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Abstract: Oxidative stress and antioxidants play an important role in obesity etiopathology. Genetic
variants, including single nucleotide polymorphisms (SNPs) of the antioxidant-related genes, may
impact disease risk in several populations. This preliminary study aimed to explore the association
of 12 SNPs related to superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX),
glutathione-S-transferase (GST), and nitric oxide synthase (NOS) genes with obesity susceptibility in
a Saudi population. A total of 384 unrelated participants, including 154 (40.1%) obese individuals,
were enrolled. TaqMan OpenArray Genotyping assays were used. Six SNPs were significantly
more prevalent in obese cohorts: (1) GSTM1 rs1056806*C/T; (2) SOD1 rs2234694*A; (3) SOD2
rs4880*G; (4) SOD3 rs2536512*A; (5) GPX1 rs1800668*A; (6) NOS3 rs1799983*G. Four SNPs were
associated with higher obesity risk under heterozygote and dominant models for GSTM1 rs1056806
(C/T), homozygote model for SOD2 rs4880 (A/G), and homozygote and recessive models for GPX1
rs1800668 (A/G). In contrast, SOD3 rs2536512 (A/G) were less likely to be obese under heterozygote
and dominant models. The CGAG, CAAA, TGGG, and CGAG combined genotypes showed a
higher risk of obesity. In conclusion, the present results suggest that oxidative-stress-related genetic
determinants could significantly associate with obesity risk in the study population.

Keywords: antioxidants-related genes; CAT; GPX; GST; NOS; SOD; obesity; single nucleotide
polymorphism

1. Introduction

Obesity and overweight have grown to epidemic proportions resulting in more than
4 million individuals dying/year in 2017, according to the Global Burden of Disease
Study [1]. The prevalence of these disorders continues to rise in developing and developed
countries representing a growing public health problem of concern [2]. Accumulating
evidence demonstrated that high body mass index (BMI) is a major risk factor for the
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disability-adjusted life years in the Saudi population due to the recent demographic changes
with longer life expectancy and lifestyle changes resulting from rapid urbanization and
industrialization [3–6].

A constellation of risk factors, including environmental and genetic ones, has been
implicated in obesity etiopathology [7]. One of these factors is the oxidative stress that can
induce obesity and the related comorbidities by promoting white adipose tissue deposition
and food intake alteration [8]. A significant direct correlation has been observed between
oxidative stress biomarkers and BMI [9]. Several in vitro studies reported that increased
oxidative stress and the reactive oxygen species could augment adipocyte proliferation,
differentiation, and growth [10–12] and control hunger and satiety behaviors [13]. In-
terestingly, there is a mutual relation between oxidative stress and obesity, as abnormal
fat accumulation can elicit a pro-inflammatory and pro-oxidant state through various
biochemical and cellular mechanisms [14,15].

The glutathione S-transferases (GSTs), which detoxify the endogenously formed elec-
trophilic compounds, including the lipid peroxidation products, showed a white adipose
tissue-specific downregulation [16]. Additionally, the antioxidant enzyme activities of
glutathione peroxidase (GPx) and superoxide dismutase (SOD) were reported to be dys-
regulated in red blood cells and serum of obese individuals compared to controls [17–22].
Moreover, the activities of Cu-Zn and Mn-dependent SOD, GPx, and catalase (CAT) were
significantly downregulated in the abdominal adipose tissue of ovariectomized metabolic
syndrome female rat model (to mimic the postmenopausal status) when compared to
metabolic syndrome group without receiving treatment or the group received external
estrogens [23]. Dysregulated nitric oxide synthase (NOS) enzyme family expression was
evident at the mRNA and protein levels in isolated fat cells and adipose tissue sections
derived from obese male subjects versus non-obese individuals [24–26].

Several single nucleotide polymorphisms (SNPs) related to the antioxidant enzymes
can impair enzyme activities with subsequent accumulation of reactive oxygen species
associated with various diseases/disorders, including obesity [27–29].

The GSTs comprise three enzyme families, the most investigated being the cytosolic
ones, which include seven classes, Alpha, Mu, Pi, Sigma, Theta, Omega, and Zeta, each
encoded by a separate gene [16]. The GST Mu 1 (GSTM1) rs1056806 [C/T], GST theta
1 (GSTT1) rs17856199 [A/C], GST Pi 1 (GSTP1) rs1695 [A/G], and microsomal GST3
(mGST3) rs2065942 [C/T] variants of this family can impair the GSTs catalytic activities
and are studied in multiple diseases, including obesity and related comorbidities [16,27].

The SOD gene family members are located on different chromosomes, “SOD1 on
21q22.11, SOD2 on 6q25.3, and SOD3 on 4p15.3–p15.1” are coding for the “intracellular
CuZn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), and extracellular EC-SOD (SOD3)” en-
zymes, respectively [30,31]. The SOD1 rs2234694 [A/C] is located at the third exon/intron
splicing site, the SOD2 rs4880 [A/G] has been found to impact the “mitochondrial target-
ing peptide; MTP” domain of the enzyme [32], and the SOD3 rs2536512 [A/G] results in
alanine substituted by threonine; collectively, they have been associated previously with
obesity risk [29,33]. The promotor CAT rs7943316 [A/T] SNP (−21A/T) was associated
with increased body fat (%), including the visceral one in the obese central Mexico pop-
ulation [34]. While the GPX gene cluster includes eight types (GPX1-8), the GPX1 and
GPX4 variants were associated previously with obesity or related comorbidities [16,35].
The GPX1 mapped to chromosome 3p21.3 contains the polymorphism rs1800668 [G/A],
which is likely to affect the encoded cytoplasmic enzyme’s activity [36]. Although the
GPX4 rs713041 [C/T] variant, located in the 3’UTR, the mRNA region important for se-
lenocysteine insertion, was not investigated with obesity, this polymorphism showed risk
modulation for diabetic retinopathy and cardiovascular autonomic neuropathy in patients
with type 1 diabetes [37,38].

Lastly, the NOS family consists of three members; endothelial NOS (eNOS/NOS3)
reported to have an anti-obesogenic effect, the inducible NOS (iNOS/NOS2) that promotes
insulin resistance, and the neuronal NOS (nNOS/NOS1) that appears to act as appetite



Antioxidants 2021, 10, 595 3 of 16

regulator [39]. These three isozymes can impact obesity etiology through NO produc-
tion that plays essential roles in regulating adiposity, energy expenditure, and insulin
sensitivity [39,40]. The NOS2 rs2297518 [A/G] and NOS3 rs1799983 [G/T] genetic vari-
ations were associated with insulin resistance, obesity, and/or a higher BMI in several
populations [41–43].

As the results of most genetic studies related to the polymorphisms mentioned above
were inconsistent and mainly carried out in patients of European descent, the authors were
interested in exploring the potential genetic association of the selected 12 SNPs with obesity
in a sample of the Middle Eastern population and relating the different genotypes with the
available clinic-laboratory data.

2. Materials and Methods
2.1. Subjects

This case-control study enrolled a total of 384 adult unrelated Saudi individuals;
143 women and 241 men accounting for 37.2 and 62.8%, respectively. These subjects were
recruited from Endocrinology and Diabetes center outpatient clinic, King Fahd Armed
Forces Hospital (KFAFH), Jeddah, KSA during their routine check-up program. Subjects
with complicated or severe diseases (e.g., stroke, diabetic complications, cardiac diseases,
renal/hepatic disorders, psychiatric disorders, cancers) were excluded. Informed consent
was obtained from all subjects before participating in the study. All the participants under-
went a complete medical history and physical examinations. Anthropometric parameters,
including weight and height, and arterial blood pressure (BP), were measured. Body mass
index (BMI) was calculated “as weight (kg) divided by the square of height (m)”, and
accordingly, obesity was defined from a BMI of ≥30 kg/m2 [4]. Hypertension was defined
as stated previously [44]. Ethical approval was obtained from the institutional review board
at the King Fahd Armed Forces Hospital (approval No. 201_19/04/2017), Jeddah, KSA.

2.2. Sample Collection and Laboratory Analysis

A total of ten milliliter peripheral blood samples were collected after an overnight fast
(10–12 h) on two ethylenediaminetetraacetic acid tubes and one serum separator tube. The
former tubes were sent for either the molecular analysis (4 mL) or glycated hemoglobin A1c
(HbA1c; 3 mL) determination (VARIANT II TURBO Hb Testing System, Bio-Rad, Hercules,
CA, USA). The last tube (3 mL) was centrifuged immediately at 3000 rpm × 12 min to
separate the serum for other biochemical assays measurements, including serum glucose
and lipid profile [total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), and
triacylglycerol (TG)] (Cobas c701, Roche Diagnostics, Indianapolis, IN, USA). As serum
TG levels in all included samples were less than 4.5 mmol/L, the low-density lipoprotein-
cholesterol (LDL-C) levels were calculated according to the Friedewald equation [45].
All abnormal lipid and lipoprotein profiles were justified by the National Cholesterol
Education Program and Adult Treatment Panel III (NCEP-ATP III) guidelines [46]. A
value less than the 50th percentile of HDL-C (i.e., <1.0 mmol/L) is considered a low level.
Hypertriglyceridemia was specified at a fasting serum TG level of ≥1.7 mmol/L. Par-
ticipants with dyslipidemia were defined as having an abnormal level of one or more
lipid profiles, currently on lipid-lowering drugs, or having a history of a lipid disor-
der. Serum insulin levels were measured by Electrochemi-luminescence Immunoassay
(Cobas e 602 immunoassay analyzer, Roche Diagnostics, Indianapolis, IN, USA).

2.3. SNP Selection and Genotyping

Based on (1) a dbSNP (www.ncbi.nlm.nih.gov; accessed on 28 October 2019) search for
the SNP minor allele frequency (MAF) > 0.05 and (2) the previous literature that showed
evidence of functional significance and association of the specified SNPs with obesity
risk in various populations, the authors selected 12 variants related to GSTM1, GSTT1,
GSTP1, MGST3, SOD1, SOD2, SOD3, CAT, GPX1, GPX4, NOS3, and NOS2 genes (Table S1).
Genomic DNA was extracted from peripheral blood leukocytes using Roche MagNA Pure

www.ncbi.nlm.nih.gov


Antioxidants 2021, 10, 595 4 of 16

Compact Nucleic Acid-based Isolation Kit I (Catalog no. 03730964001; Roche Diagnostics
GmbH, Mannheim, Germany) according to the manufacturer’s instructions. Nanodrop
2000/2000c Spectrophotometer V1.0 (Thermo Fisher Scientific, Wilmington, DE, USA)
and gel electrophoresis were applied to evaluate the concentration and integrity of the
extracted DNA, respectively. Amplification and allelic discrimination were performed in a
GenaTi research center (King Abdulaziz University, King Fahad Medical Research Center)
using Quant Studio 12K Flex Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA). Five microliters TaqMan GTXpress Master Mix (2×) (Cat no. 4403311, Applied
Biosystems) were mixed with 0.5 µL TaqMan genotyping assay mix (20×), 2.5 µL nuclease-
free water, and 2.0 µL gDNA (20 ng/µL) in a total reaction volume of 10 µL/sample. The
genotyping assays ID and the ready-to-use primer, and probe sequences for the specified
study variants are summarized in Table S1. The PCR program was run as follows: enzyme
activation at 95 ◦C for 10 min followed by 40 cycles of denaturation at 95 ◦C for 15 s and
annealing/extension at 60 ◦C for 1 min [47]. All the quality control measurements were
followed in each run, including using the appropriate controls. About 10% of the samples
were reassessed with a 100% recall rate supporting the genotyping efficiency.

2.4. Statistical Analysis

Data were analyzed using the R software version 4.0.2 (RStudio 3.0.1) and BM Sta-
tistical Package for the Social Sciences (SPSS) Statistics for Windows, version 26.0 (IBM
Corp., Armonk, NY, USA). After testing the normality of the continuous variables, using
the Shapiro–Wilk test, quantitative data were expressed as means ± standard deviation
(normally distributed data) or median and interquartile range, while qualitative data were
expressed as numbers and percentages. Two-sided Chi-square, Student-t, and ANOVA
tests were used for parametric data, while Mann–Whitney U and Kruskal–Wallis tests were
employed for non-parametric variables. Analysis of allele frequencies (number of copies of
a specific allele divided by the total number of alleles in the group) and genotype frequen-
cies (the number of each genotype divided by the total number of individuals within the
group) was carried out [48]. Genotype frequencies were assessed for deviation from the
Hardy–Weinberg equation (HWE) using an online excel sheet to compare observed versus
expected values. A Chi-square test was used to check goodness-of-fit [49]. Single and
polygenic SNP analyses were performed. Genotype combination analysis was performed
to associate obesity using the online SNPStats software (www.snpstats.net, accessed on
18 July 2020) [50]. The relationship between allele frequencies and obesity was determined
under different inheritance models with logistic regression analysis after adjustment for age
and sex. Genetic association models included heterozygote comparison, homozygote com-
parison, dominant model, and recessive models [51]. Iteration of analysis was performed
to test the association with the risk of obesity. Significant results in univariate analysis
were plotted as a forest plot using STAT version 16.0 (StataCorp. 2019. Stata Statistical
Software: Release 16. College Station, TX, USA: StataCorp LLC). Next, multivariable re-
gression analysis was performed to include significant molecular markers from univariate
analysis with clinical data and laboratory testing. The Hosmer–Lemeshow test was used
to assess goodness-of-fit. Results were reported as odds ratio (OR) and 95% confidence
interval (CI). Regression models were applied with genetic variants alone then repeated
to integrate clinical and laboratory data [51]. Pearson’s correlation test was performed
for genotype-genotype and genotype–phenotype correlation. Both clinical and laboratory
findings were tested for their association with each polymorphism. The correlation matrix
was plotted in R using RColorBrewer, ggpubr, tidyverse, Hmisc, and corrplot packages [52].
A p-value of <0.05 was considered statistically significant.

3. Results
3.1. Characteristics of Obese and Non-Obese Cohorts

Table 1 shows the clinic-laboratory characteristics of the study subjects. The study pop-
ulation’s mean age was 38.7 ± 15.5 years (ranged 23 to 83 years old). Of these, 154 subjects
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(40.1%) were obese. Obese cohorts were significantly older (41.49 ± 16.2 vs. 36.96 ± 14.7,
p = 0.005). There was no significant difference in their sex (p = 0.10). However, they were
more likely to have hypertension (20.1 vs. 11.7%, p = 0.029) and dyslipidemia (22.7 vs.
11.3%, p = 0.004). Laboratory testing showed higher levels of serum glucose (p = 0.003) and
insulin (p = 0.006).

Table 1. Clinical and biochemical characteristics of the study population.

Variables Levels Non-Obese Obese p-Value

Demographic Data
Age, years Mean ± SD 36.96 ± 14.7 41.49 ± 16.2 0.005 *

Sex Female 78 (33.9) 65 (42.2) 0.10
Male 152 (66.1) 89 (57.8)

BMI, kg/m2 Mean ± SD 21.36 ± 3.2 33.65 ± 3.9 <0.001 *
Comorbidities

T2DM Positive 99 (43.0) 78 (50.6) 0.14
Dyslipidemia Positive 26 (11.3) 35 (22.7) 0.004 *
Hypertension Positive 27 (11.7) 31 (20.1) 0.029 *

SBP, mmHg 123.62 ± 18.0 126.14 ± 18.6 0.18
DBP, mmHg 72.5 ± 9.95 72.11 ± 9.60 0.65

Laboratory Data
Glycemic state Serum glucose, mmol/L 5.7 (4.7–6.9) 6.0 (5.24–7.7) 0.003 *

Glycosylated hemoglobin
(HbA1c), % 6.0 ± 1.67 6.27 ± 1.77 0.13

Serum insulin, mIU/L 160 (73.1–324.5) 220 (86–448) 0.006 *
Lipid profile Triglyceride, mmol/L 1.51 (1.03–2.3) 1.58 (1.04–2.5) 0.80

Total cholesterol, mmol/L 4.83 ± 0.99 4.85 ± 1.07 0.85
HDL-cholesterol, mmol/L 1.16 (0.97–1.35) 1.14 (0.97–1.33) 0.61
LDL-cholesterol, mmol/L 2.73 (2.24–3.53) 2.91 (2.19–3.5) 0.74

Data are shown as number (percentage), mean ± standard deviation (SD), or median (interquartile range). Two-sided Chi-square, Fisher’s
exact, Student’s t, and Mann–Whitney U tests were used. (*) Indicates significance at p-value < 0.05. Abbreviations; T2DM: type 2 diabetes
mellitus, SBP: systolic blood pressure, DBP: diastolic blood pressure, HDL: high-density lipoprotein, LDL: low-density lipoprotein.

3.2. Allelic Discrimination Analysis in Obese and Non-Obese Subjects

Table 2 summarizes allele and genotype frequencies of 12 genetic variants in obese
and non-obese cohorts. Of these, six SNPs were significantly associated with development
of obesity. (1) GSTM1 rs1056806*C/T heterozygosity was significantly more prevalent in
obese cohorts (21 vs. 12%, p = 0.039); (2) SOD1 rs2234694*A allele was exclusively present
in patients (100 vs. 97%, p = 0.048); (3) SOD2 rs4880*G allele was more common in obese
cohorts (52 vs. 43%, p = 0.038); (4) SOD3 rs2536512*A allele was associated with obesity
(56 vs. 51%, p < 0.001), similarly, A/A genotype was more frequent in patient group (36 vs.
23%, p = 0.033); (5) GPX1 rs1800668*A allele carriers were more representative in patients
(25 vs. 19%, p = 0.041); (6) NOS3 rs1799983*G allele was more prevalent in obese group
(83 vs. 75%, p = 0.029).

Table 2. Association of gene variant panel with the risk of obesity.

Gene SNP ID Alleles Non-Obese Obese Genotypes Non-Obese Obese Model Adjusted OR
(95%CI) p-Value

GSTM1

rs1056806

C allele 416 (93) 270 (88) C/C 195 (87) 119 (78) Heterozygote 2.02 (1.15–3.55) 0.015 *

T allele 32 (7) 36 (12) C/T 26 (12) 32 (21) Homozygote 1.09 (0.18–6.63) 0.05

p-value 0.22
T/T 3 (1) 2 (1) Dominant 1.92 (1.11–3.31) 0.019 *

p-value 0.039 * Recessive 0.98 (0.16–5.91) 0.98

GSTT1

rs1111875

A allele 259 (76) 159 (75) A/A 96 (56) 61 (58) Heterozygote 0.87 (0.52–1.45) 0.42

C allele 81 (24) 53 (25) A/C 67 (39) 37 (35) Homozygote 1.80 (0.62–5.21) 0.45

p-value 0.86
C/C 7 (4) 8 (8) Dominant 0.96 (0.59–1.56) 0.86

p-value 0.41 Recessive 1.90 (0.67–5.40) 0.23
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Table 2. Cont.

Gene SNP ID Alleles Non-Obese Obese Genotypes Non-Obese Obese Model Adjusted OR
(95%CI) p-Value

GSTP1

rs1695

A allele 221 (65) 133 (62) A/A 73 (43) 45 (42 Heterozygote 0.93 (0.55–1.58) 0.46

G allele 117 (35) 81 (38) A/G 75 (44) 43 (40) Homozygote 1.47 (0.71–3.03) 0.49

p-value 0.65
G/G 21 (12) 19 (18) Dominant 1.05 (0.64–1.71) 0.85

p-value 0.45 Recessive 1.52 (0.78–2.99) 0.22

MGST3

rs7744724

C allele 339 (96) 214 (98) C/C 165 (93) 105 (96) Heterozygote 0.70 (0.21–2.33) 0.20

T allele 15 (4) 4 (2) C/T 9 (5) 4 (4) Homozygote 0.00 (0.00–NA) 0.57

p-value 0.11
T/T 3 (2) 0 (0) Dominant 0.52 (0.16–1.67) 0.25

p-value 0.33 Recessive 0.00 (0.00–NA) 0.09

SOD1

rs2234694

A allele 338 (97) 209 (100) A/A 166 (95) 104 (99) Heterozygote 0.27 (0.03–2.24) 0.15

C allele 10 (3) 1 (0) A/C 6 (3) 1 (1) Homozygote 0.00 (0.00–NA) 0.17

p-value 0.048 *
C/C 2 (1) 0 (0) Dominant 0.20 (0.02–1.62) 0.07

p-value 0.23 Recessive 0.00 (0.00–NA) 0.17

SOD2

rs4880

A allele 191 (57) 102 (48) A/A 58 (35) 26 (25) Heterozygote 1.49 (0.83–2.67) 0.13

G allele 143 (43) 110 (52) A/G 75 (45) 50 (47) Homozygote 1.97 (1.00–3.86) 0.045 *

p-value 0.038 *
G/G 34 (20) 30 (28) Dominant 1.64 (0.95–2.82) 0.07

p-value 0.13 Recessive 1.54 (0.88–2.72) 0.13

SOD3

rs2536512

A allele 170 (51) 118 (56) A/A 39 (23) 38 (36) Heterozygote 0.47 (0.26–0.83) 0.033 *

G allele 166 (49) 92 (44) A/G 92 (55) 42 (40) Homozygote 0.69 (0.35–1.36) 0.07

p-value <0.001 *
G/G 37 (22) 25 (24) Dominant 0.53 (0.31–0.91) 0.021 *

p-value 0.033 * Recessive 1.11 (0.62–1.97) 0.73

CAT rs7943316

A allele 116 (47) 52 (40) A/A 34 (28) 13 (20) Heterozygote 0.85 (0.43–1.69) 0.46

T allele 130 (53) 78 (60) T/A 48 (39) 26 (40) Homozygote 0.60 (0.27–1.35) 0.90

p-value 0.18
T/T 41 (33) 26 (40) Dominant 0.75 (0.40–1.40) 0.37

p-value 0.46 Recessive 0.65 (0.32–1.35) 0.24

GPX1

rs1800668

A allele 83 (19) 72 (25) A/A 9 (4) 15 (10) Heterozygote 1.03 (0.64–1.65) 0.77

G allele 345 (81) 218 (75) G/A 65 (30) 42 (29) Homozygote 2.65 (1.11–6.32) 0.048 *

p-value 0.041 * (M-H)
G/G 140 (65) 88 (61) Dominant 1.23 (0.79–1.90) 0.36

p-value 0.07 Recessive 2.63 (1.12–6.18) 0.024 *

GPX4

rs713041

C allele 176 (52) 111 (53) C/C 42 (25) 27 (26) Heterozygote 0.96 (0.54–1.73) 0.97

T allele 160 (48) 97 (47) C/T 92 (55) 57 (55) Homozygote 0.92 (0.44–1.91) 0.99

p-value 0.82
T/T 34 (20) 20 (19) Dominant 0.95 (0.54–1.67) 0.86

p-value 0.48 Recessive 0.94 (0.51–1.74) 0.84

NOS3

rs1799983

G allele 254 (75) 176 (83) G/G 97 (57) 73 (69) Heterozygote 0.66 (0.39–1.13) 0.09

T allele 84 (25) 36 (17) T/G 60 (36) 30 (28) Homozygote 0.33 (0.09–1.22) 0.21

p-value 0.029 *
T/T 12 (7) 3 (3) Dominant 0.61 (0.37–1.02) 0.06

p-value 0.10 Recessive 0.38 (0.10–1.38) 0.11

NOS2

rs2297518

A allele 123 (36) 82 (38) A/A 23 (13) 13 (12) Heterozygote 1.34 (0.80–2.26) 0.51

G allele 221 (64) 134 (62) A/G 77 (45) 56 (52) Homozygote 1.04 (0.48-2.29) 0.25

p-value 0.59
G/G 72 (42) 39 (36) Dominant 1.27 (0.78-2.09) 0.34

p-value 0.51 Recessive 0.89 (0.43-1.83) 0.74

Binary regression analysis was performed to estimate the adjusted risk of obesity in each genotype’s presence according to various genetic
association models. The odds ratio (OR) and 95% confidence interval (CI) for each model are shown. The adjustment was performed by age
and sex. MH: Mantel–Haenszel chi-square test. (*) Indicates significance at p-value < 0.05.

3.3. Monogenic Risk of Obesity with Each Polymorphism

Inheritance association models revealed that four SNPs to have a prediction value for
developing obesity, namely GSTM1 rs1056806 (C/T), SOD2 rs4880 (A/G), SOD3 rs2536512
(A/G), and GPX1 rs1800668 (A/G). GSTM1 rs1056806 showed a higher risk of obesity under
heterozygote comparison (C/T vs. C/C: OR = 2.02, 95%CI = 1.15–3.55, p = 0.015) and domi-
nant models (C/T-T/T vs. C/C: OR = 1.92, 95%CI = 1.11–3.31, p = 0.019). SOD2 rs4880 had
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higher odds of developing obesity under homozygote comparison model (G/G vs. A/A:
OR = 1.97, 95%CI = 1.0–3.86, p = 0.045). GPX1 rs1800668 had an increased risk of obesity
under homozygote comparison (G/G vs. A/A: OR = 2.65, 95%CI = 1.11–6.32, p = 0.048)
and recessive models (G/G vs. A/A-A/G: OR = 2.63, 95%CI = 1.12–6.18, p = 0.024). In con-
trast, SOD3 rs2536512 carriers were less likely to be obese under heterozygote comparison
(A/G vs. A/A: OR = 0.47, 95%CI = 0.26–0.83, p = 0.033) and dominant models (A/G-G/G
vs. A/A: OR = 0.53, 95%CI = 0.31–0.91, p = 0.021) (Figure 1 and Table 2).
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Figure 1. Association of genetics variant panel with the risk of obesity. Data are presented as the
odds ratio and 95% confidence interval (CI). p-value < 0.05 was considered as statistically significant.
Binary logistic regression analysis was adjusted for age and sex.

3.4. Polygenic Risk of Obesity in Association with Gene Variants

Genotype combination analysis of GSTM1 rs1056806 (C/T), SOD2 rs4880 (A/G), SOD3
rs2536512 (A/G), and GPX1 rs1800668 (A/G) revealed four common combinations with
higher risk of obesity; CGAG (OR = 6.15, 95%CI = 1.46–25.8, p = 0.014), CAAA (OR = 5.0,
95%CI = 1.23–20.3, p = 0.025), TGGG (OR = 3.25, 95%CI = 1.06–9.95, p = 0.040), and CGAG
(OR = 2.95, 95%CI = 1.27–6.86, p = 0.012) (Table 3).

Table 3. Genotype combination analysis of risk alleles for obesity.

No. GSTM1 SOD2 SOD3 GPX1 Frequency OR (95% CI) p-Value

1 C A A G 0.126 1 —
2 C A G G 0.117 3.05 (0.66–14.14) 0.15
3 C G A G 0.191 2.95 (1.27–6.86) 0.012 *
4 C G G G 0.111 2.06 (0.35–11.94) 0.42
5 C G A G 0.080 6.15 (1.46–25.87) 0.014 *
6 C A A G 0.067 0.52 (0.03–8.27) 0.64
7 C A G G 0.064 0.74 (0.10–5.58) 0.77
8 C A A A 0.043 5.00 (1.23–20.33) 0.025 *
9 C G G G 0.039 1.85 (0.02–209.77) 0.80

10 T G G G 0.030 3.25 (1.06–9.95) 0.040 *
11 C G A A 0.026 1.45 (0.16–13.23) 0.74
12 C A A A 0.021 9.44 (0.73–122.24) 0.09
13 T A A G 0.019 1.85 (0.02–209.77) 0.80

Combinations with frequencies < 0.01 were excluded. (*) Indicates significance at p-value < 0.05.

3.5. Association of Gene Variants with Clinical and Biochemical Characteristics

Correlation analysis of the study gene variants with clinical and laboratory data is
shown in Figure 2. Obesity was positively correlated with GSTM1 (r = 0.109, p = 0.035) and
SOD2 (r = 0.121, p = 0.046). Serum LDL-C levels also showed weak positive correlation
with SOD2 (r = 0.113, p = 0.047), and type 2 diabetes mellitus showed moderate correlation
with NOS2 (r = 0.397, p < 0.001).
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Figure 2. Correlation of genetic variants with patients’ characteristics. Correlation between gene
variants and demographic/clinic-laboratory characteristics. Pearson correlation was applied, and
a significant correlation coefficient is only shown. BMI: body mass index; systolic: systolic blood
pressure, diastolic: diastolic blood pressure; T2DM: type 2 diabetes mellitus, HTN: hypertension; LPD:
hyperlipidemia, HbA1C: glycosylated hemoglobin, GLU: glucose; CHOL: total cholesterol, TRIG:
triacylglycerol; HDL: high-density lipoprotein; LDLL: low-density lipoprotein; INSU: serum insulin;
SNP1: GSTM1 rs1056806, SNP2: GSTT1 rs17856199, SNP3: GSTP1 rs1695, SNP4: MGST3 rs2065942,
SNP5: SOD1 rs2234694, SNP6: SOD2 rs4880, SNP7: SOD3 rs2536512, SNP8: CAT rs7943316, SNP9:
GPX1 rs1800668, SNP10: GPX4 rs713041, SNP11: NOS3 rs1799983, SNP12: NOS2 rs2297518.

4. Discussion

Oxidative-stress-related indices are reported to be associated with increased obesity
risk and related comorbidities [10,15,53]. To the best of our knowledge, no studies have
investigated the role of the selected 12 antioxidant-related SNPs collectively in the same
obese/non-obese cohort. Preliminarily, the obese group in this study was older, had a
higher frequency of dyslipidemia and hypertension, and had higher serum glucose and
insulin levels than non-obese individuals. This reflects the typical clinical presentation of
obesity and associated comorbidities. Several population surveys have shown that the
obesity prevalence increases progressively from 20 to 60 years of age [54], and significant
associations were reported between obesity and hyperglycemia [55], dyslipidemia [56],
hyperinsulinemia [57], and hypertension [58].

In this study, we found that six SNPs were significantly more prevalent in obese
cohorts: (1) GSTM1 rs1056806*C/T heterozygosity, (2) SOD1 rs2234694*A allele, (3) SOD2
rs4880*G allele, (4) SOD3 rs2536512*A allele, (5) GPX1 rs1800668*A allele, and (6) NOS3
rs1799983*G allele. Furthermore, four variants from these SNPs showed significant associa-
tion with the risk of developing obesity under several genetic association models that will
be detailed in the next sections.

Our enrichment analysis of the studied antioxidant enzymes revealed their implication
in several obesity-related pathways and processes such as lipid metabolism/response to
lipid processes and dysregulation of fatty acid metabolism [59], cellular biosynthetic pro-
cess derangement [60], intracellular signal transduction regulation, response to oxidative
stress [61], and regulation of blood pressure [62], as shown in Figure 3.
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As a member of phase II drug metabolism-related family catalyst, GSTM1 can detox-
ify the electrophilic products generated from lipid peroxidation that considers one of
the major pathogenic cellular changes in obesity onset and progression [63]. Although
Yang, [64] did not find an association of GSTM1 rs1056806 (c.528C > T) polymorphism
with susceptibility of obesity in the Korean cohort (117 overweight/obese cases versus
125 non-overweight/obese subjects), a higher frequency of the heterozygous genotype
was evident in the current obese subjects than non-obese. Furthermore, this synonymous
variant (i.e., associated with no change to the encoded amino acid) showed a significant as-
sociation with obesity risk under heterozygote comparison and dominant models. Previous
estimates identified that 5–10% of human genes include at least one locus where synony-
mous variants could be harmful and impact protein conformation, expression, and/or
function by affecting the post-transcriptional processing [65]. The later report highlighted
the importance of including such types of variants in follow-up mechanistic and functional
studies. The inconsistency observed between our finding and the previous Korean study
may be attributable to the limited sample size, the different genotyping methodology, and
different genetic backgrounds among the study population. This warrants work replication
in large-scale studies with different ethnic populations to validate the findings.

The vital family of antioxidant catalysts in humans that neutralize the reactive oxy-
gen species “superoxide anion” consists of three isozymes: Cu, Zn-dependent cytosolic
SOD1, manganese-dependent mitochondrial SOD2, and Cu, Zn-dependent extracellular
SOD3 [29,31]. The SOD1 rs2234694*A allele was more prevalent in the current obese cohort
relative to non-obese individuals. This result agrees with Lewandowski et al., in which this
variant could be associated with differences in SOD concentrations based on the obesity
status [33]. A previous study found that patients with diabetes mellitus homozygous for
the minor allele were characterized by a decline in the total SOD activity compared to their
counterparts [66]. Additionally, SOD2 rs4880*G allele was more frequent in the current
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obese cohort than controls, and the GG genotype carriers had two-fold the risk to be obese
versus the AA carriers. This finding was consistent with previous studies [33,67].

Interestingly, the activity of the mitochondrial SOD2 isozyme coded by this gene
has been underscored in neutralizing the mitochondrial O2

•−, preventing the uncoupler
proteins hyperactivity that is induced by this reactive oxygen species in the context of
obesity [68]. The rs4880 variant causes alanine to valine substitution, which was reported
to be associated with conformational changes in the “mitochondrial targeting peptide” of
the enzyme, which alters the importing efficiency and the enzyme catalytic activity in the
mitochondrial matrix [69]. This type of substitution has also been associated with variability
in SOD total activity, leptin, total cholesterol, and oxidative-stress-related biomarkers blood
levels in obese/non-obese individuals [66,70]. This latter association can support the
significant correlation this variant showed with LDL-C levels in the study cohort (Figure 2).
Furthermore, in the present obese cohort, the GG genotype code for alanine showed
increased odds of obesity than other genotype carriers. This means that higher enzyme
activity could be associated with obesity risk. Under metabolic derangement, higher
SOD2 isozyme activity might induce higher mitochondrial hydrogen peroxide (H2O2)
accumulation associated with oxidative-stress-related insulin resistance, dyslipidemia, and
unbalanced energy homeostasis, which characterize the obesity state [71,72]. Interestingly,
adipocyte-targeted “SOD2 knockout mice” has prevented high-fat-diet-induced obesity
and insulin resistance [73], supporting the present findings.

Otherwise, SOD3 rs2536512*A allele carriers in the present cohort were less likely to be
obese under heterozygote comparison and dominant models. This variant causes alanine
to threonine substitution at position 58 (Ala58Thr) in SOD3 isozyme, and “A-allele” was
associated previously with higher SOD activity [74]. This could explain the protective role
this allele displays in the present obese cohort. Although, to the authors’ knowledge, no
previous study related this variant to the increased/decreased odds of obesity development,
other studies have explored the role of this polymorphism with type 2 diabetes mellitus [75]
and altered serum TG/HDL-C levels [71]. Originally SOD family was related to obesity
due to “its protective role as an antioxidant”, and high SOD3 concentration/activity is
expected to neutralize the high levels of the superoxide anion (O2

•−) effectively [29,71].
This isozyme’s availability on the extracellular compartment and the endothelial cells
add advantage to its action to neutralize (O2

•−) generated in the extracellular matrix
and discontinue the peroxynitrite generation [76]. This latter pro-oxidant was recently
implicated in impaired “endothelium-dependent vasodilation”, one of the mediators of
“obesity-induced hypertension” [77]. Additionally, supporting our findings, overexpression
of SOD3 in adipose tissues in cases of diet-induced obesity was associated with blocking
the development of obesity, fatty liver, and insulin resistance [78]. The latter investigators
also found that even in the liver, increased SOD3 activity was associated with upregulation
of the genes responsible for “energy expenditure”.

The cytosolic GPx1 enzyme is one of the most studied catalysts of the GPx family.
Related variants to this SNP exist in the human population and modify GPx1 activity as
reviewed in detail previously [16]. The 5’UTR GPX1 rs1800668*A allele was more prevalent
in our obese cohort than non-obese one and showed association with obesity risk under ho-
mozygous comparison and recessive models. Although SNP does not impact the structure
of the protein directly, the GG genotype carriers showed relatively higher GPx1 activity
than GA or AA genotype carriers [36]. This variant was not associated with obesity risk
previously, up to the authors’ knowledge, and it is the least studied antioxidant variant in
association with different diseases [79]. However, given the essential roles that the encoded
enzyme plays in the reduction in hydroperoxides of non-esterified polyunsaturated fatty
acids [35], as well as regulation of “insulin sensitivity” and “obesity-induced insulin resis-
tance” [80,81], it is not surprising that it is one of the obesity-related susceptibility SNPs
that deserves work replication in other populations to confirm this finding.

Lastly, the NOS3 enzyme has been identified to play an essential role in lipolysis
modulation, and obesity condition per se has profound effects on covalent modification
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of the NOS enzyme by insulin-dependent activation of protein kinase B [39]. The NOS3
rs1799983 (Glu298Asp) genetic variant may influence NOS3 expression and serum nitrate
levels [82]. Our study results are consistent with MacKenzie and colleagues’ observation,
in which the rs1799983GG genotype was frequently present in obese children, but the
association with the disease did not reach statistical significance [83]. So far, various
studies in other populations have explored the association between this variant and obesity
risk [39,42,84,85]. Malhotra et al. reported that obese rs1799983*T allele carriers exhibited
increased cardiac output and decreased NO metabolites during stress than non-obese
participants [84]. In another study, the association between this variant and the diabetes
risk was modified by BMI, with clear evidence of interactions between obesity and the
rs1799983TT genotype [85]. Nasr et al. also observed a significant association of rs1799983*T
allele with obesity and BMI in the Tunisian population [42]. Additionally, recently, Pawlik
et al. reported a significant association of this variant with BMI and waist circumference
in female patients with unstable angina [43]. Although in some studies, including ours,
the rs1799983*G allele was more prevalent in the obese cohort than controls that differs
from other studies in which the rs1799983*T allele was the risky one, previous reports
have indicated interethnic differences in rs1799983 distribution and evidence for linkage
disequilibrium with other SNPs exists among populations [86,87].

Apart from the variants discussed with obesity risk, there were no significant dif-
ferences in the prevalence of other studied SNPs among the current groups. However,
some variants showed a significant correlation(s) with the studied cohort’s laboratory
parameters and/or associated comorbidities. For example, the NOS2 rs2297518 variant
showed a significant correlation with diabetes mellitus (Figure 2). This missense variant
(S608L), which is mapped in the catalytic domain of the enzyme [88], was reported to
increase NOS2 activity and impact many disease prevalence [89]. This observation agrees
with other genetic association studies on type 2 diabetes mellitus cohort in our lab [90] and
in Caucasians [91].

Genotype combination analysis for the significantly associated four SNPs with the risk
of obesity development in the present study revealed that four common combinations were
identified to increase the odds of obesity. These combinations were CGAG (6-fold), CAAA
(5-fold), TGGG (3-fold), and CGAG (2-fold). Recent evidence suggests that investigating
multiple SNPs that increase susceptibility to obesity may predict the degree of risk for
obesity and strategically contribute to weight-management programs [92,93]. Single SNP
analysis is often underpowered due to the small effect size of individual SNP; however, the
combined or additive effect of several variants from different loci have a larger effect size
and, hence, greater predictive power, as evident in recent obesity studies [92,94,95].

Although the present study uncovered the association of antioxidants related to
12 SNPs collectively with obesity risk in a sample of the Middle Eastern population for
the first time, having GWAS would offer further insight in future association studies.
As a preliminary study, this work needs to be extended and validated on large-scale
multicenter studies. The absence of functional studies to explore the studied variants’
impact on the encoded antioxidant enzyme levels/activities and other oxidative-stress-
related biomarkers could limit this study. Additionally, given the high consanguinity rate
in the Saudi population [96] and unavailability of the data related to this parameter in
the present work, the potential effects of consanguinity with other genetic susceptibility
variants on obesity risk should be considered.

Further functional studies with replication of the work in other ethnic populations
are recommended to support the “ethnic-specific” genetic variations. Other supportive
gene–gene and gene–environment studies are also recommended to expand the progress
in this field.

5. Conclusions

The present findings confirmed the essential contribution of the studied oxidative-
stress-related gene variants to obesity risk in the present population. This could help in the
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risk stratification of obese individuals in this region with other genetic and environmental
determinants. Additionally, their encoded antioxidant enzymes could be promising targets
for preventive and future individualized therapeutic strategies.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10.3
390/antiox10040595/s1, Table S1: The ready-made assay probe sequences applied in the present study.
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Antioxidant Enzymes in Patients with Metabolic Syndrome. Obes. Facts 2013, 6, 39–47. [CrossRef]

http://doi.org/10.1177/1479164118820641
http://www.ncbi.nlm.nih.gov/pubmed/30599773
http://doi.org/10.1016/j.freeradbiomed.2014.05.016
http://doi.org/10.1210/en.2007-0866
http://doi.org/10.1002/iub.1513
http://www.ncbi.nlm.nih.gov/pubmed/27192959
http://doi.org/10.1016/j.orcp.2015.04.008
http://www.ncbi.nlm.nih.gov/pubmed/25956856
http://doi.org/10.1159/000506160
http://www.ncbi.nlm.nih.gov/pubmed/32224624
http://doi.org/10.1016/j.jacc.2017.11.006
http://www.ncbi.nlm.nih.gov/pubmed/29146535
http://doi.org/10.1093/clinchem/18.6.499
http://www.ncbi.nlm.nih.gov/pubmed/4337382
http://doi.org/10.1038/s41598-020-73951-y
http://www.ncbi.nlm.nih.gov/pubmed/33037254
http://doi.org/10.1097/GIM.0b013e31812eece0
http://www.ncbi.nlm.nih.gov/pubmed/17700391
http://doi.org/10.1007/s11004-005-1558-0
http://doi.org/10.1093/bioinformatics/btl268
http://doi.org/10.1016/j.mgene.2015.04.003
http://doi.org/10.4239/wjd.v11.i5.193
http://doi.org/10.1093/ajcn/82.5.923
http://doi.org/10.1097/ALN.0b013e3181799d45
http://www.ncbi.nlm.nih.gov/pubmed/18580184
http://doi.org/10.3390/nu5041218
http://www.ncbi.nlm.nih.gov/pubmed/23584084
http://doi.org/10.1002/oby.21699
http://doi.org/10.1038/hr.2017.75
http://www.ncbi.nlm.nih.gov/pubmed/28978986
http://doi.org/10.1080/17446651.2016.1245141
http://www.ncbi.nlm.nih.gov/pubmed/30058918
http://doi.org/10.3390/genes9110525
http://doi.org/10.1155/2014/908539
http://doi.org/10.1159/000348569


Antioxidants 2021, 10, 595 15 of 16

63. Mattson, M.P. Roles of the Lipid Peroxidation Product 4-Hydroxynonenal in Obesity, the Metabolic Syndrome, and Associated
Vascular and Neurodegenerative Disorders. Exp. Gerontol. 2009, 44, 625–633. [CrossRef] [PubMed]

64. Yang, S.A. Lack of Association Between Glutathione s-Transferase Mu 1 (GSTM1) Gene Polymorphisms and Obesity. J. Exerc.
Rehabil. 2017, 13, 608–612. [CrossRef]

65. Sauna, Z.E.; Kimchi-Sarfaty, C. Understanding the Contribution of Synonymous Mutations to Human Disease. Nat. Rev. Genet.
2011, 12, 683–691. [CrossRef] [PubMed]

66. Flekac, M.; Skrha, J.; Hilgertova, J.; Lacinova, Z.; Jarolimkova, M. Gene Polymorphisms of Superoxide Dismutases and Catalase
in Diabetes Mellitus. BMC Med. Genet. 2008, 9, 30. [CrossRef] [PubMed]

67. Montano, M.A.; Barrio Lera, J.P.; Gottlieb, M.G.; Schwanke, C.H.; da Rocha, M.I.; Manica-Cattani, M.F.; dos Santos, G.F.;
da Cruz, I.B. Association Between Manganese Superoxide Dismutase (MnSOD) Gene Polymorphism and Elderly Obesity.
Mol. Cell Biochem. 2009, 328, 33–40. [CrossRef]

68. Echtay, K.S.; Murphy, M.P.; Smith, R.A.; Talbot, D.A.; Brand, M.D. Superoxide Activates Mitochondrial Uncoupling Protein 2
from the Matrix side. Studies Using Targeted Antioxidants. J. Biol. Chem. 2002, 277, 47129–47135. [CrossRef]

69. Sutton, A.; Imbert, A.; Igoudjil, A.; Descatoire, V.; Cazanave, S.; Pessayre, D.; Degoul, F. The Manganese Superoxide Dismutase
Ala16Val Dimorphism Modulates Both Mitochondrial Import and mRNA Stability. Pharm. Genom. 2005, 15, 311–319. [CrossRef]
[PubMed]
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