from a period of music imagery to a period of
rest (ex. during experimental blocks B and D), an elec-
trodermal reaction is generated within the first five sec-
onds of the rest period, and is classified as a voluntary
reaction. As it occurs during a rest period, this EDR is
considered to be a false positive. However, many partici-
pants reported that it was difficult to stop the music
imagery process on cue, and that the act of ceasing to
perform music imagery required more effort than initi-
ating music imagery. This effortful act of abruptly termi-
nating music imagery may well result in a voluntary
EDR as the resting process is initiated. Taking this into
consideration, if EDRs that occur within the first five
seconds of an imagery to rest transition are considered

voluntary, the positive predictive value significantly
increases from 77% ± 8.7% to 87% ± 8.7% (p = 0.04),
illustrating that the current reported classification accu-
racy is likely an underestimation of the true perfor-
mance of the classifier.

Effects of Background Noise and Time
In their 1963 study on animal startle reactions, Hoffman
and Flesher serendipitously discovered that the back-
ground noise they were using to mask unpredictable
environmental sounds in fact had an enhancing effect on
startle reactivity in the rat [44]. This result has been
replicated many times, and recently, the same phenom-
enon of increased startle reactivity during increased back-
ground noise has been demonstrated in humans [33]. In
the context of these previous studies, it is intriguing that
the results indicate that for seven of the eight partici-
pants, the classifier performs equally well for startle EDR
generated under both conditions. This can potentially be
explained with Holand’s finding that a component of the
overall startle response included an increase in blood
pressure and heart rate [45]. The results from this pre-
sent study suggest that while the magnitude of the startle
reaction may be enhanced in the presence of background
noise, the classifier remains robust against these changes,
and is able to perform equally well under both condi-
tions. In the case of participant 2, the classifier performed
significantly better under conditions of silence. This dif-
ference may be attributed to either: a) distraction from
the music imagery task in the presence of background
noise or; b) a different pattern of cardiovascular startle
response in the presence of background noise for this
particular individual. Further investigation of this partici-
pant’s responses to determine the source of the preferen-
tial classification is warranted.

Limitations
While the ability for the classifier to distinguish between
voluntarily and involuntarily generated EDRs appears
promising, the results must be interpreted in light of the
limitations of the study design. The classifier was tested

Table 5 Accuracy of classifying EDRs generated with and without background noise

Participant Without background noise (total # EDRs) With background noise (total # EDRs) p

1 78.3% (60) 92.9% (14) 0.517

2 85.7% (49) 71.0% (31) 0.02

3 78.9% (71) 77.5% (31) 0.84

4 69.4% (49) 87.5% (8) 0.27

5 71.0% (69) 73.7% (19) 0.81

6 91.3% (23) 87.5% (8) 0.61

7 78.7% (47) 80.7% (57) 0.25

8 70.0% (20) 69.2% (13) 0.95
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on eight, able-bodied individuals within a narrow age
range, who may not have demonstrate significant differ-
ences in their patterns of electrodermal activity. This is
illustrated in the fact that parameter D, the threshold
for detecting an EDR, which was determined from one
randomly chosen subject was 100% suitable for the
remaining 7 subjects. Electrodermal activity has been
known to vary with age, and among individuals with dif-
ferent disabilities. Further studies are needed to deter-
mine suitable parameter values for EDR detection in
individuals outside the demographics of those who par-
ticipated in this study. Furthermore, all physiological sig-
nals were recorded under controlled environmental
conditions (minimal radio frequency interference). The
values of the parameters presented in this study are thus
specific to uncontaminated physiological signals. Appli-
cation of the proposed classifier amid noisy experimen-
tal conditions would require specific removal of the
offending artefacts.

Significance of Study
In fields where electrodermal activity is used as a mea-
sure of the state of an individual’s sympathetic nervous
system, some means of artifact control must be employed
to determine the source of the EDRs (i.e. whether they
are voluntarily or involuntarily generated). Until now,
these methods have not existed, with the exception of a
recently-developed standardized rule-base that utilizes
visual inspection of a respiratory signal to determine
whether or not an EDR is a respiratory artefact [32].
While useful for identifying EDRs that were generated
from changes in respiration, these rules do not distin-
guish voluntary from involuntary EDRs. As there is no
existing means of making this distinction, every discipline
makes different generalizing assumptions about the
source of the observed EDRs. In the field of polygraphy,
all electrodermal reactions are assumed to be involuntary,
and indicative of the subject’s unconscious reactions,
despite evidence illustrating that mental exercises are an
effective countermeasure and can be used to voluntarily
generate EDRs to bias the results [3]. In the field of
access technologies, all electrodermal reactions generated
are assumed to be voluntary, in spite of a priori knowl-
edge that spontaneous EDRs occur at an average rate of
7.5 per minute [5]. Fields of study that include electro-
dermal activity as a measure of sympathetic arousal may
benefit from using the proposed classifier to obtain
greater insight into the source of observed EDRs, pro-
vided that the relevant cardiorespiratory signals can be
simultaneously obtained.

Conclusions
This paper has proposed a method for classifying EDRs
using simultaneously recorded cardiac and respiratory

signals. The presented classifier tracked both the RLL over
a five second moving window, and the cross-correlation
between the respiratory and heart rate signals, to distin-
guish voluntary EDRs due to an irregular breath or mental
imagery, from involuntary EDRs associated with startle
reactions or a spontaneous increases in EDA. This classi-
fier had a positive predictivity of 78%, a negative predicti-
vity of 81%, an overall accuracy of 79%, and, with the
exception of one subject, performed equally well under
conditions of silence and background noise. This is nearly
a 30% improvement in accuracy over the case when all
EDRs are naively assumed to be voluntarily generated.
Our results suggest that the cardiorespiratory classifier
may be useful for EDA research, such as polygraphy or
alternative access for individuals with disabilities, where
the source of single EDRs is of particular interest.
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