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Many physiological processes and pathological phenomena in the liver tissue are spatially heterogeneous. At a local
scale, biomarkers can be quantified along the axis of the blood flow, from portal fields (PFs) to central veins (CVs),
i.e., in zonated form. This requires detecting PFs and CVs. However, manually annotating these structures in multiple
whole-slide images is a tedious task. We describe and evaluate a fully automated method, based on a convolutional
neural network, for simultaneously detecting PFs and CVs in a single stained section. Trained on scans of hematoxylin
and eosin-stained liver tissue, the detector performed well with an F1 score of 0.81 compared to annotation by a
human expert. It does, however, not generalize well to previously unseen scans of steatotic liver tissue with an F1
score of 0.59. Automated PF and CV detection eliminates the bottleneck of manual annotation for subsequent auto-
mated analyses, as illustrated by two proof-of-concept applications: We computed lobulus sizes based on the detected
PF and CV positions, where results agreed with published lobulus sizes. Moreover, we demonstrate the feasibility of
zonated quantification of biomarkers detected in different stainings based on lobuli and zones obtained from the de-
tected PF and CV positions. A negative control (hematoxylin and eosin) showed the expected homogeneity, a positive
control (glutamine synthetase) was quantified to be strictly pericentral, and a plausible zonation for a heterogeneous
F4/80 staining was obtained. Automated detection of PFs and CVs is one building block for automatically quantifying
physiologically relevant heterogeneity of liver tissue biomarkers. Perspectively, a more robust and automated assess-
ment of zonation fromwhole-slide imageswill be valuable for parameterizing spatially resolvedmodels of livermetab-
olism and to provide diagnostic information.
Keywords:
liver
portal field
central vein
object detection
convolutional neural network
zonated quantification
Background

Motivation

Many hepatic processes are spatially heterogeneous on two major spa-
tial scales: lobes and lobuli.1 Lobes are macroscopically distinct parts of
livers.1 At this scale, heterogeneity is mainly due to disease states such as
fibrosis,2,3 cirrhosis,4 steatosis,5,6 and carcinoma.7,8 At the tissue scale,
entral vein; H&E, hematoxylin and eos
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blood flows from the portal fields (PFs) to the central veins (CVs) through
capillaries (sinusoids). Tissue regions drained by the same CV are referred
to as lobuli; conversely, regions supplied by the same PF are referred to as
acini.1 Lobuli have a radius of a few 100 μm or about 12 hepatocytes in
mice9 and 19 in humans.1 Heterogeneity of biological properties of the
cells along the PF–CV axis is denoted as zonation.10–14 Physiological meta-
bolic processes exhibit zonationmainly due to zonated gene and protein ex-
pression of the hepatocytes,15–18 and gradients of compounds in the blood
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being metabolized along the PF–CV axis. Additionally, pathological alter-
ations of hepatic tissue can be zonated, e.g., steatosis13,19–21 or toxic dam-
age, as after administration of carbon tetrachloride.22,23

Expression of tissue biomarkers are usually assessed after visualization
using histological staining techniques. Heterogeneity of biomarker expres-
sion and zonation can be quantified in digital images of histological sec-
tions by computing statistical measures of variance. For this purpose, the
quantity of interest is often assessed in uniform squares24 or hexagonal
tiles.25 Such uniform tilings, however, do not represent physiologically
meaningful structures. A heterogeneity assessment describing physiologi-
cally relevant regions requires a tiling matching the physiological geometry
instead. Such a tiling needs to be based on the respective physiological
structures, i.e., locations of PFs and CVs for a lobulus-based analysis. Be-
sidesmerely characterizing heterogeneity, it can be valuable to quantify tis-
sue biomarkers of interest in physiologically relevant regions. Such
quantitative parameters are particularly interesting for parameterizing
models of hepatic metabolic processes involving the sinusoidal or lobular
scale.23,26–31

Tissue structures of interest can be annotated manually. This is feasible
for small to moderate numbers of lobuli, but is a tedious task for large-scale
analyses of multiple whole-slide images (WSIs). The previous study21 ana-
lyzing 34 scans required manually annotating more than 24,000 PF and
CV positions. To our knowledge, automated PF and CV detection in histo-
logical WSIs of liver tissue has not yet been reported.

In the present study, serial sections of mouse liver tissue slides stained
with hematoxylin and eosin (H&E) and glutamine synthetase (GS) were
prepared, scanned, aligned by image registration, and manually annotated
based on the H&E and GS images. It is possible to simplify the manual an-
notation or potentially automate it by using additional stainings such as
E-Cadherin.32 This would, however, increase the effort for creating, stain-
ing, and scanning additional histological slides. Moreover, image registra-
tion of multiple WSIs would be necessary, including a sufficiently
accurate compensation for deformations to allow robustly detecting PFs
and CVs. Instead, our goal in this studywas to evaluate howwell automated
detection of PFs and CVs works based on WSIs of single H&E-stained liver
sections. Zonated quantification then still requires registering the H&E
image with the scan of the staining of interest. Hence, the approach could
perspectively be extended to detect PFs and CVs directly in a variety of
stainings of interest.

Related Work

Detecting PFs and CVs inWSIs of histological sections is one application
of object detection in images, a computer vision task which has been inves-
tigated for decades.33 Various classical techniques for different applications
have been proposed34: approaches based on template matching, geomet-
ric/context knowledge, object-based image analysis, and machine learning
using previously extracted image features. These techniques work well if
image features allow to reliably and robustly identify the structures of inter-
est. However, the appearance of PFs and CVs in the histological images is
highly variable, which makes defining suitable image features infeasible.

Deep learning techniques using convolutional neural networks (CNNs)
are known as useful tools for object detection in generic images. This ap-
proach does not require determining hand-crafted image features to distin-
guish the objects of interest, but builds implicit representations of suitable
image features for the CNN. Object detection and classification using
CNNs can generally be implemented by two- or one-stage approaches,35

i.e., first detecting objects and subsequently classifying them, or doing
both in a single step. Examples for two-stage approaches are the region-
based CNN (R-CNN) approach36–40 and feature pyramid networks using a
multiscale approach.41,42 One-stage approaches include variants of YOLO
(You Only Look Once),43–45 SSD (Single-Shot multibox Detection),46

RefineDet,47 EfficientDet,48 and RetinaNet.49 The networks are often
pre-trained on ImageNet,50 an image database comprising a vast amount
of natural images. Object detection approaches are commonly compared
using the COCO (Common Objects in COntext) detection datasets51 as a
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benchmark task. Most of the approaches above led the ranking of the
COCO benchmark at some point.

Apart from object detection, CNNs have also been used successfully for
a variety of image analysis tasks in computational pathology.52–56 Applica-
tions include classification of tissue for assessing cancer,57–60 segmentation
of structures of interest,61,62 and detection of cells 63,64 or nuclei.65 This
makes CNN-based deep learning a promising approach also for PF and CV
detection in histological WSIs of liver tissue.

Contribution

The goal of this studywas to develop and evaluate an automatic method
for detecting PFs and CVs in WSIs of single H&E-stained mouse liver sec-
tions. We present a fully automated CNN-based method for detecting and
classifying PFs and CVs in these images. We quantitatively evaluated the
quality of this detection approach by comparing algorithmically deter-
mined positions to manual annotations on independent test data. More-
over, we assessed how well this detector generalizes to scans of steatotic
liver tissue, a condition not present in the training data.

Two proof-of-concept applications are included as examples of how sub-
sequent automatic analyses can build upon automated PF and CVdetection:
We complemented the quantitative evaluation of detection quality by a
lobulus size analysis based on annotated and algorithmically detected PF
and CV positions. Moreover, we quantified the zonation of selected
stainings (including a negative and positive control) based on the algorith-
mically detected positions as a second prototypical application.

Material and Methods

Data Acquisition

For this study, we used three different datasets, partially from previous
studies. These datasets serve different purposes: training and evaluating the
PF/CV detector on mouse liver tissue (dataset A), evaluating how well the
detector generalizes to steatotic mouse liver tissue (dataset B), and illustrat-
ing the application of the detector for a prototypical zonated quantification
(dataset C). Dataset A consists of a combination of normal and regenerating
liver tissue one and two days after partial hepatectomy. This combination
was chosen to include moderate variability in the tissue appearance.
Datasets A and B consist of scans of H&E- and GS-stained liver tissue.
Here, the H&E images were used to train and/or evaluate the PF/CV detec-
tor, whereas the CV-specific GS stainingwas used to facilitatemanual anno-
tation of CVs and distinguishing them from PFs. Dataset C consists of scans
of H&E-, GS-, and F4/80-stained tissue. Here, H&E staining was used to de-
tect PFs and CVs as well as a negative control without zonated signals for
the prototypical zonated quantification. The GS staining was used as a pos-
itive control, because the GS staining (signal) is known to be strictly
zonated to the CV.66 The F4/80 staining was chosen as a prototypical appli-
cation because it exhibited a visually zonated heterogeneous pattern. We
deliberately chose this biologically nonspecific staining pattern rather
than a biologically more relevant staining to underline the proof-of-
concept nature of the zonated quantification presented here.

Slide Preparation and Image Acquisition

Dataset A
Livers from C57/Bl6N mice (Charles River, Sulzfeld, Germany) were

explanted before, 24 hr after, and 48 hr after 70% liver resection following
the technique described in previous work.67 All procedures and housing of
the animals were strictly carried out according to the German animal wel-
fare legislation (reference numbers 02-123-10, 02-123-10, 02-122-12).
After formalin fixation and paraffin embedding the whole livers were sub-
jected to serial sectioning (4 μm) followed by repeated serial staining.
Every 25 sections, 2 serial sections were stained with H&E and GS. Sections
were scanned using a Hamamatsu slide scanner at 400-fold magnification
resulting in a resolution of 227 nm per pixel. From the total of 92 H&E



Table 1
Overviewof datasets andwhich part of the study theywere used for (calibrating and
evaluating detector, proof-of-concept applications).

Dataset, subset Slides Annotations Usage

A, training 22 8369 Calibrating detector
A, validation 4 2097 Calibrating detector
A, test 4 1567 Evaluating detector, lobulus size computation
B 35 46623 Evaluating detector on out-of-distribution data
C 3 n/a Zonated quantification
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and GS pairs, we randomly chose a subset of 30 pairs of neighboring H&E
and GS for further processing.

Dataset B
As a second dataset, we used scans of 35 H&E-stained slides spaced

across a serial section of an entire steatotic mouse liver from a previous
study.21 In summary, steatosis was induced in a male C57/BL6N mouse
(Charles River, Sulzfeld, Germany) by feeding a methionine/choline-
deficient high fat diet (E15652-94 EF R/M, high fat MCD mod. low methi-
onine and choline experimental diet; ssniff, Sulzfeld, Germany) for four
weeks. All procedures and housing of the animals were strictly carried
out according to the German animal welfare legislation (reference number
02-122-12). At the end of the observation period, the animal was sacrificed
and the liver explanted, fixed in 5% buffered formalin followed by paraffin
embedding. Subsequently, 3 μm sections were prepared using a rotary mi-
crotome (Microm HM355S; Thermo Fisher Scientific Microm International
GmbH, Walldorf, Germany). A total of 2037 slides were produced and
stained in batches of 25 slides. Each batch contained, among other
stainings, two subsequent slides stained with H&E and GS, respectively.
The slides were digitalized using a whole-slide scanner (NanoZoomer HT
2.0, Hamamatsu Photonics K.K., Hamamatsu City, Japan; at 400-fold opti-
cal magnification) at an in-plane image resolution of 227 nm. From these
images, 35 undamaged pairs of neighboring H&E and GS WSIs covering
the entire liver were selected.

Dataset C
Mice of C57BL/6N (Charles River, Sulzfeld, Germany) were housed at

the DKFZ animal facility under a constant light/dark cycle, maintained on
a standard mouse diet (KLIBA NAFAG 3437) and allowed ad libitum access
to water and food. All animal experiments were approved by the govern-
mental review committee on animal care of the state Baden Württemberg,
Germany (reference number G33-17). For liver extraction, anesthesia was
carried out by intraperitoneal injection of 11.25 mg ketamine hydrochlo-
ride 10 % (w/v) (Bayer Health Care, Leverkusen, Germany) per 100 mg
body weight, 1.65 mg xylazine hydrochloride 2 % (w/v) (Pfizer, Berlin,
Germany) per 100 mg body weight and 1 ml acepromazine per 100 mg
body weight.

After anesthesia, the mouse thorax was opened and the liver taken out.
The left lobe was fixed in 4 % paraformaldehyde (PFA) (Roti-Histofix, Roth
P 087-5, Carl Roth, Karlsruhe, Germany) at 4°C for 2 days and 1–1.5 cm
were used for paraffin sections. Subsequently, PFA was replaced by
phosphate-buffered saline (PBS) and tissue was embedded in paraffin.

Immunohistochemistry andH&E stainingwere performed as previously
described.68–71 Briefly, formalin-fixed paraffin-embedded liver tissue sec-
tions of 5 μm thickness were used. Following de-paraffinization and rehy-
dration steps, antigen retrieval was performed by boiling the tissues in
citrate buffer, pH 6.0. Subsequently, endogenous peroxidases were blocked
by immersing the tissues in 0.3% hydrogen peroxide in methanol for
10 min. For further blocking of nonspecific bindings, the tissue sections
were incubated in 1% bovine serum albumin in PBS for 2 hr. Subsequently,
the tissues were incubated with primary antibodies against glutamine syn-
thetase (GS; 1:1000; BD Biosciences, Heidelberg, Germany, Cat. number:
610517) and F4/80 (1:50; AbD Serotec, Hercules, CA; Cat. number:
MCA497) overnight in a humid chamber at 4°C. Following washing
steps, the tissue sections were incubated with appropriate horseradish
peroxidase-conjugated secondary antibodies: anti-mouse Immunglobulin
G peroxidase (IgG-pod) (1:500; Sigma-Aldrich, St. Louis, MI; Cat. number:
A3682), and rabbit anti-Rat IgG (H+L) (1:1000; Linaris GmbH, Dossen-
heim, Germany; Cat. number: BA-4001) for 2 hr in a humid chamber at
room temperature. Subsequently, antibody bindings were visualized by
staining with 3,3’-diaminobenzidine solution (Vector Laboratories, UK)
for 2–5 min, depending on color development, and counterstained with
Mayer’s hematoxylin in order to visualize nuclei. Finally, the stained sec-
tions were dehydrated, by passing in an ascending ethanol series, and pre-
served by mounting with entellan. Whole-slide scanning was performed
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using an Axio Scan.Z1 slide scanner (Zeiss, Jena, Germany) as previously
described.72 The stained slides were scanned at 221 nm per pixel.
Data Preparation and Image Annotation

To accelerate further processing, the full-resolution WSIs were
resampled to a lower resolution by a factor of 4 in each direction. Images
of neighboring slides with H&E and GS stainings in dataset A were regis-
tered by subsequent pre-alignment, affine transformation, and non-linear,
intensity-based registration.73 The H&E images of dataset A were manually
annotated by an expert with axis-aligned rectangles (named ‘tight boxes’
hereafter) around the PFs and CVs. This task was facilitated using a soft-
ware allowing to switch between viewing the H&E image and the trans-
formed GS image. Annotations of PFs and CVs for the H&E images in
dataset B were available from the previous study21 as points. Neighboring
WSIs with H&E, GS, and F4/80 stainings in dataset C were registered as de-
scribed above. An overview of which dataset (with howmany slides/anno-
tations) was used for which part of this study is given in Table 1.
Portal Field and Central Vein Detection on Whole-Slide Images

We used a tile-based approach74 to detect PFs and CVs on WSIs. The
scans of dataset A were first divided into tiles, a CNN then detected PFs
and CVs on these tiles. Finally, the detected locations were merged back
into the geometry of the WSI. The detection algorithm for the entire scans
was calibrated in two steps: First, a CNN for tile-based detectionwas trained
for a fixed number of epochs. Then, the network weights performing best in
the actual task of PF/CV detection onWSIs was selected using independent
validation data to avoid overfitting. These steps are illustrated in Fig. 1.

We divided the 30 WSIs of dataset A into 22 training, 4 validation, and
4 test images, allowing for algorithm calibration and independent evalua-
tion. From the training images, we extracted tiles of size s × s =
{5122,6402,7682,8962,10242,12802} with 50% overlap between tiles
per direction, i.e., tiles are centered at s(1 + i)/2, s(1 + j)/2 for integer
i ∈ {0,1,2,…} and j ∈ {0,1,2,…}. We sampled a balanced number
(50:50 split) of tiles with and without PF/CV box annotations. A tile was
considered ‘with box’ if there was at least one box annotation with the
box center lying inside the interior [s/4,3s/4]× [s/4,3s/4] of the tile, oth-
erwise the tile was considered ‘without box’ (see Supplementary Figure 1).
Training a Convolutional Neural Network for Tile-Based Recognition

After an initial exploration of the detection quality when using different
CNN architectures, Cascade R-CNN39 with a ResNeXt10175 backbone pre-
trained on the ImageNet dataset50 looked most promising. We thus chose
this architecture for manual optimization of hyperparameters. This CNN
determines bounding boxes of the objects of interest and classifies them.
We used smooth L1 loss for the bounding box regression and cross entropy
for the classification as suggested in earlier work.39 The training ran for a
fixed number of 24 epochs with a learning rate of 0.01 and a batch size of
eight, on four GPUs in parallel. The learning rate was decreased 10-fold
in epochs 16 and 22. The images were randomly flipped horizontally for
moderate data augmentation. In analogy to the pre-training, every color



Figure 1. Illustration of the calibration of the portal field and central vein detector: Manual annotations on images were used to train a Cascade-R-CNN over a number of
epochs. Detecting structures on whole-slide images demanded merging tile-wise information, reducing detected boxes to their midpoints. The detection on validation
images with manual annotations was compared to choose the network with maximum F1 score. This allowed minimizing overfitting to the training data.
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channel of each tile is normalized for mean and standard deviation. The
training was implemented using the MMDetection toolbox v2.0.76

Merging Tile-based Detection for Assessing Whole-Slide Images

Obtaining object positions in WSIs requires merging the tile-based
information. Merging involves three steps: (a) mapping the tile-based
detection result in coordinates relative to the tile to the actual location
relative to the WSI; (b) combining detected boxes for structures span-
ning multiple tiles; and (c) computing center points of the boxes. Step
(a) is implemented by adding the location of the tile as an offset to the
local coordinates. For step (b), we exploit that overlapping tiles are suffi-
ciently large to cover our structures of interest and that best detection results
are obtained in the middle of tiles: If boxes were contained in the interior
[s/4,3s/4] × [s/4,3s/4] of a tile of size s× s, they were kept. These tile in-
teriors are mutually disjoint, thus such boxes cannot occur multiple times.
Otherwise, a structure may be detected in up to four boxes. In this case, the
box maximizing the area intersecting with the interior of the corresponding
tile was selected. Box centers in step (c) are computed as the arithmetic
mean of the vertices.

Calibrating the Portal Field and Central Vein Detector

The merging step allowed determining points on WSIs automati-
cally. We quantified the detection quality using standard precision, re-
call, and F1 score77 for the two classes, PF and CV. True positives were
ground truth boxes for which a point inside the box of the same class
was present. False positives were points outside ground truth boxes
of the same class. False negatives were ground truth boxes for which
no point of the same class was obtained by the algorithm. There is no
meaningful number of true negatives in this detection problem, so
the F1 score was chosen to quantify the performance. Detecting PFs
and CVs is of equal importance, so the arithmetic mean of the two re-
spective F1 scores was used to quantify the quality of the detection.
The weights of the Cascade R-CNNs were saved after each training
epoch. Among these, the one with highest F1 score for the validation
data was selected.
4

Evaluation of the Whole-Slide Detection

The detection quality was evaluated on the independent test data from
dataset A as performed for calibration, see Fig. 2. The evaluation was ap-
plied for all tile sizes defined above to determine the tile size for which
the PF/CV detector produced best results.

In addition, the detector performance was evaluated on data with a
pathological condition not present in the training data. For this purpose,
the algorithmic detection was applied to H&E-stained slides of steatotic tis-
sue from dataset B, using the optimal tile size of 10242 determined in the
previous step. The manual annotations were points rather than boxes, re-
quiring the evaluation to be adapted. The box-to-midpoint conversion in
the detector was omitted and the automatically determined boxes were
compared to the manually annotated points in the same manner as before.
This reverses the definition of ‘false positives’ and ‘false negatives’ com-
pared to the evaluation above, but leaves ‘true positives’ unaffected. Conse-
quently, the meaning of ‘precision’ and ‘recall’ is exchanged, but the
F1 score remains unaffected and results are directly comparable.

Proof-of-Concept Applications

Detecting PFs and CVs in liver tissue histological images is the basis for
subsequent analyses, whichwe demonstrated here by two proof-of-concept
applications: computation of lobulus sizes and zonated quantification, see
Fig. 3.

One goal of computing lobulus sizes was to compare our present results
to literature and thus check them for plausibility. Additionally, the lobulus
sizes computed based onmanual annotations were compared to sizes based
on algorithmically obtained positions. This complements the detector per-
formance assessment above by lobulus size as a more meaningful quantity
of interest than the F1 score. However, it is not an independent validation:
the same dataset is analyzed, and the lobulus size computation is based on
additional assumptions.

Zonated quantification goes one step further by assessing additional
image information besides anatomical geometry. Two building blocks
were needed: extracting the signal to be quantified from the staining of in-
terest, and computing zones and lobuli in which to quantify the signal.



Figure 2. Illustration of the evaluation of the portal field and central vein detector: Algorithmically detected points for the whole-slide images were compared to manual box
annotations via F1 scores.
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Determining Zones and Lobuli

We used the approach from21 for tessellating the non-background por-
tion of each WSI into lobuli for performing the lobulus size analysis and
for the zonated quantification. For each pixel midpoint, the ‘portality’ was
computed, defined as the relative distance to the closest PF in the CV–PF
direction,21 ranging from0 at CVs to 1 at PFs. From the portality, catchment
basins of the preflooded watershed transform78 were computed. For each
basin, 12 zones were defined by quantizing the portality into value ranges
of width 1/12. Each pixel of the whole-slide image thus belonged to one
zone in one catchment basin. The result is represented as two label images
with the zone and catchment basin indices, respectively.

Computed lobuli are obtained from the catchment basins: The entire
image, also beyond the tissue boundary, is tessellated in basins. Masking
Figure 3. Illustration of the proof-of-concept applications using our portal field and cen
same-class nearest-neighbor distances to approximate acinus and lobulus radii, moreov
sections with a staining of interest and with H&E staining, respectively, we used the
compute a tiling in lobuli and zones. We then quantified the signal intensity of the stainin
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out the background thus allows interpreting each masked basin as a
computed lobulus. A background mask for this purpose was determined
as follows: First, the image was converted to grayscale using the
weighted average Y = 0.299 · R + 0.587 · G + 0.114 · B. Applying
Otsu’s method79 to threshold the grayscale image by maximizing the
inter-class intensity variance yielded a mask approximately distinguish-
ing foreground and background. All enclosing contours larger than
0.785 mm2 (corresponding to a circle of 1 mm diameter) were identified,
as they most likely reflect the main tissue. Enclosed empty spaces larger
than 0.00785 mm2, e.g., between two tissue segments, were ignored. Fi-
nally, the edges were smoothed by a median blur and a morphological
opening. These steps were implemented in Python using OpenCV,80 the
result of masking out the background is represented as a label image con-
taining lobulus indices.
tral vein detection. Top: From the detected points, we computed the distribution of
er, we computed lobulus areas via a watershed transform. Bottom: For consecutive
detected points, transformed to the staining of interest via image registration, to
g of interest in this physiologically relevant tiling to obtain a zonated quantification.



Table 3
F1 score, precision and recall for portal field and central vein using a tile size of
10242. Only a slight imbalance between the two classes as well as between precision
and recall can be observed.

TP FP FN Precision Recall F1 score

Portal fields 691 196 161 0.779 0.811 0.795
Central veins 600 139 115 0.812 0.839 0.825
Mean 645.5 167.5 138 0.795 0.825 0.810
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Computing Lobulus Sizes

Based on the CV points in the test data (subset of dataset A), radii of
lobuli were approximated as half the distance from each CV point to its
nearest same-class neighbor. In the same way, acinus radii based on the PF
points were approximated. The computation of nearest neighbor distances
was implemented using KDTrees81 from the Python package SciPy.82 More-
over, the sizes (areas) of lobuli were computed from the pixel counts and the
resolution of the lobulus label images obtained as described above.

Simple Color-Based Staining Signal Detection

We used a simple color-deconvolution-based approach to extract the
relevant signals from WSIs of the stainings of interest83: First, the RGB
image channels of theWSIs in dataset Cwere transformed to an optical den-
sity image. Then, its color values were projected onto the two principle
colors, which were detected automatically by the Macenko method84

(H&E, GS) or estimated manually in the image (F4/80). The Python pack-
age Staintools85 was used to perform the signal decomposition. It resulted
in two separate signal intensity images corresponding to the principal
colors for all stainings. These intensity images separate the hematoxylin
and eosin channels for the H&E images, whereas only one channel is rele-
vant in the GS and F4/80 images, respectively. The channel decomposition
is illustrated in Supplementary Figs. 2, 3, and 4.

Zonated Quantification

Zonated quantification combines the two quantification methods de-
scribed above: the signal intensity is first quantified for each image pixel
of the WSI, then these values are averaged over each zone in each lobulus.
To determine zones and lobuli, we used an adaptation of the approach
from21 illustrated in Fig. 3. Positions of PFs and CVs were detected in the
H&E image and transformed to the staining of interest according to the de-
formation field obtained by image registration. The transformed positions
were used to compute lobuli and zones, using the Otsu-based background
detection, in the staining of interest.

This proof-of-concept application was chosen to show the feasibility of
applying automated PF/CV detection in an otherwise automated zonated
quantification. Thus, we deliberately did not choose a biologically relevant
question and used very simple and uncalibrated image analysis techniques.

Results and Discussion

PF and CV Detection on H&E-Stained Slides

The whole pipeline of training the tile-based Cascade R-CNNs was ap-
plied, selecting the one performing best onWSIs (validation data), and eval-
uating the detection quality on the test data for tiles of different size. The
corresponding mean F1 scores are listed in Table 2. Detailed results for
the best performing methods can be found in Table 3. The detection results
for one of the test cases are illustrated in Supplementary Figure 5. The best
performing R-CNNs were consistently found during the first 12 epochs,
hence we considered the limit of 24 epochs for training sufficient.

The highest F1 score of 0.810was obtained for tiles of size 10242 pixels,
corresponding to (930.1 μm)2. The differences of the F1 scores between dif-
ferent tile sizes were noticeable, but relatively small. Tile size should be
interpreted in combination with resolution and size of the structures of
Table 2
F1 score averaged over portal field and central vein depending on tile size. Slight,
but notable, differences are visible, the maximal F1 score is obtained for a tile size
of 10242.

Tile size s 5122 6402 7682 8962 10242 12802

F1 score 0.782 0.796 0.804 0.807 0.810 0.804
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interest: At the resolution used here, a full lobulus or acinus was visible in
one tile of size 10242. It is plausible that detection quality does not increase
further for tile sizes of 12802 and beyond, as these would not add relevant
context, but only increase computational workload and memory require-
ments. Using smaller tiles, or smaller fields of view at larger resolution,
might be useful to reduce memory requirements and increase computa-
tional efficiency without substantially compromising detection quality.

Precision and recall, as well as the two classes PF and CV, show only a
moderate imbalance (Table 3). Hence, the detector is essentially unbiased
with respect to the types of structure, and produces similar numbers of
false positives and false negatives.

PF and CV Detection on Steatotic H&E-Stained Slides

The evaluation of the detection quality on 30 steatotic slides (dataset B)
using the previously determined optimal tile size of 10242 lead to the
results shown in Table 4.

The detector performs poorer for the steatotic than for the non-steatotic
slides. The slides show predominantly periportal steatosis and thus the
neighborhood of PFs looks different, so it is to be expected that primarily
the detection quality for PFs dropped. Hence, the detector did not general-
ize well to this type of data not present during training.

Lobulus Sizes

The numbers of PFs, CVs, and lobuli for the test slides of dataset A and
manually vs. algorithmically determined points are listed in Table 5. We
computed approximate lobulus and acinus radii as well as lobulus areas
for the test slides. Results based on the manual annotations vs. results
based on the detected PFs and CVs are shown in Fig. 4, computed lobuli
for one test image are shown in Supplementary Fig. 6. Comparing the
root mean square difference relative to the arithmetic mean, acinus and
lobulus radii differ by 36% and 25%, respectively. The corresponding
lobulus areas differ by 19%.

The algorithmdetectedmorePF andCVpoints than thereweremanual an-
notations in two of the test images, and fewer for the other two (Table 5). This
indicates that the results obtained applying the PF/CV detector are in linewith
the ones obtained by manual annotation. One image had substantially more
PF than CV annotations (437 vs. 288), this difference is reproduced by the al-
gorithm (406 vs. 272 points). The number of computed lobuli compared to the
number of CVpoints shows that almost every CVpoint is assigned a lobulus. In
these images, at most four lobuli per imagewere in close geometric configura-
tions which the preflooded watershed transform could not handle.

The approximate lobulus cross section areas shown in Fig. 4 generally
agreed with previously reported results9,21 of 0.28 mm2 and 0.21 mm2.
Table 4
F1 score, precision and recall for portal fields and central veins using the detector on
a steatotic dataset. Compared to non-steatotic images the detection of portal fields
has declined sharply, likely due to the steatosis appearing periportally on this
dataset.

TP FP FN Precision Recall F1 score

Portal fields 11061 26299 10936 0.296 0.503 0.373
Central veins 17579 818 7047 0.956 0.714 0.817
Mean 14320 13558.5 8991.5 0.626 0.608 0.595



Table 5
Comparison of the numbers of manual portal field (PF) and central vein (CV) anno-
tations; the numbers of algorithmically determined PF and CV points; and the num-
bers of lobuli computed from the CV annotations/points for the test images used in
the evaluation.

Manual Automated Detected Lobuli

Test image # PFs # CVs # PFs # CVs Manual Auto
1 45 55 87 91 55 91
2 151 147 268 213 147 210
3 437 288 406 272 287 268
4 219 225 182 192 225 190
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The discrepancies between lobulus areas determined from manual annota-
tions vs. algorithmically obtained points corresponded to the discrepancies
between approximate radii.

The distributions of approximate radii and areas per WSI corresponded
relatively well. This is expected because of the way the geometric proper-
ties are computed: The approximate radii are nearest-neighbor distances
of the CV positions. The computed lobuli are areas of various shapes de-
pending on the PF and CV positions, where each CV is located close to
the geometric midpoint of the corresponding lobulus.

These comparisons between geometric properties computed for
the manual annotations and the algorithmically determined points
complemented the assessment of detection quality based on the F1 score.
The discrepancy between manual annotations and algorithmically deter-
mined points had a noticeable impact on the lobulus sizes (Fig. 4). These
results are consistent with the previously observed differences in the num-
bers of detected PFs and CVs (Table 5).

Zonated Quantification

The hematoxylin signal and the eosin signal (negative controls) were
homogeneously distributed in all zones, with the exception of the intravas-
cular regions as part of the first and last of twelve zones considered in the
analysis (Fig. 5A and 5B). Compared to the hematoxylin signal, the eosin
signal was more heterogeneous across the WSI. In contrast, the GS signal
(positive control; Fig. 5C) showed a pericentral zonation clearly dominat-
ing the artifact of intravascular parts of the first and the last zone.
The F4/80 staining heterogeneity (actual proof-of-concept application;
Fig. 5D) showed a signal increasing towards the CV. A spatial visualization
of the signal intensities per lobulus and zone is shown in Supplementary
Fig. 7.

In all these analyses, the first and the last of the 12 zones effectively
corresponded to intravascular regions of the WSI. Since the signal of the
Figure 4. Comparison of approximate acinus radii, lobulus radii, and lobulus cross-
algorithmically (orange, lower plots) obtained points for the four test images. In the b
violins show the distribution of the values, black dots indicate the respective mean valu
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staining of interest in these regions was close to zero, the corresponding av-
erages over the zone were artificially low. This is a consequence of our cur-
rentmethod of computing lobuli and zones based on points for PFs and CVs.
This shortcoming could be mitigated in future implementations by
segmenting the full PFs and CVs and using their outer contours for comput-
ing lobuli and zones. For further discussion of the potential and limitations
of the watershed-based lobulus computation from 2D image data and the
zonated quantification, we refer to earlier work.21

Except for artifacts in the first and last zone, Fig. 5 demonstrated good
agreement with our expectations, which were as follows: The negative con-
trols, H&E, were quantified as homogeneous across the zones. The positive
control, GS, was quantified as strongly pericentral with substantially lower
background or baseline signal of about 0.07 also outside the pericentral re-
gion. The F4/80 staining showed a signal with a high baseline and a slight,
but still discernible increase towards the CV. This is consistent with the vi-
sual impression: the entire tissue appears brown (corresponding to the high
baseline) with a more saturated and darker brown pattern predominantly
near the CVs in part of the slide (see Supplementary Fig. 4). Even though
this staining is biologically nonspecific, it still serves as an example of a
detectable difference despite low signal-to-noise ratio.

The number of 12 zones is motivated by the average number of hepa-
tocytes along the radius of lobuli in mice,9 and could easily be adapted
for other species or for a distinction of fewer zones. Using a fixed num-
ber of zones irrespective of the actual lobulus size permits a comparison
between lobules depending on the relative location along the PF–CV
axis. Depending on the research question at hand, it might be useful to
generalize this to a variable number of zones, each corresponding to
one layer of hepatocytes.

The signal detection used here as part of the zonated quantification
needs to be improved when applying to additional datasets with different
characteristics. Instead of a simple color decomposition, one could use a
targeted color-to-signal translation, suitable scaling and thresholding of
the signal, or entirely different approaches for detecting the tissue regions
of interest, such as machine-learning-based approaches. Moreover, intra-
and inter-slide heterogeneity of staining needs to be addressed, e.g., by nor-
malization compensating for heterogeneity, or by a color-to-signal conver-
sion analyzing local contrasts in the images. Calibration of the colors/
signals is necessary to allow a quantitative interpretation of the analysis
results. This could be achieved, e.g., by including in-slide controls.

Outlook

The automated detection of PFs and CVs yielded good results for the
combination of normal and regenerating murine liver tissue (Table 3).
The results of a subsequent lobulus size analysis generally agree with
section areas (from left to right) for manually (blue, upper plot in each pair) vs.
ox-whisker plots, notches show the 95% confidence intervals of the medians. The
es.



Figure 5. Visualization of signal intensities per zone. Each violin (zone) represents 1/12 of the distance between PF and CV midpoints, i.e., the first and last violin approx-
imately correspond to the vessel structures and violins 1 to 11 correspond to the actual tissue in between. Zonationwas not detected in hematoxylin (A) and eosin (B) stained
sections, as expected, except for analysis artifacts in the first and last zone. In contrast, the glutamine synthetase signal (GS) was clearly pericentral (C). The F4/80 staining
also showed a predominantly pericentral signal (D). In the box-whisker plots, notches show the 95% confidence intervals of themedians and the violins show the distribution
of the values. In the overlayed plot, the black line indicates the respectivemean values. The signal detection is not calibrated, so intensities have no absolute interpretation and
cannot be compared between plots.
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literature results (Fig. 4). However, this assessment is based on a dataset of
limited size,more annotated images (i.e., more data for calibration and test-
ing) would be needed for a broader evaluation. This additional data should
cover a wider range of technical variability, such as tissue prepared inmore
different laboratories, images acquired by other scanners, and annotations
by different observers. Similarly, a generalization of the detector to liver tis-
sue from other species, e.g., humans, will require suitable training data.

The method showed lower detection performance when applied to
steatotic tissue (Table 4), a case the algorithm was not trained for. While
these data could be included in the calibration of a more general PF/CV de-
tector, this alonewould be of very limited benefit, as it would only include a
single pathology of single form and etiology from single mouse. The result-
ing PF/CV detector would likely be biased towards detecting PFs inside
steatotic regions, as this is the predominant case present in the data. This
problem could possibly be mitigated by suitable data augmentation,77

e.g., by creating synthetic lipid vacuoles in different locations or using gen-
erative adversarial networks.86,87 Ideally, however, augmentation would
be combined with actual images of liver tissue with all pathological alter-
ations to be analyzed.

An extension of the PF/CV detector to stainings other than H&E is con-
ceivable. This would allow a zonated analysis based only on the staining of
interest without the need for image registration. Suitable image data cover-
ing the relevant variability would be required for training a PF/CV detector
8

for this purpose. The R-CNN used in this study could be used as a starting
point for possibly selecting a different CNN architecture or optimizing
hyperparameters when generalizing the PF/CV detector. Data augmenta-
tion could include virtual stain-to-stain transformations.88 We used color
normalization (like in the pre-training) for the R-CNN approach here, but
color augmentation89 might be useful in a generalization.

Computing lobuli based on a single 2D section is also the first step to-
wards determining lobuli in 3D based on serial sections similar to what
was done manually in earlier work.90,91 If such a 3D lobulus analysis starts
by registering the correspondingWSIs (with potentially different stainings),
the detection of PFs and CVs could exploit correlated positions in adjacent
slides. Conversely, if a 3D analysis starts by PF and CVdetection, image reg-
istration could benefit.92 Zonated analysis could also be extended to a 3D
analysis in registered serial sections, which would require generalizing
the geometric analysis (watershed transform and quantization of portality).
Moreover, it could be extended to the analysis of further stainings, enabling
the 1:1 lobulus-wise correlation of biomarker zonation assessed via differ-
ent stainings.

The prototypical applications presented here could be extended to in-
vestigations of biologically relevant questions. For example, one could com-
pare lobule sizes between healthy, steatotic, and regenerating livers. This
will require creating targeted datasets for the specific questions, where
the automatic detection of PFs and CVs proposed here reduces the manual
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image annotation effort. Similarly, comparing zonation of stainings
between physiological and pathological states requires targeted datasets
for biological research questions, but the annotation effort can again be
reduced with the PF/CV detector.

Conclusions

Our automated PF/CV detector based on a convolutional neural net-
work yields satisfactory results with an F1 score of 0.810 compared to
time-consuming manual annotations. However, an F1 score of only 0.595
obtained for a dataset with tissue alterations shows that this approach
does not automatically generalize to data unseen in the training. Two
proof-of-concept applications illustrate how subsequent automated bio-
marker quantification in physiologically meaningful regions can build
upon automated detection of physiological structures in histological
whole-slide images.

Data Availability

Images and results for datasets A, B, and C as well as the RCNN-based
PF/CV detector can be obtained from https://doi.org/10.5281/zenodo.
5726769.
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