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Abstract

Noncanonical amino acids (NCAAs) can be used in a variety of protein design contexts. For example, they can be used in
place of the canonical amino acids (CAAs) to improve the biophysical properties of peptides that target protein interfaces.
We describe the incorporation of 114 NCAAs into the protein-modeling suite Rosetta. We describe our methods for building
backbone dependent rotamer libraries and the parameterization and construction of a scoring function that can be used to
score NCAA containing peptides and proteins. We validate these additions to Rosetta and our NCAA-rotamer libraries by
showing that we can improve the binding of a calpastatin derived peptides to calpain-1 by substituting NCAAs for native
amino acids using Rosetta. Rosetta (executables and source), auxiliary scripts and code, and documentation can be found at
(http://www.rosettacommons.org/).
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Introduction

From the original full automated sequence design of Dahiyat

and Mayo [1] to recently designed enzymes [2,3] and influenza

binders [4], computational protein design has become an

increasingly powerful tool for protein engineers. In most cases,

computational design programs have been constructed to

primarily work with the twenty canonical amino acids (CAAs)

found in humans. The ability to apply the tools and techniques,

developed to design proteins, to other protein-like polymers could

allow for the creation of new therapeutics and biological tools. A

logical step towards this goal is the incorporation of noncanonical

side chains (NCAA) in to computational protein design software.

The use of NCAAs in protein design programs has advantages

both biologically and computationally.

Biochemists and biologists have already demonstrated the utility

of NCAA derived polymers, and CAA-NCAA hybrids. For

example, changing the chirality of a protein by constructing it

entirely out of D-enantiomers has been shown to provide

proteolytic resistance [5], an issue which has been a problem for

protein therapeutics [6]. Protein stability has been increased

without significantly disturbing protein structure by replacing

common hydrophobic residues with fluorinated derivatives [7].

Numerous protein crystal structures have be solved with the aid of

selino-methionine phasing [8]. Chemically restrained amino acids

that have particular Q and y angle preferences have been used to

promote helix formation [9]. Modified residues have been shown

to improve enzyme kinetics and expand endogenous function [10].

These results have been obtained without extensive computational

modeling and were probably limited in the scope of what they

could design by similarity to the CAAs.

The use of NCAAs in design will dramatically increase the

number of sequences and side chain conformations that can be

sampled during a design simulation. The additional diversity may

allow for the creation of more tightly packed hydrophobic cores

and new hydrogen bond networks. Additionally, incorporating

amino acids with intrinsic torsional constraints can lower the

entropic cost for assuming a folded or bound state.

The term ‘‘nonnatural amino acid’’ is often used to denote

NCAAs, but the use of the term ‘‘nonnatural’’ is perhaps a

misnomer in this context, as amino acids that differ from the

canonical twenty are frequently found in nature. The most

common NCAAs are residues with pre-/co-/post-translational

modifications that provide them with additional functionality [11–

13]. Eukaryotes, prokaryotes, and archea have all been found to

have selenocysteine residues which are genetically encoded

indirectly by overloading the UGA stop codon in conjunction

with a selenocysteine insertion sequence element [14]. Addition-

ally some methanogenic archaea genetically encode pyrrolysine

indirectly by overloading the UAG stop codon in conjunction with

a pyrrolysine insertion sequence element [15].

Computational protein design programs typically contain two

major components: an energy or scoring function to evaluate how

well a particular amino acid sequence fits a given scaffold and a
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search function that samples sequences as well as backbone and

side chain conformations. Energy functions for protein-design

often contain a combination of physically-based and knowledge-

based terms [16]. Knowledge-based terms are generated from

naturally occurring protein structures, and are generally based on

the probability of observing a particular structural feature in a set

of structures. Knowledge-based potentials are often information

rich and quick to evaluate, but care must be taken to avoid double

counting between components of the energy function [17].

Knowledge-based potentials that function at the level of amino

acid identity can not be built for NCAAs because there are not

enough structures in the Protein Data Bank that contain NCAAs

to derive meaningful statistics. To enable the modeling of NCAAs

in the program Rosetta [18], we have removed knowledge-based

terms incompatible with NCAAs and replaced them with more

general functional forms typically found in molecular mechanics

energy functions such as Amber and CHARMM.

By using Rosetta for design with NCAAs, we gain access to a

wide variety of kinematic and optimization based methods for

exploring backbone and side chain configurations. Conformation-

al searches of backbone degrees of freedom are typically

performed using small perturbations to the backbone dihedral

angles, fragment insertions, backrub movements, or using more

sophisticated procedures like using robotic arm motion planning

inspired loop-closure algorithms [19–21]. Conformational search-

es of side chain degrees of freedom are performed in a discrete

space of high probability side chain conformations typically

encoded as backbone-dependant rotamer libraries. Rotamer

libraries are lists of commonly seen side chain dihedral angles

[22] accompanied by the probability of observing each rotamer in

naturally occurring proteins. In Rosetta, the side chain coordinates

are constructed using dihedral angles from the rotamer library and

idealized bond lengths, bond angles, and non-x dihedrals

[23].Amino acid rotamers are not observed with equal frequency

in large databases of experimental structures. The probability of

seeing a given rotamer given its local structure context can be used

to compute a pseudo-energy that represents the internal energy of

the amino acid. Rosetta (and many other related methods)

assumes a Boltzmann distribution and uses the log of the

probability of seeing a given rotamer with particular Q and y
backbone dihedral angles to estimate rotamer energy as shown

below.

Eroti
~{ln P roti Dwi,yið Þð Þ

Where Eroti is the energy of rotamer i, Qi and yi are the Q and y
backbone dihedral angles at position i, and Proti is the probability of

seeing rotamer i when the backbone dihedral are Qi and yi. The

probabilities in this equation come from the Dunbrack rotamer

library [24]. The frequency of rotamers also provides a way of

limiting the conformational search to the statistically most likely

conformation. Building rotamer libraries for NCAAs is a

prerequisite to using these NCAAs in Rosetta, or any Rosetta-

like design procedure. As with the knowledge-based potentials, the

use of statistically derived rotamers libraries to provide common

side chain coordinates is not possible for NCAAs as there are not

enough solved structures to compute accurate statistics. We have

thus developed a method to create rotamer libraries for NCAAs

that can reproduce the rotamers seen in CAA. The modifications

we have made to the energy function that allow for the scoring of

NCAAs and the ability to create rotamers libraries allows us to use

NCAAs in the computational protein design program Rosetta. We

created condition dependent rotamer libraries for 114 NCAAs and

have incorporated these NCAAs into Rosetta. These NCAA

rotamer libraries, the code used to construct new rotamer libraries

and the modified version of Rosetta corresponding to this work are

freely available to academic groups at: http://www.

rosettacommons.org.Archives that include everything required to

reproduce this work (scripts, input data, example runs and

directory structure, and tutorials) are included in a single archive

included as Supporting Information S2.

Here, we used our modified version of Rosetta to increase the

binding affinity of subdomain C of the calpastatin peptide for

domain DVI of the calcium dependant cysteine protease calpain.

Calpain, is involved in many important cellular pathways [25].

The number of proteins targeted for proteolysis by calpain

implicates it in a variety of diseases [26–28] implying that

inhibitors of calpain could be of potential therapeutic use.

Structural characterization of the calpain/calpastatin interface

has shown that calpastatin subdomain C forms an amphipathic a-

helix that binds to a hydrophobic patch on the DIV domain of

calpain (figure 1) [29–31]. We have computationally redesigned

positions on the interface between calpastatin and calpain by

allowing NCAAs at the calpastatin positions as a first test of our

integration of NCAAs into Rosetta, and show that we can improve

binding of a calpastatin-derived peptide with calpain.

Materials and Methods

Modification of the Rosetta Energy Function
The Rosetta energy function is a linear sum of individually

weighted terms as shown below and in Rohl et al. [19]. It contains

a physically-based inter-residue Lennard-Jones term split into

repulsive and attractive components (Einter_rep and Einter_atr) [32], a

implicit solvation term implemented as described by Lazarids and

Karplus (Esolvation) [33], knowledge-based reside pair electrostatics

term (Epair), orientation dependent hydrogen bonding term (Esc/bb

hb, Ebb/bb hb and Esc/sc hb) [34], a knowledge-based term that

measures the internal energy of an amino acid based on

probabilities from rotamer libraries (the rotamer internal energy

term, Edunbrack), a knowledge-based term that measures Ramachan-

drin backbone torsion preferences of a position (the rama term,

Erama), and a reference energy term that represents the energy of

the unfolded state of a protein (Eref) [35,36].

Eprotein~Winter repEinter repzWinteratrEinteratrzWsolvationEsolvation

zWbb=sc hbEbb=sc hbzWbb=bb hbEbb=bb hbzWsc=sc hbEsc=sc hb

zWpairEpairzWdunbrackEdunbrackzWramaErama

zWreferenceEreference

The inter-residue attractive and repulsive terms are physically

based and can be applied to NCAAs. The solvation term and the

hydrogen bonding terms are evaluated on atom-atom pairs and

thus applicable without modification to NCAAs. The rotamer

internal energy term, the rama term and the pair term are

knowledge-based, conditioned on residue identity and are not

compatible with NCAAs. To replace the internal energy term and

the rama term we have implemented a intra-residue molecular

mechanics Lennard-Jones term and a matching molecular

mechanics torsion term, both described below. The reference

energy term has been replaced with a term that uses an explicit

unfolded state model described below. The pair electrostatic term

has been omitted. The modified energy function used for scoring

CAAs and NCAAs is shown below.

Noncanonical Amino Acids in Rosetta
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Eprotein~Winter repEinter repzWinter atrEinter atrzWsolvationEsolvation

zWbb=sc hbEbb=sc hbzWbb=bb hbEbb=bb hbzWsc=sc hbEsc=sc hb

zWintra repEintra repzWintra atrEintra atrWtorsionEtorsion

zWunfoldedEunolded

In contrast to molecular mechanics programs which often views

proteins as a fixed set of atoms, bonds, bond angles, and dihedral

angles, the energy functions used by computational protein design

programs must be able to rapidly handle changes to the protein

amino acid sequence. This is achieved by decomposing the energy

function in to terms that can be evaluated between pairs of

prospective amino acid rotamers. Here we denote energy terms

that that can be evaluated without information about the

surrounding rotamers ‘‘one-body’’ terms (e.g. Edunbrack), while

energy terms that require information about the surrounding

rotamers are referred to as ‘‘two-body’’ terms (e.g. Eintra rep). The

combination of the molecular mechanics torsion and intra-residue

Lennard-Jones terms can accurately describe the rotation about a

bond in a protein design scenario using fixed bond lengths and

angles [37].

Instead of using a molecular mechanics potential to model side

chain torsion energies, we considered using quantum mechanics

(QM) single point energy calculations to determine rotamer

preferences. With this strategy, the alternate rotamers of a side

chain are modeled in the context of a dipeptide and the internal

energy of each side chain conformation is calculated with high

level QM simulations. The QM derived internal energies are then

assigned to the appropriate rotamers while performing full protein

design simulations. Previously we showed that this approach works

well for valine, leucine and isoleucine, and that in some scenarios

the QM derived energies outperformed molecular mechanics

energies in side chain prediction tests [17].We choose not to use

this approach for the NCAA side chains because it would require a

very large amount of computer time (.100 million CPU hours) for

the full set of NCAA rotamers that we are considering and because

our QM-based approach does not work well with polar side

chains. The QM simulations are performed in a vacuum and

therefore polar side chains typically form strong interactions with

their own backbone, interactions that would be partially shielded

in a solvated environment.

Implementation of the CHARMM Torsion and
Lennard-Jones Potentials in Rosetta

We have implemented a molecular mechanics torsion term of

the form shown below using the CHARMM27 parameter set [38].

Eijkl~Kijkl 1zcos nxijkl{hijkl

� �� �
Where the four atoms that comprise the dihedral angle are

indicated i, j, k, and l, K is a constant, n is the multiplicity (e.g. n = 2

for sp2, n = 3 for sp3), x is the angle of the dihedral, and h is the

offset. Note that a single chemical bond may have more than one

of these terms such that the sum is expressed as a Fourier series.

The torsion term is evaluated for all sets for 4 connected atoms in a

protein.

We have matched the molecular mechanics torsion term with a

matching molecular mechanics Lennard-Jones term of the form

shown below also using the CHARMM27 parameter set [38].

Eij~
ffiffiffiffiffiffiffi
eiej
p Rmin ij

Rij

� �12

{2
Rmin ij

Rij

� �6
 !

Where for two atoms of types i and j,
ffiffiffiffiffiffiffi
eiej
p

is the well depth,

Rmin ij is the distance at which atoms of type i and j are at an

energetic minimum, and Rij is the distance between the two

atoms. The term is evaluated between all pairs of atoms within an

amino acid rotamer that are separated by three or more chemical

bonds.

Estimating an Explicit Unfolded Energy Term for NCAAs
The reference energy term in Rosetta represents the unfolded

energy of the protein; this term corrects for the relative difficulty of

packing large side chains and side chains with large numbers of

rotamers, and has been shown to be essential for native amino acid

recovery performance [1,2,3] (a primary test of any design

procedure). The individual values for each CAA reference value

(one per amino acid type) are independent degrees of freedom that

represent the average value of that scoring term in the unfolded

state; weight fitting for the Rosetta-design reference energy is done

Figure 1. The structure of calpain and calpastatin. (A)The calpain-1 DI-DVI (green) with calpain-4 DVI (cyan) with a calpastatin subdomains A,B,
and C (magenta). Dashed lines are where there was no density in the crystal structure for calpastatin. (B) Enlarged view of the interaction between
subdomain C of calpastatin and DVI of calpain-4 indicated in A by black square.
doi:10.1371/journal.pone.0032637.g001

Noncanonical Amino Acids in Rosetta
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using a training set of proteins that contain only CAAs and the

reference energy is therefore not applicable to NCAAs. We have

implemented a term to replace the reference energy term that uses

an explicit unfolded state model and is compatible with both CAAs

and NCAAs. To estimate the unfolded energy of an amino acid we

first use fragments of protein structures to create a random

backbone ensemble, and then repack the NCAA in question into

each structure in this ensemble. To create an ‘‘unfolded’’ backbone

ensemble we break a set of ,1500 high resolution, low redundancy,

protein structures into randomly chosen 5-mer fragments. The list

of structures was generated from the a subset of the pdb culled with

PISCES to remove redundancy and low resolution structures [39].

The central residue of each fragment in this ensemble is mutated,

and the full five-mer is allowed to repack. The unweighted energies

of each energy term for each central residue ensemble are averaged

and stored. When scoring a particular position, the averaged

unweighted residue-based energies are multiplied by the weight

from the respective energy term as shown in below.

Eunfolded, i~Winter repEinter rep, izWinter atrEinter atr, i

zWsolvationEsolvation, izWbb=sc hbEbb=sc hb, i

zWbb=bb hbEbb=bb hb, izWsc=sc hbEsc=sc hb, i

zWintra repEintra rep, izWintra atrEintra atr, iWtorsionEtorsion, i

Where Ej,i is the average unweighted energy for energy term j

and residue type i, and the weights are the identical weights used

for each energy component in the Rosetta energy function.

Determining weights for individual energy terms
The Rosetta energy function is the sum of individual weighted

energy terms as show above. Substantial changes to the terms in the

energy function require a re-optimization of the weights on the

individual terms. The weights are trained to maximize the

probability of seeing the native amino acid at each position in a

set of high-resolution protein structures during a complete sequence

redesign. The weights on certain terms can be kept fixed or allowed

to change. The fitting is done by calculating the unweighted energies

for all rotamers at all positions in all of the structures and then

optimizing the weights on the free terms using a combination of

particle swarm optimization [40] and quasi-Newton minimization

[41] to maximize a fitness function. The fitness function used is

designed to maximize the probability that the native amino acid (in

the context of a high resolution crystal structure) is scored with a

lower energy than all other amino acids and is shown below. Lastly,

the new set of weights is used to redesign the set of training proteins

and native sequence recovery is tested [42]. If the sequence recovery

increases, the new set of weights is accepted. If the sequence recovery

decreases the new weight set is averaged with the previous weight set.

These three steps are repeated 10 times. The fitness function, F,

which is maximized during the optimization, is shown below.

F~
X

all proteins
all positions

-ln
e

-Enative AA

kBT

� �

P
all AA

e

{EAA

kBT

� �
0
BBBBBB@

1
CCCCCCA

Where E is the Rosetta energy, kB is the Boltzmann constant,

and T is the temperature.

Rotamer Library Creation
We have developed a protocol, called MakeRotLib, which can

create backbone dependent amino acid rotamer libraries for both

CAAs and NCAAs as shown in figure 2. The rotamer calculations

are performed using an amino acid dipeptide model system, a

single residue with an acetylated N-terminus and an N-methylated

C-terminus. The dipeptide system mimics all Q- and y-dependent

side-chain interactions with the surrounding protein backbone. Q
and y backbone dihedrals are sampled in 10 degree intervals

creating 1296 Q/y bins. For each Q/y bin, a set of amino acid

dipeptides are created with x dihedrals sampled in varying size

intervals depending on the number of x angles, the composition of

the side chain (e.g. 1 x angle for Val, 2 x angles for Phe), and the

expected number of rotamers (this can be a function of the number

of dihedrals, but is a user defined parameter).

Each dipeptide (built to test/sample a given x, Q and y) is

minimized with 25 steps of linear-gradient minimization to the

closest local minimum with Q, y and non-x side chain dihedrals

kept fixed during minimization. Linear minimization was chosen

over other forms of minimization because it explores the nearest

local minimum (the correct behavior, as we wish to characterize

many separate minima as distinct rotamers). The rotamers of

amino acids side chain are simply the local minimum in the side

chain energy landscape. The set of minimized side chain dihedral

angles for leucine with a-helical backbone dihedrals (Q= 260 and

y= 240), with both side chain x angles starting values sampled at

5 degree intervals, is shown in figure 2A.

Following minimization, the sets of minimized side chain

dihedral angles are clustered using a K-means clustering algorithm

to reduce the explored minima to a smaller set of distinct rotamers.

The K-means algorithm works by first calculating the root mean

squared distance between each set of side chain dihedral angles

and each member of a set of cluster centroids. Each set of side

chain dihedrals is assigned to the closest cluster centroid. Second,

the cluster centroids are recalculated to be the geometric mean of

the members of that cluster following reassignment at the prior

iteration. The algorithm iterates between these two steps until no

side chain dihedral sets change clusters or 500 iterations. The

minimized angles are shown for leucine in figure 2B.

We do not predefine limits or bins in which rotamers can exist.

A major drawback of our approach is that it requires the number

of clusters and an estimate of the starting positions of the cluster

centroids to be set before hand. The number of rotamer bins for

each amino acid and the starting values of the cluster centroid

positions are determined using test runs and expected results based

on previous rotamer libraries. The set of side chain dihedral angles

to be used as the angles for each rotamer is the lowest energy set of

angles in each cluster after the iterative clustering procedure. The

final rotamers for leucine with a-helical backbone dihedrals

(Q= 260 and y= 240) are shown in figure 2C. In order to

properly interpolate between rotamer bins in the Rosetta

framework and to more directly conform to the format of the

commonly used Dunbrack library the number of rotamer bins for

each Q/y bin must be equal, requiring us to populate all rotamer

dihedral bins (including high energy, rare configurations). The

Dunbrack rotamer library provides standard deviations that

describe the width of rotamer bins. Rosetta, and other codes,

use these standard deviations to calculate off-rotamer side chain

conformations that increase the number of rotamers sampled. To

calculate standard deviations for NCAAs needed for Rosetta (and

other design programs) we sample around each side chain x angle

and report angle deviations consistent with estimated energy

increases of 0.5 kcal/mol.

Noncanonical Amino Acids in Rosetta
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Rosetta makes use of the probabilities of a given rotamer listed

in the Dunbrack rotamer library for determining the internal

energy but also as a way to eliminate high-energy rotamers prior to

full energy function evaluation. Rosetta only uses the top 95% of

rotamers, ranked by probability, for each Q/y bin during side

chain optimization. The rotamer libraries generated here are not

used for energy evaluation but only as starting points for the side

chain packing. However the removal of high-energy rotamers

speeds up side chain optimization. We therefore convert the

energies to probabilities for this purpose using:

P~e
{E
kBT

� �

Where P is the probability, E is the energy of the rotamer, and

kBT is the Boltzmann constant. Probabilities are normalized to

sum to 100% for each Q/y bin.

Selection of NCAAs for initial Rotamer Library
NCAAs were chosen: 1) based on commercial availability, 2) to

have good model-ability using the existing CHARMM torsion and

Lennard-Jones parameters, and 3) to have four or fewer heavy

atom side chain x angles. Some conformers of NCAAs are difficult

to model using rotamer libraries because they involve coordinated

movements of multiple torsion angles (e.g. the transition between

the ‘‘chair’’ and ‘‘boat’’ cyclohexo ring conformers). In these cases

the different conformers were modeled as independent residue

types. For a full list of the NCAAs added see the Supporting

Information S1.

Comparison to Knowledge-Based Rotamer Libraries
To test the MakeRotLib we compared the overlap in rotamer

identity between the top 95% of rotamers predicted by the

MakeRotLib protocol and the top 95% of Dunbrack rotamers for

each Q/y bin and for all amino acids except alanine, gylcine and

proline (this is the relevant comparison as Rosetta uses only the top

95% of rotamers given by the Dunbrack rotamer library for each

Q/y bin). For each Q/y bin where the Dunbrack rotamer library

has more than 10 observations for a particular amino acid, we

compare the percent overlap between the identities of the rotamers

bins. Percent overlap is calculated for each Q/y bin by first

reading rotamers in order from most probable to least probable

from both Dunbrack and MakeRotLib rotamer libraries until the

summed probabilities of those rotamers is . = 95% individually.

The fraction of rotamers in the MakeRotLib set that have the

same rotamer bin as the rotamers in the Dunbrack set is the

percent overlap. Rotamer bins are considered overlapping if the

root mean squared (RMS) distance between side chain dihedral

angles, calculated by taking the square root of the sum of the

squared differences between the individual x angles, is less than 30

degrees. Comparisons of the percent overlap and RMS deviations

for matching rotamer bins for Leu, Asn, and Phe rotamer libraries

are discussed below and shown in figure 3 (see Supporting

Information S1 for all other CAA comparisons).

CAA Sequence and Rotamer Recovery Benchmarks
The modified energy function was tested using its ability to

score CAAs using two benchmarks: a rotamer recovery bench-

mark, and a sequence recovery benchmark. For both benchmarks

the ‘‘pack rotamers’’ (vida infra) side chain optimization procedure

is first performed on the set of high-resolution protein structures

we use to benchmark our procedure. In the rotamer recovery

benchmark, the rotamers used are limited to the rotamers of the

native amino acid present at each position in each benchmark

structure and the percent of native rotamer recovered is recorded.

In the sequence recovery benchmark, the rotamers of all CAAs are

allowed at each position and the sequence identity is recorded.

Peptide-Protein Interface Design Protocol
The design protocol designs a peptide-protein interface, starting

from an experimental structure of the peptide-protein interface,

Figure 2. Rotamer library creation protocol. The steps of the MakeRotLib protocol are shown for leucine with Q= 260 and y= 240. For a given
Q and y a set of leucine dipeptides is created with side chain angles initially set to all x1 and x2 values in 5 degree intervals. (A) Each dipeptide is
minimized keeping the Q and y fixed okay each trip up to. (B) Side-chain dihedral values are clustered all members of each cluster are indicated using
separate colors. (C) Black points indicate centroids of the clusters depicted in (B), Red dots indicate the lowest energy cluster member. The lowest
energy set of side chain dihedrals in each cluster (red points) comprise the rotamer library for leucine.
doi:10.1371/journal.pone.0032637.g002

Noncanonical Amino Acids in Rosetta
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allowing only peptide side chains to change sequence. The

protocol iterates between exploring backbone conformations and a

design phase that searches for low energy sequences to fit the

current backbone. The backbone phase has 2 parts: a backbone

perturbation and a round of ‘‘rotamer trials.’’ First one of the

following backbone perturbations is performed on the peptide/

protein complex: a ‘‘small’’ move, where Q or y of a randomly

chosen residue on the peptide is rotated by up to 3 degrees, a

‘‘shear’’ move, where the Q of a random residue on the peptide is

rotated up to 3 degrees and the y of the preceding residue is

rotated by an equal amount in the opposite direction, a ridged-

body translation of the peptide in the binding pocket, or a ridged-

body rotation of the peptide in the binding pocket. Each one of

these perturbations is followed by a round of rotamer trials where

for each residue that increased in energy during the backbone

movement, the best rotamer is chosen given the current context;

positions in the peptide are optimized in random order.

The design phase consists of two parts: a round of the ‘‘pack

rotamers’’ routine followed by gradient minimization. The ‘‘pack

rotamers’’ routine optimizes rotamers given a set of residues using a

simulated annealing Monte Carlo/Metropolis search. The routine

randomly chooses a single rotamer to replace (rotamers can be from

different amino acid types than the current amino acid at the

position) and determines the energy of the complex if the change is

made; changes are accepted based on the Metropolis criterion.

Following the pack rotamers routine, gradient-based minimization

of the complex is performed. Both backbone and side chain

dihedrals of the peptide and side chain dihedrals of the protein as

well as the distance between the peptide and the protein are allowed

as degrees of freedom. All residue side chains on the peptide are

allowed to repack but only protein residues within 6 angstroms of

the peptide are repacked. To generate a single design we performed

50 iterations of 100 cycles of the perturbation phase followed by 1

cycle of the design phase. The protocol is not designed to find a new

binding mode but to allow enough flexibility in the interface to allow

the possible incorporation of NCAAs.

All designs were created using the 2.0 angstrom resolution

crystal structure of a calpain-4 domain DVI bound to a 19mer

peptide of calpastatin comprising subdomain C of the first

inhibitory repeat (PDB code 1NX1) [10]. Only 11 residues of

the peptide were resolved in the crystal structure (positions 601–

611). The structure contains a homodimer of DVI in the

asymmetric unit with a calpastatin bound to each monomer.

The Ca RMSD between the calpain chains is 0.28 angstroms.

Calpain chain A and calpastatin chain C were used for the design

as the b-factors of residues at the calpastatin binding site were

lower than in the other interface. Before designing, the entire

protein was repacked using the pack rotamers routine and

backbone and side chain dihedral angles were minimized using

gradient based minimization.

Figure 3. Percent overlap and RMS distance for the top 95% of rotamers between the Dunbrack rotamer library and the rotamer
predicted by the MakeRotLib protocol for leucine. (A,B), asparagine (C,D), and phenylalanine (E,F). For each Q/y bin with more than 10
observations in the Dunbrack rotamer library, the percent overlap between the rotamer bins that comprise the top 95% of rotamer bins is calculated.
For each pair of rotamer bins that overlap the root mean square distance in degrees is calculated. See methods for additional details on creation and
results for details on analysis. A full description of how overlap and RMSD are calculated, given two rotamer sets for a given residue, are provided in
the methods section.
doi:10.1371/journal.pone.0032637.g003
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To select mutations for the initial rounds of experimental testing

we performed 500 independent runs allowing all NCAAs at a

single position while keeping the sequence of the other positions

fixed for each position in the peptide. Additionally we performed

256 independent runs where we individually tried each NCAA at

each position in the peptide. Results were evaluated based on the

total energy of the structure and the predicted binding energy of

the structure calculated as the difference in energy of the complex

and the unbound chains.

Purification of Calpain, Calpastatin, and Calpastatin
Mutants

Calpain was expressed as a GST-fusion protein in E. coli that

had been transfected with a pet41b vector that contained the gene

encoding porcine calpain-1. The cells were grown in Luria-Bertani

broth with 50 ug/ml kanamycin at 37 degrees Celsius to an OD600

of 0.6 at which point 1 mM isopropyl b-D-1-thiogalactopyrano-

side (IPTG) was added to induce expression. Cells were grown for

an additional 4 hours and harvested by centrifugation. Cells were

resuspended in a buffer containing 50 mM NaPO4, 150 mM

NaCl, 5 mM BME at pH 8.0 and lysed by sonication. Lysate was

centrifuged at 12500 g for 30 minutes and the supernatant was

run over a GSTrap-FF column that had been equilibrated with the

lysis buffer. After loading, the column was washed with 10 column

volumes of the lysis buffer before the GST-calpain was eluted with

50 mM Tris and 10 mM reduced glutithione, pH 8.0. The eluent

was monitored by absorbance at 280 nm.5 mL fractions were

collected. Those fractions which absorbed at 280 nm were pooled.

Thrombin was added to separate the calpain from the GST and

the cleavage reaction was allowed to cleave overnight at 4 Celsius.

To remove the GST the protein was further purified with a

Sephacryl S-200 gel filtration column using a buffer containing

50 mM NaPO4, 50 mM NaCl, 5 mM BME, 1 mM CaCl2, 1 mM

EDTA at pH 8.0. The protein was concentrated through

centrifugation via a spin column with a 15 K molecular weight

cutoff and found to be pure and ran true to predicted size on SDS-

PAGE gels.

Seven peptides were synthesized for experimental validation

(table 1). The wild type and 4-methyl-phenylalanine (4MF) mutant

peptides were synthesized by the Tuffs University Core Facility.

These sequences were labeled with a fluorescein isothiocyanate

(FITC) dye through an N-terminal b-alanine (bALA) linker.

Peptides for the 1-methyl-histidine (1MH), amino-butyric acid

(ABU), homoserine (HSE), and norvaline (NVL) mutant peptides

were synthesized by the Peptide Synthesis and Analysis Facility in

the Strahl laboratory at the University of North Carolina at

Chapel Hill. These peptides were labeled with a 5-carboxyfluor-

escein (5FAM) dye also through a N-terminal bALA linker.

Fluorescence Polarization Binding Assays
Purified calpain was manually titrated in to a solution

containing 500 nM calpastatin with 50 mM NaP, 50 mM NaCl,

5 mM BME, 1 mM CaCl2, 1 mM EDTA at pH 8.0, till the

change in fluorescence polarization reached a plateau. Binding

assays were performed at room temperature, 3 polarization

readings were averaged for each concentration. Disassociation

constants were calculated by fitting the data to a single state

binding model using Sigma plot software.

Results

Energy Function Modifications required for NCAAs
Explicit Unfolded State Energy. Using peptides to model

the unfolded state, we have calculated average unfolded state

energies for the 20 CAAs and the 114 NCAAs that we have added

to Rosetta. This term captures the average internal energy of each

of the amino acids, Lennard-Jones and torsional energies, as well

the average strength of non-covalent interactions with residues

close in primary sequence. For the amino acids with six membered

rings (PHE, TYR and TRP) repulsive energies are calculated

between the 1 and 4, 2 and 5, and 3 and 6 carbons, which leads to

large unfavorable unfolded state energies. However, these

repulsive energies largely cancel out when the unfolded state

energies are subtracted from the energy of the folded state. During

optimization of the modified energy function an overall weight was

placed on the unfolded state score of the protein, the final fitted

value was close to one and had a value of 0.91. In the standard

version of Rosetta the unfolded state energies, referred to as

reference values, are not explicitly calculated for the amino acids

but rather are empirically determined to reproduce naturally

occurring amino acid compositions when redesigning large sets of

proteins. A direct comparison between the ‘standard’ Rosetta

reference values and the new unfolded state values is not

meaningful because of differences in the way intra-residue

energies are calculated.

Optimization of energy function component

weights. The weights on the energy function terms have been

optimized using a procedure that maximizes sequence recovery

when redesigning a set of proteins (see methods, table 2). The

weights on the Lennard-Jones inter residue attractive term were

kept fixed during the weight fitting while all others were allowed to

be free. The weights on the terms shared by standard Rosetta and

Table 1. Summary of the Rosetta energy predictions for the redesign of the calpain/calpastatin interface and experimentally
determined disassociation constants.

Position Peptide Sequence Predicted (REU) Experimental KD (mM)

Total Binding

WT FITC–bALA–PDDAIDALSDDFTS-amide 257.9 213.4 5.7760.31

5FAM–bALA–PDDAIDALSDDFTS-amide 257.9 213.4 6.6060.65

607 5FAM–bALA–PDDAIDAL(ABU)DDFTS-amide 261.9 215.1 5.8061.20

5FAM–bALA–PDDAIDAL(NVL)DDFTS-amide 261.9 214.4 8.5660.95

609 5FAM–bALA–PDDAIDALSD(1MH)FTS-amide 261.8 215.2 5.8160.64

5FAM–bALA–PDDAIDALSD(HSE)–FTS-amide 259.5 214.2 7.4860.68

610 FITC–bALA–PDDAIDALSDD(4MF)TS-amide 260.0 214.2 2.6060.25

doi:10.1371/journal.pone.0032637.t001
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the modified version remain similar with the exception that the

Lennard-Jones inter-residue repulsive energy and solvation energy

were upweighted.

CAA Sequence and Rotamer Recovery. Sequence and

rotamer recovery benchmarks were run using the standard Rosetta

and modified energy functions as described in the methods section.

x1 rotamer recovery for the stock energy function was 84%

overall, 93% in the core, and 74% on the surface. x1 and x2

rotamer recovery for the stock energy function was 64% overall,

74% in the core, and 53% on the surface. x1 rotamer recovery for

the modified energy function was 75% overall, 91% in the core,

and 59% on the surface. x1 and x2 rotamer recovery for the

modified energy function was 53% overall, 71% in the core, and

37% on the surface. The overall sequence recovery was 35% for

the standard Rosetta energy function and 28% for the modified

energy function. When the weight fitting protocol is run using the

standard energy function with the reference energy term replaced

with the explicit unfolded energy term the sequence recovery is

30%.

Rotamer recoveries between the two energy functions are nearly

identical for buried residues indicating that the modified energy

function performs well when there are multiple constraints

dictating side chain conformation. On the protein surface, the

internal energy of the side chains play a larger role in determining

their conformations and the modified energy function performs

well, but not as well as the standard Rosetta knowledge-based

potential. This result highlights the usefulness of knowledge-based

potentials. However, in most practical applications of design with

NCAAs we will be interested in buried positions, either in a

protein core or at an interface, and in these situations both

potentials perform equally well. The standard Rosetta potential

also has higher rates of sequence recovery than the modified

energy function. This is partially because the new energy function

has 20 less degrees of freedom when weight fitting, because there

are no longer adjustable reference energies for each amino acid

[42,43]. Additionally, the fragment based method of calculating

unfolded energies typically places the central residue (the residue

for which unfolded state energies are being estimated) in a position

where it experiences far fewer contacts than if it were in a folded

protein or at a protein interface. Thus, the largest systematic bias

in our unfolded-state energies, stemming from this low contact

density, is that our unfolded term under estimates the attractive

component of the energy function for larger amino acids. This

gives larger amino acids a bias when designing because they

contain more atoms.

Rotamer Library Creation
Canonical Amino Acid Rotamer Library Creation and

Validation of MakeRotLib. Rosetta currently uses the 2002

update to the Dunbrack backbone-dependent rotamer library

[24]. To test the MakeRotLib protocol we have used it to create

rotamer libraries for all CAAs except alanine, glycine and proline,

and compared them to the Dunbrack backbone-dependent

rotamer library [24]. We use the notation developed by Lovell et

al. to describe the rotamers because of its clarity and brevity [44].

We compare the libraries produced by each method using the

percent overlap of matching rotamer bins and the RMS distance

in degrees of the matching rotamer bins. Overall we see good

agreement between the Dunbrack rotamer libraries and those

generated by the MakeRotLib protocol. All CAAs but Asn and

Asp have a more than 70% overlap in rotamer bins. For all

matching rotamer bins the average RMS deviation is 9.5 degrees.

As would be expected, the CAAs with the best percent overlap are

those with fewer degrees of freedom as evidenced by all amino

acids with one x angle getting at least 88% percent overlap.

Deviations between the rotamer libraries are most often seen in Q/

y bins where there are few counts in the Dunbrack library. The

MakeRotLib protocols perform less well for short polar amino

acids, ASN and ASP perhaps because there are electrostatic

interactions between these side chains and backbone atoms not

well modeled by our procedure. For large aromatics (Phe and Tyr)

we see less accuracy in the prediction of the most favorable x, this

is probably because these minima are less sharp in nature as well.

The highest, lowest and average percent overlap and RMS

distance for each CAA over all populated Q/y bins are shown in

table 3. The results for Leu, Asn, and Phe are described below, the

results for the other CAAs are described in the Supporting

Information S1.

Leucine. Leucine is an example of a CAA in which the

MakeRotLib protocol performs well. Leucine has 2 x angles with 3

x1 rotamer wells (mp and t) and 3 x2 rotamer wells (mp and t),
for a total of 9 rotamers. At the 2110/130 Q/y bin the top 4

rotamers comprise 98% of the Dunbrack rotamers and 100% of

the MakeRotLib rotamers, while at the 260/40 Q/y bin the top 3

rotamers comprise 97% of the Dunbrack rotamers and 99% of the

MakeRotLib rotamers. Overlap for the 2110/130 Q/y bin is

75% while overlap for the 260/240 Q/y bin is 100%. Both the

Dunbrack rotamer library and the MakeRotLib protocol favor the

mt and tp rotamers in most Q/y bins with probabilities .90%.

Major differences in the overlap are generally the result of different

preferences in the third and/or fourth most favorable rotamer (i.e.

major differences are found primarily in higher energy, rarer,

rotamers). Of the overlapping rotamers the average RMS angle

distance is 9.5u for the 2110/130 Q/y bin and 11.2u for the 260/

240 Q/y bin. x1–2 rotamer angles cluster well around 260, 60,

and 180. The tt rotamer is often skewed, to 190u, 140u by the

MakeRotLib protocol; this skew can place the rotamer out of

overlap range and therefore decrease the overall overlap. The

skew is not consistent with the Dunbrack rotamer but is consistent

with the preferred angles of Lovell et al. [44].

Aspargine. Aspargine is an example of where the

MakeRotLib protocol has difficulty modeling. Asparagine has 2

Table 2. Weights on the stock Rosetta energy function and
on the modified energy function.

Energy Term Stock Weight Modified Weight

Inter-repulsive 0.44 0.63

Inter-attractive 0.80 0.80

Solvation 0.65 1.16

Pair 0.49 -

Bb/bb HB 0.59 0.67

Bb/sc HB 1.17 1.45

Sc/sc HB 1.10 1.19

Dunbrack 0.56 -

Omega 0.50 -

Rama 0.20 -

Reference 1.00 -

Torsion - 0.27

Intra-repulsive - 0.32

Intra-attractive - 0.54

Unfolded - 0.90

doi:10.1371/journal.pone.0032637.t002
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x angles with 3 x1 rotamer wells (mpt), 6 x2 rotamer wells

(centered on 2120, 260, 210, 40, 80, 140). At the 2110/130 Q/

y bin the top 9 rotamers comprise 96% of the Dunbrack rotamers

and 97% of the MakeRotLib rotamers, while at the 260/40 Q/y
bin the top 10 rotamers comprise 96% of the Dunbrack rotamers

and 99% of the MakeRotLib rotamers. Overlap for the 2110/130

Q/y bin is 56% while overlap for the 260/240 Q/y bin is 80%.

Asparagine is a difficult residue to match because of the large

number of rotamers that span a full rotation about the x2 dihedral.

Additionally the rotamers are biased by local interactions in

common secondary structures and because it places polar groups

from the side chain in close proximity to the polar groups in the

peptide backbone [44,45]. If we look at the distribution of the

Dunbrack library for x2 angles for rotamers that are seen more

then 10% probability are we find they mostly fall near 260, 220,

20, and 60. Dunbrack uses a large number of rotamers to cover

the spread of angles and the MakeRotLib protocol does not find

rotamers with x2 near 0. This significantly lowers the overlap.

Additionally the x1 preferences of the MakeRotLib protocol differ

from the Dunbrack library which also lowers the overlap. The

MakeRotLib protocol strongly favors rotamers with a x1 of m
followed by p and then t while the Dunbrack is more evenly

distributed. The top rotamers predicted by the MakeRotLib

protocol have a higher percent overlap for the a-helical region

than the b-strand region. Of the overlapping rotamers the average

RMS angle distance is 12.3 for the 2110/130 Q/y bin and 15.2

for the 260/240 Q/y bin. Our modified energy function

additionally doesn’t take into account internal electrostatic

interactions that are important for the small polar amino acids

like Asp and Asn. The MakeRotLib protocol does not take into

account increases in rotamer stability induced through interactions

with neighboring side chains such as hydrogen bonding. These

interactions can bias rotamer libraries when using the probabilities

to compute energies but may also prevent strained rotamers

(which would be compensated by other beneficial interactions)

from being sampled because they would not be included in the

database [44].

Phenylalanine. Phenylalanine is an example of an amino

acid where the MakeRotLib protocol produces rotamers that are

less accurate. Phenylalanine has 2 x angles with 3 x1 rotamer wells

(mpt), 2 x2 rotamer wells (centered on 90 and 0), for a total of 6

rotamers. At the 2110/130 Q/y bin the top 3 rotamers comprise

99% of the Dunbrack rotamers and 97% of the MakeRotLib

rotamers, while at the 260/40 Q/y bin the top 3 rotamers

comprise 96% of the Dunbrack rotamers and 99% of the

MakeRotLib rotamers. Overlap for the 2110/130 Q/y bin is

100% while overlap for the 260/240 Q/y bin is 100%. The

MakeRotLib protocol finds rotamers with x1 of 260, 60, and 180

and x2 of 90 and 240. The Dunbrack rotamers with x2 centered

on 0 are not seen. That rotamer well is wide as evidenced by the

large standard deviations. Lovell et al. note that phenylalanine

rotamers with a x2 near 0 often have bond angle deviations that

would not be captured by the MakeRotLib protocol and could

account for the deviation away from 20 or 220 [44]. Of the

overlapping rotamers the average RMS angle distance is 14.2 for

the 2110/130 Q/y bin and 16.7 for the 260/240 Q/y bin. The

overlap is good because the 40 degrees is close enough by our

measure to be the same rotamer. The assumption of ideal bond

lengths and bond angles speed up protein design calculations. If

the same assumption is made during rotamer creation amino acids

that show slight bond angle deviations in certain conformations

can be obscured (e.g. phenylalanine and tyrosine). The ideal bond

and angle assumption can also induce systematic biases in the

shapes of rotamer wells as the only degrees of freedom are torsions.

Directly comparing the results of our protocol to those of

knowledge-based rotamer libraries is currently the best test of

MakeRotLib’s performance. Our method of creating rotamers

unfortunately suffers because it does not take into account

electronic effects that have not been adequately captured by the

molecular mechanics terms and our energy function which are

captured by knowledge-based rotamer libraries. However, the

knowledge-based rotamer libraries can be biased because of long

range sidechain-sidechain interactions [17]. In this study we have

identified that tryptophan rotamers with a-helical Q and y, like

valine and leucine rotamers, are biased because of long-range

effects typically present in an a-helix. Additionally for amino acids

the size of arginine or larger, the dipeptide model system used in

the protocol allows rotamers that place the amino acid side chain

in a position that would clash with the backbone of neighboring

side chains (i+1, i21). This could however lead to more accurate

sampling of rotamers at protein termini that would most likely be

under represented in a knowledge based rotamer library.

Noncanonical Amino Acid Rotamer Library Creation
The full list of NCAAs that were added to Rosetta and for which

rotamer libraries have been created is listed in the Supporting

Information S1. Here we present a few examples in detail.

2-Indanyl-Glycine. 2-indanyl-glycine is a hydrophobic

amino acid that was initially synthesized as a constrained

phenylalanine with particular x1 torsional preferences.2-indanyl-

glycine exists in 2 conformers due to the pucker of the 5-

membered ring. The structures of both conformers are shown in

Table 3. Comparison of the top 95% of CAA rotamers
predicted by the MakeRotLib protocol to the rotamers given
by the Dunbrack rotamer library.

CAA RMS Distance (degrees) Percent Overlap (%)

lowest highest average lowest highest average

ARG 5.8 11.2 7.7 57 100 87

ASN 0.3 18.1 12.6 0 100 67

ASP 6.8 21.1 13.5 0 100 58

CYS 0.2 15.1 6.1 50 100 98

GLN 11.1 18.5 15.0 33 100 76

GLU 6.1 15.7 8.8 43 100 71

HIS 7.9 17.1 12.1 60 100 86

ILE 4.0 18.7 9.7 50 100 81

LEU 1.7 19.9 9.4 0 100 72

LYS 2.8 10.0 5.6 36 100 79

MET 3.3 10.4 5.9 56 100 86

PHE 3.0 17.5 11.7 50 100 93

SER 0.3 19.4 7.0 50 100 97

THR 0.0 27.8 7.8 0 100 91

TRP 5.4 14.7 9.0 33 100 73

TYR 1.4 20.7 11.5 0 100 93

VAL 1.5 21.9 8.6 50 100 88

Low, high, and average values (see methods) are calculated over all Q/y bins
where the Dunbrack rotamer library reports more than 10 observations. A high
percent overlap (see methods) indicates that the rotamers predicted by the
MakeRotLib protocol are in agreement with the rotamers predicted by the
Dunbrack rotamer library. A low average RMS distance indicates that the
dihedral angles for rotamer bins that overlap are in good agreement.
doi:10.1371/journal.pone.0032637.t003
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figure 4. The ‘‘exo’’ conformer is 1.45 kcals/mol higher in energy

than the ‘‘endo’’ conformer as determined by QM when both

structures were minimized in preparation for rotamer creation.

The amino acid has 1 x angle about the Ca-Cb bond. The 5-

membered ring mimics the b-branched structure of valine and the

rotamers are similar as shown in table 4. Both 2-indanyl-glycine

and valine show a strong preference (.90%) for the t rotamer at

both alpha-helical and beta-strand secondary structure

conformations. x1 distribution of the ‘‘exo’’ conformation has

less spread than the ‘‘endo’’ because of the side chain backbone

clashes that occur at rotamers other than t.
a-Methyl-Tryptophan. a-Methyl-tryptophan is a trypto-

phan derivative that is taken up and retained by the brain

because of it resemblance to serotonin. Labeled a-methyl-

tryptophan is commonly used as a brain imaging tool [46]. It is

identical to the canonical tryptophan amino acid with the addition

of a methyl group replacing the Ha as seen in figure 4A. The

addition of the methyl group restricts the rotamers that the side

chain can adopt as shown table 5. The tryptophan x2 rotamers

near 0u occupy wide wells (represented in our libraries by large

standard deviations, see table 4). The addition of the methyl

group in a-methyl-tryptophan causes a clash with the x2 = 0u
rotamer and limits the rotamers that the amino acid can have to

6.The x1 of a-methyl-tryptophan cluster around m, p, and t
and the x2 cluster around 290u and 90u. Additionally the

methyl group also restricts the Q and y backbone dihedrals the

residue can occupy, as shown in figure 4B. No structures

have been deposited in the protein databank containing a-

methyl-tryptophan.

Figure 4. The structures of the example NCCA side chains. The structure of a-methyl-tryptophan is shown in a dipeptide context with
Q= 2150 and y= 150 (A). Plots of backbone the energy landscape of a-methyl-tryptophan and tryptophan (left) and canonical tryptophan (right) as
calculated by Rosetta (B). Calculations were done in a didpeptide context where the backbone Q and y were fixed, the side chain was repacked and
minimized for each Q and y bin in 5 degree intervals. Colors represent energy of the didpeptide in kcals/mol with red being the lowest energy and
most preferred backbone conformation. The structure of homoserine in a didpeptide context with Q= 2150 and y= 150 (C). The structure of 2-
indynal-glycine is shown in a dipeptide context with Q= 2150 and y= 150 (D). The different pucker state of the five member ring of 2-indynal glycine
are modeled as separate amino acid type by Rosetta because of the difficulty in using rotamer libraries to capture coordinated movements that
involved simultaneous rotation about multiple dihedral angles. There is a 1.45 kcal/mol energy difference between the ‘‘exo’’ conformer (left) and the
‘‘endo’’ conformer (right) with the ‘‘endo’’ conformer lower in energy.
doi:10.1371/journal.pone.0032637.g004

Table 4. The rotamers of 2-indanyl-glycine predicted by the
MakeRotLib protocol with the rotamer for valine from the
Dunbrack rotamer library for b-strand and a-helical Q and y.

Name Q y Prob (%) x1 s1

2IG ‘‘exo’’ 2110u 130u 0.9963 178.3u 10.0u

0.0036 276.3u 7.6u

0.0001 73.7u 10.7u

260u 240u 0.9990 177.8u 9.6u

0.0009 281.5u 7.2u

0.0001 68.8u 10.3u

2IG ‘‘endo’’ 2110u 130u 0.9112 2179.9u 10.6u

0.0834 269.8u 8.9u

0.0054 47.3u 6.5u

260u 240u 0.9577 179.1u 11.6u

0.0411 272.0u 9.1u

0.0011 43.8u 6.7u

VAL 2110u 130u 0.9408 178.0u 6.1u

0.0338 57.8u 9.5u

0.0254 262.5u 12.7u

260u 240u 0.9181 171.9u 5.2u

0.0515 68.0u 10.1u

0.0304 261.0u 11.2u

doi:10.1371/journal.pone.0032637.t004
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Homoserine. Homoserine is a medium sized, unbranched,

polar residue that has been added to Rosetta. Homoserine differs

from the canonical serine due to the addition of a methylene group

in the side chain, essentially making a longer serine residue

(figure 4). Homoserine is a precursor in the biosynthesis of several

amino acids. It is small and flexible and could be advantageous in

designing hydrogen bonds at protein interfaces as seen in figure 5.

x1–2 cluster around the m, p, and t rotamers. The side chain is

comparable to the x1–2 of methionine with a t x3 rotamer

(table 6).

Incorporation of NCAAs into the calpain/calpastatin
interface redesign improves binding

As an initial test for our new methods in Rosetta for modeling

NCAAs we examined if the software could be used to identify

mutations to a peptide that would enhance its affinity for a target

protein. Peptide design is an attractive arena for design with

NCAAs because NCAAs are easily used in standard peptide

synthesis protocols. Calpastatin binds as an amphipathic a-helix in

a hydrophobic pocket between EF hands 1 and 2 of calpain DVI.

Todd et al. identified calpastatin positions leu606 and phe610 as

being the main residues involved in binding based on the crystal

structure [31]. We have performed sequence optimization of the

calpastatin peptide using a design protocol that iterates between

backbone refinement and side chain design (see methods). 114

NCAAs were considered in the design runs. The results of the

design runs were screened based on the predicted total energy and

predicted change in binding energy. From preliminary simulations

we noticed that it was not uncommon for the design protocol to

favor substitutions to larger amino acids that would result in large

structural perturbations to the interface when the backbone was

relaxed. This is probably a consequence of the modified energy

function which favors larger amino acids more than the standard

Rosetta potential (see above).To avoid designs of this type, any

designs where the peptide moved out of the binding groove were

removed from consideration.

At positions 601, 603, 604, 605, and 608 of Calpastatin, Rosetta

was unable to identify any mutations to CAA or NCAA that scored

better than the wild type residue (table 1).The wild type serine at

position 607 potentially forms a weak hydrogen bond with His129

(figure 5A), but is also surrounded by a hydrophobic packet formed

by Val125, Ile603, and the methylene groups of Arg128.Substitut-

ing the serine with amino butyric acid (figure 5B) is predicted to

increase the binding affinity by approximately 2 Rosetta energy

units (REU) and norvaline (figure 5C) is predicted to increase the

binding affinity by 1 REU. Neither of these mutations is predicted to

affect the position of the peptide in the binding pocket.

The wild type aspartic acid at position 609 makes a hydrogen

bond with Trp166, one of three hydrogen bonds between the

peptide and the protein (figure 5D). The amino acids preferred by

Rosetta keep this hydrogen bond intact. 1-Methyl-histidine

(figure 5E) forms an ideal hydrogen bond with Trp166. The

hydrogen to acceptor distance is 1.9 angstroms. The aliphatic part

of the methyl-histidine packs against Phe99, Leu102, Lys170, and

Ala605. Homoserine (figure 5F) is also able to make the hydrogen

bond to trp166. The hydrogen to acceptor distance is 2.1

angstroms. The difference in functional groups between the

aspartic acid and the homoserine allows the homoserine to form

more ideal hydrogen bond geometry.

At position 610, the wild type phenylalanine is buried in a large

hydrophobic pocket and along with Leu606 forms the main

hydrophobic interface with calpain. The phenylalanine interacts

with Trp166, His129, Leu132, Val125, Ile169, Phe224, and the

hydrophobic portion of Gln173 (figure 5G). The crystal structure

shows that the pocket is not entirely filled by the phenylalanine.

Rosetta predicts that a 4-methyl-phenylalanine (figure 5H) can fill

more of the cavity and creates more hydrophobic contacts without

disrupting the overall binding, and would therefore have an

increased binding affinity.

Fluorescence Polarization Binding Assays. Fluorescence

polarization binding assays were conducted with five of the

designed peptides, each containing a single point mutation: Ser607

to amino butyric acid (ABU), Ser607 to norvaline (NVL), Asp609

to 1-methyl-histidine (1MH), Asp609 to homoserine (HSE), and

Phe610 to 4-methyl-phenylalanine (4MF) (Supporting Information

S1). Except for Phe610 to 4MF, the peptides had affinities for

Calpain that were the same as the wild peptide, within the errors

of the experiment. The peptide with 4MF at position 610 showed

a two-fold increase in binding affinity, 2.6 mM compared to

5.8 mM. It is encouraging that all the designs bind well to Calpain,

indicating that the design procedure was able to find mutations

that are compatible with the target interface, even in cases where

Table 5. The rotamers of a-methyl-tryptophan predicted by
the MakeRotLib protocol with the rotamer for tryptophan
from the Dunbrack rotamer library for b-strand and a-helical Q
and y.

Name Q y Prob (%) x1 x2 s1 s2

AMT 2110u 130u 0.5772 270.9u 291.7u 7.0u 9.8u

0.2789 2173.9u 81.4u 4.3u 4.0u

0.1065 279.0u 76.8u 4.6uu 20.2u

0.0258 44.1u 104.0u 4.8u 2.7u

0.0109 175.8u 291.3u 6.3u 5.8u

0.0007 39.1u 280.6u 7.6u 3.6u

260u 240u 0.5034 266.4u 294.2u 10.6u 9.7u

0.3157 268u 88.1u 10.3u 10.2u

0.1017 177.5u 87.1u 8.6u 7.0u

0.0620 179.2u 287.6u 9.4u 8.7u

0.0100 40.3u 277.6u 8.1u 5.1u

0.0073 35.9u 102.8u 9.1u 6.6u

TRP 2110u 130u 0.5385 269.0u 90.5u 6.3u 11.8u

0.1645 267.0u 3.4u 9.2u 23.4u

0.1212 269.7u 292.5u 10.7u 10.2u

0.0984 179.3u 2100.5u 15.7u 11.7u

0.0660 178.9u 88.2u 5.3u 11.0u

0.0091 2177.6u 18.0u 10.6u 26.6u

0.0014 60.9u 289.8u 9.3u 8.8u

0.0008 61.5u 87.7u 10.0u 10.0u

0.0001 66.0u 26.3u 8.2u 42.3u

260u 240u 0.2687 2179.3u 85.5u 7.7u 8.6uu

0.2511 179.7u 2107.7u 11.7u 14.4u

0.2030 273.6u 109.2u 12.1u 14.5u

0.1242 270.5u 211.5u 10.4u 22.2u

0.0794 68.8u 289.6u 7.4u 6.8u

0.0516 2173.7u 16.7u 11.1u 36.1u

0.0162 289.8u 2119.8u 14.8u 22.4u

0.0054 73.0u 91.3u 17.8u 12.0u

0.0004 67.4u 26.8u 7.8u 37.8u

doi:10.1371/journal.pone.0032637.t005
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the polarity of the amino acid is changed. The increase in binding

affinity of Phe610 to 4MF is consistent with previous results that

show that increasing buried hydrophobic surface are at an

interface can improve binding affinity [47].

Discussion

We have developed a version of the Rosetta energy function

that is compatible with NCAAs. The performance of the new

energy function is slightly worse than the standard Rosetta energy

function in rotamer and sequence recovery tests, but still

comparable to other programs that have been developed for this

problem [48,49].This new capability will allow the use of NCAAs

in a wide variety of Rosetta protocols including procedures for

modeling and designing proteins, RNA, DNA, enzymes, small

molecules, surfaces and hybrid systems.

Rotamer libraries are a powerful tool in protein modeling. We

have developed methods to create rotamer libraries that are

Figure 5. Rosetta predictions for experimentally tested calpain/calpastatin interface redesigns. Calpain is shown in cyan and calpastatin
is shown in magenta, with the calpastatin position shown in yellow. Rosetta predictions for calpastatin position 607, wild type serine (A), amino-
butyeiric acid (B), norvaline (C). Rosetta predictions for calpastatin position 609, wild type aspartic acid (D), 1-methyl-histidine (E), and homoserine (F).
Rosetta predictions for calpastatin position 610, wild type phenylalanine (G), and 4-methyl-phenyl-alanine (H). Comparison of the PD150560 (yellow)
inhibitor and predicted conformation of the 4-methyl-phenyl-alanine mutation at position 610 (I). The structure of 4-methyl-phenylalanine closely
resembles that of the inhibitor and the orientation of PD150560 is identical to the predicted binding mode of the 4-methyl-phenylalanine.
doi:10.1371/journal.pone.0032637.g005
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compatible with NCAAs, and we have shown that they are able to

find the majority of CAA side chain rotamers. Additional uses of

the rotamer creation protocol could be the creation of context

dependent rotamer libraries for situations that may be under-

represented in protein structures and therefore difficult to model

using knowledge-based potentials. Examples of such context

dependent situations are pre/post proline positions, terminal

positions, and common terminal modifications [50]. The assump-

tion that amino acid side chains are rotameric has been discussed

in the past, with the majority concluding that they are [22,24,44].

We have found via our comparison of our CAA libraries to known

structures that low energy conformations are seen the most

frequently; the average cluster-member/cluster-centroid distance

is low for the lowest energy rotamers, and that the shape indicates

that the energetic landscape local to a given rotamer conformation

is well fit by a simple Gaussian or modal distribution. However,

some of the higher energy rotamers (lower probability structures)

do not fit well to a Gaussian distribution and do not appear to be

rotameric (figure 2C).

The modification to Rosetta presented here allows for the

design of peptides and proteins with NCAAs. The NCAAs added

to this point have a-amino acid backbones. NCAAs do not

however have to be simple side chain substitutions. Extensions of

the tools created here could be applied to scaffolds other than just

a-peptide backbone, such as peptoids [51] or other foldamers.

We have shown that including NCAAs in computational

protein design can be used to increase the binding affinity of a

peptide-protein complex. The design of small molecule inhibitors

Table 6. The rotamers of homoserine predicted by the MakeRotLib protocol b-strand and a-helical Q and y.

Name Q y Prob (%) x1 x2 x3 s1 s2 s3

HSE 2110u 130u 0.7381 258.9u 262.8u 10.9u 12.8u

0.0790 2177.1u 56.7u 21.2u 22.8u

0.0649 2176.6u 176.6u 23.2u 26.6u

0.0621 260.9u 177.8u 25.5u 26.6u

0.0368 2176.9u 267.4u 4.3u 3.4u

0.0104 52.7u 178.6u 21.5u 24.7u

0.0075 268.7u 69.9u 20.6u 20.9u

0.0010 51.4u 277.3u 19.6u 14.6u

0.0001 54.3u 87.6u 18.4u 13.9u

260u 240u 0.6652 2178.3u 56.8u 0.1u 0.1u

0.1178 259.1u 262.1u 11.7u 12.2u

0.0939 2175.7u 174.7u 10.2u 11.1u

0.0850 258.9u 2178.4u 11.1u 10.8u

0.0210 2169.4u 274.3u 10.9u 10.2u

0.0089 268.2u 69.6u 10.6u 12.1u

0.0079 48.9u 178.8u 10.4u 11.3u

0.0004 47.6u 275.5u 0.1u 5.9u

0.0000 52.8u 88.0u 8.9u 7.5u

MET 2110u 130u 0.0805 262.6u 2178.7u 2177.0u 6.9u 11.5u 18.2u

0.04913 178.2u 179.3u 2179.8u 6.6u 9.5u 13.6u

0.04274 260.2u 265.2u 168.8u 6.2u 7.0u 21.8u

0.02718 2170.4u 70.3u 2167.4u 10.7u 9.6u 16.7u

0.00790 2175.8u 286.1u 175.0u 11.4u 14.4u 17.8u

0.00229 64.7u 2176.2u 2174.8u 7.3u 7.6u 19.1u

0.00055 278.9u 69.3u 2175.6u 13.8u 13.8u 23.8u

0.000303 57.7u 78.1u 177.7u 17.2u 12.1u 26.3u

0.000051 72.2u 270.4u 174.3u 12.8u 14.7u 23.8u

260u 240u 0.099862 270.2u 178.0u 2178.0u 7.4u 8.4u 19.6u

0.028043 2177.2u 177.1u 176.7u 10.6u 11.9u 22.7u

0.021287 2172.5u 68.5u 2163.3u 6.6u 8.4u 24.7u

0.019891 265.7u 263.7u 166.2u 7.4u 11.3u 28.5u

0.001252 2179.7u 282.3u 174.0u 10.8u 10.4u 17.0u

0.001103 278.5u 69.9u 172.4u 11.4u 11.4u 26.2u

0.001103 65.8u 2174.4u 2175.2u 5.7u 6.4u 14.8u

0.000023 57.7u 78.3u 177.6u 17.1u 12.3u 26.2u

0.000004 72.2u 270.4u 174.3u 12.8u 14.7u 23.8u

doi:10.1371/journal.pone.0032637.t006
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of calpain is an area of active research, and it is thought that

molecules that bind outside the active site are more likely to be

specific for calpain [26].The inhibitor 3-(4-iodophenyl)-2-mercap-

to-(Z)-2-propenoic acid (also known as PD150606) discovered by

Wang et al. [52] binds to calpain in the same hydrophobic pocket

as position 610 and resembles the 4MF predicted by Rosetta [31].

The structure of the inhibitor bound to the calpain has been solved

(protein databank code 1NX3) and is shown superimposed with

our design in figure 5. The high degree of structural similarity

between the inhibitor and 4MF and the similarity between the

predicted binding mode and the structure of the bound inhibitor

gives us confidence that our peptide is binding in a similar fashion

[31,52]. Although it is clear that additional experimental screening

needs to be developed and performed in additional model systems,

we are encouraged by these results that suggest that Rosetta

NCAA design (the novel procedure described here) can be used to

optimize peptide-protein interfaces.
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