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Liquid temperature prediction 
in bubbly flow using ant colony 
optimization algorithm in the fuzzy 
inference system as a trainer
Meisam Babanezhad1,2, Iman Behroyan3, Ali Taghvaie Nakhjiri4, Azam Marjani5,6*, 
Amir Heydarinasab4 & Saeed Shirazian7

In the current research paper a novel hybrid model combining first-principle and artificial intelligence 
(AI) was developed for simulation of a chemical reactor. We study a 2-dimensional reactor with heating 
sources inside it by using computational fluid dynamics (CFD). The type of considered reactor is bubble 
column reactor (BCR) in which a two-phase system is created. Results from CFD were analyzed in two 
different stages. The first stage, which is the learning stage, takes advantage of the swarm intelligence 
of the ant colony. The second stage results from the first stage, and in this stage, the predictions are 
according to the previous stage. This stage is related to the fuzzy logic system, and the ant colony 
optimization learning framework is build-up this part of the model. Ants movements or swarm 
intelligence of ants lead to the optimization of physical, chemical, or any kind of processes in nature. 
From point to point optimization, we can access a kind of group optimization, meaning that a group 
of data is studied and optimized. In the current study, the swarm intelligence of ants was used to 
learn the data from CFD in different parts of the BCR. The learning was also used to map the input and 
output data and find out the complex connection between the parameters. The results from mapping 
the input and output data show the full learning framework. By using the AI framework, the learning 
process was transferred into the fuzzy logic process through membership function specifications; 
therefore, the fuzzy logic system could predict a group of data. The results from the swarm 
intelligence of ants and fuzzy logic suitably adapt to CFD results. Also, the ant colony optimization 
fuzzy inference system (ACOFIS) model is employed to predict the temperature distribution in the 
reactor based on the CFD results. The results indicated that instead of solving Navier–Stokes equations 
and complex solving procedures, the swarm intelligence could be used to predict a process. For better 
comparisons and assessment of the ACOFIS model, this model is compared with the genetic algorithm 
fuzzy inference system (GAFIS) and Particle swarm optimization fuzzy inference system (PSOFIS) 
method with regards to model accuracy, pattern recognition, and prediction capability. All models are 
at a similar level of accuracy and prediction ability, and the prediction time for all models is less than 
one second. The results show that the model’s accuracy with low computational learning time can be 
achieved with the high number of CIR (0.5) when the number of inputs ≥ 4. However, this finding is vice 
versa, when the number of inputs < 4. In this case, the CIR number should be 0.2 to achieve the best 
accuracy of the model. This finding could also highlight the importance of sensitivity analysis of tuning 
parameters to achieve an accurate model with a cost-effective computational run.

Bubble columns (BCs) refer to the contactors where a gas and liqid phase are brought into contact for the 
purposes of chemical reaction or separation. Indeed, a two-phase flow is created in these reactors to carry out 
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physical and chemical phenomena such as chemical reactions. BCs, as reactors, are employed in different chemi-
cal processes like Fischer–Tropsch  synthesis1–3, production of fine  products4, different oxidating  reactions5,6, 
alkylation  reactions7, hazardous streams  treatment8, gas sequestration, coal  liquefaction9, fermentation reactions, 
and in cell  cultures10, as well as the production of single-cell  proteins11. The main benefits of bubble columns 
include the lack of mobile parts, easy maintenance, high heat transfer rates, and high liquid holdup being desired 
for the reactions of slow liquid  stage12. The process parameters that can affect the efficiency of bubble columns, 
like reactors, include the distribution of gas holdup, the extent of liquid-stage back mixing, gas/liquid mass and 
heat transfer coefficients, gas/liquid interfacial area, bubble coalescence, re-dispersion rates, bubble-size distribu-
tions, and bubble rising velocities. The absence of full perception about the fluid dynamics makes it problematic 
to enhance a bubble column reactor performance through the control of operating parameters.

The necessity of establishing a logical base for interpreting the interaction of fluid dynamic variables was the 
main motive for dynamic studies in bubble column modeling based on computational fluid dynamics (CFD) 
tools during the past  decades13. Different techniques were proposed to solve the same basic flow problem, and 
modeling can be done at different sophistication levels. One can prefer treating both dispersed and continuous 
stages as interpenetrating pseudo-continua (viz., the Euler–Euler technique, e.g.14–18) or the dispersed stage as 
discrete entities (viz., the Euler–Lagrange technique: e.g.19–22). A typical option is modeling such systems by 
Reynolds-averaged Navier–Stokes (RANS) equations and through the Eulerian-Eulerian multi-stage  model23,24. 
The physical interactions between the phase stages should be modeled  accurately25. Such interactions are gov-
erned by various interfacial  forces26,27, and the drag force is the most significant.

Analyzing the flow field as well as temperature distribution in BCs can be conducted through experimental 
measurements, while measuring the pressure and velocity is highly problematic and costly in the enclosure 
because of low flow strength and velocity. Therefore, CFD is exploited for achieving buoyancy-induced flow 
and temperature fields in various shaped enclosures. However, this approach possesses significant shortcomes 
including accuracy and stability. Such problems happen particularly in nonlinear systems, while CFD analysis 
requires long computation time and high computation cost. As a result, soft programming tools (e.g. Fuzzy 
Inference Systems (FIS)28–33 and Ant Colony Optimization (ACO) algorithm) can be employed for analyzing 
and predicting flow, heat, and problems related to mass  transfer34–36.

In addition, CFD computing methods can generate large datasets with several inputs and outputs (big data). 
This type of dataset can be a piece of interesting information for soft computing models for training. In this 
regard, soft computing models can easily find a connection between input and output parameters compared to 
discrete or global datasets that are popular in experimental observation. On the other hand, the generation of 
local node information enables soft computing models to describe the distribution of flow characteristics or heat 
and mass transfer in the reactor. Among different soft computing models, Ant Colony Optimization (ACO) can 
be a new option to learn non-discrete datasets as a family of swarm intelligence algorithms. This method, based 
on the concept of ants behavior to search an optimal path between their colony and a source of food, can train 
large datasets and present the distribution of datasets as a function of several input parameters. Alternatively, 
the ACOFIS can be presented in different technologies and applications as a problem solver or predictive tools 
to optimize challenging engineering processes with several operational parameters. Bubbly flow in the bubble 
column reactor can be an excellent candidate to present very complicated engineering processes due to flow 
behavior, turbulence properties, and heat characteristics which are complex to be simulated using mechanistic 
models.

In the current research paper, a 2-dimensional bubble column reactor with CFD was modeled and Artificial 
Intelligence (AI) was applied to create an artificial framework for process simulation and understanding. ACO 
was used in the learning stage of the AI model, and the fuzzy interface system was applied for the prediction 
stage based on the ant colony optimization method training. X and Y computing nodes, simulation time, liquid 
velocity in the Y direction, and gas hold-up are input parameters, and the temperature distribution is the output 
of training datasets. Different tuning parameters from ACOFIS were studied, such as cluster influence range, CIR 
in the training of the system, and their effects on better prediction of fluid temperature were investigated. ACOFIS 
is also compared with the genetic algorithm fuzzy inference system (GAFIS) and Particle swarm optimization 
fuzzy inference system (PSOFIS) method regarding model accuracy and ability of temperature prediction in 
the bubble column reactor. The training and prediction time in predicting temperature are also calculated for 
all models. This evaluation and analysis for different training models to build up the FIS structure in predicting 
reactor properties, particularly heat transfer characteristics, have been proposed for the first time. In addition 
to the prediction of reactor specifications with different AI models, the importance of tuning parameters in the 
ACOFIS is also highlighted for future investigations.

Methodology
CFD approach. Numerical methods and algorithms in computational fluid dynamics are employed for 
understanding the problems which involve fluid flows. In this study, the Euler–Euler multi-phase technique was 
applied to solve the average mass, flow, and energy equations and the volume fraction equation separately for 
each stage. The continuity equation can be defined  as37,38:

Momentum conservation  equation37,38:

(1)
∂

∂t
(ρkεk)+∇(ρkεkuk) = 0

(2)
∂

∂t
(ρkεkuk)+∇(ρkεkukuk) = −∇(εkτk)− εk∇ρ + εkρkg +MI ,K
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The stress term of gas bubbles and liquid stage can be presented  by37:

In which µeff ,k represents the effective viscosity. Bubble induced can be described as  follows37:

Sato et al.39 indicated viscosity of turbulence which was induced by the movement of multi-bubbles. Dif-
ferent studies applied this model for predicting the  BCs23,37,40–43. Formulating viscosity because of the induced 
turbulence can be defined by the equation  below37:

With a model constant of Cµ,BI = 0.6 being mentioned in previous  studies37,41,44–49.

The drag forces between gas and liquid are  shown37:

The Schiller–Naumann drag model can be used. In general, it is acceptable for all multi-stage  measurements50. 
The drag coefficient CD is defined by Schiller and Naumann as  follows51:

The turbulent dispersion force, which was introduced by Lopez de Bertodano is defined by the following 
equation 52:

Energy conservation equation:

In which Hq represents the enthalpy of stage q,−→qq represents the heat flux, Sq implies the heat source, Qpq repre-
sents the heat exchange between the pth and qth stages, ṁpq shows the mass transfer from pth to the qth stage. 
The heat flux, −→qq is defined as 38:

In which Kq represents the conductivity of each stage.
The energy transfer rate among the stages ( Qpq ) can be assumed to be a function of the temperature differ-

ence among the  stages38:

In which hpq implies the heat transfer coefficient between the pth and qth stages. The heat transfer coefficient 
can be associated to the pth stage Nusselt number, Nup ,  by38:

where Kq represents the thermal conductivity of the qth stage. In regard with the heat transfer between the liquid 
and the gas, this study utilized Ranz–Marshal  equation53 which for sphere is:

Rep implies the Reynolds number according to the diameter of the pth stage bubbles or particles as well as the 
relative velocity and Prp implies the Prandtl number of the qth stage.

The turbulent eddy viscosity, the turbulent kinetic energy ( k ) and its energy dissipation rate ( ε ) are indicated 
in the equations below 37:

(3)τk = −µeff ,k(∇uk)+ (∇uk)
T −

2

3
I(∇uk)

(4)µeff ,l = µL + µT ,L + µBI ,L

(5)µBI ,L = ρLCµ,BIεGdB|uG − uL|

(6)µeff ,G =
ρG

ρL
µeff ,L

(7)MD,L = −
3

4
∈G ρL

CD

dB
|uG − uL|(uG − uL)

(8)f (x) =

{

24(1+ 0.15Re0.687)/Re, Re ≤ 1000
0.44, Re > 1000

(9)MTD,L = −MTD,G = −CTDρLK∇ ∈L

(10)

∂(αqρqHq)

∂t
+∇ .

(

αqρq
−→vq Hq

)

= −αq

(

∂Pq

∂t

)

+ τq

: ∇−→vq −∇ .−→qq + Sq +

n
∑

P=1

(

Qpq + ṁpqHpq − ṁqpHqp

)

(11)−→qq = −Kq∂T/∂�r

(12)Qpq = hpq(Tp − Tq)

(13)hpq = 6kqαpαqNup/dp

(14)Nup = 2+ 0.6Re
1/2
p Pr

1/3
p

(15)µT ,L = ρLCµ

K2

ε
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Ant colony optimization (ACO) algorithm in the fuzzy inference system (FIS) training 
prosses. The FIS refers to a fuzzy inference system that predicts the behavior of complicated and nonlinear 
systems  accurately54–57. ACO algorithm refers to AI method to solve complex problems, that can be reduced for 
discovering appropriate paths via the graphs being used in the fuzzy inference system training  process58–71. In the 
present study X and Y computing elements, simulation time, liquid velocity distributions, and gas hold-up (gas 
fraction in the reactor) are input parameters, and the liquid temperature distribution is the output of training 
datasets. The function of the ith rule is as follows:

where wi represents the output signal of the second layer’s node and μAi, μBi, μCi, μDi and μEi represent the input 
signals of the implemented MFs on the inputs, X-direction (X), Y-direction (Y), time, velocity in the Y direc-
tion (V) and a gas fraction ( ǫg ), to the second layer’s node. The third layer can be described as the  following72,73:

where wi  represents normalized firing strengths. The node function is described as  follows73:

In which mi, ni, oi, pi, qi, and ri represent the if–then rules’ parameters named as consequent parameters. The 
training datasets can be defined in the structure of a fuzzy system by the distribution of membership functions. In 
this regard, several membership functions can be defined in each input parameter to fully translate numbers and 
train datasets into the function shape with different function distribution across input parameters. All the input 
signals from the fourth layer were aggregated to achieve the model output representing the result of estimation.

The FIS structure is designed to implement the final decision part of the model, which represent the con-
ceptual understanding of  human74–76. This structure has been previously described by Takagi, Sugeno, and 
Kang. The main training part of FIS can also be defined with different algorithms for a better understanding of 
physical processes. These learning methods contain several model parameters or tuning options to improve the 
model’s accuracy, prediction capability and even reduce the computational learning time. The difference between 
the FIS structure is based on the weighted average of the rule output parameters rather than the max operator 
mechanism. Moreover, the rule output with defuzzification analysis can generate a model with inexpensive 
computational requirements. This cost-effective model is called the Sugeno  model77.

Model comparison. For better evaluation of the ACOFIS model, this prediction algorithm is compared 
with GAFIS and PSOFIS models in similar modeling conditions (see Table 1). Five inputs are selected in all 
models, while 75% of all datasets have participated in the training models. All models are trained with 70 num-
ber of epoch or iteration number. The Sugeno type is the FIS structure for all models. Additionally, subtractive 
clustering is used as a clustering type in the model with a cluster influence range of 0.5 for all  models36. The reject 
ratio as a subtractive clustering parameter is similar for GAFIS, PSOFIS, and ACOFIS models. In the next step 
of the selection of model parameters, the pheromone effect and number of ants for ACO are 0.2 and 20, respec-
tively. For the GA method, other parameters are selected such as swarm size = 20, crossover percentage = 0.7, 
and mutation percentage = 0.5. Finally, for the PSO model population size, the inertia, weight damping ratio, 
personal learning coefficient, and global learning coefficient are 20, 0.99, 1, and 2, respectively.

Results and discussion
We used 75% of the data for training processes. The remained 25% of the data plus the 75% in the training were 
studied in the evaluation or testing step of simulations. For clustering the data, we used subtractive clustering 
with the gaussmf membership function. As mentioned earlier, we used five inputs for the training process. In 
the domain of ant colony optimization method, we used 20 number of ants numbers so that we could reach the 
best intelligence in the system, and for the general evaluation of the system, we used the regression system. As 
shown in Fig. 1, we have five inputs and one output, which is the fluid temperature in the training process. After 
the training process, the trained datasets are translated into the fuzzy structure based on membership specifica-
tions. The membership functions can translate all learning processes in the fuzzy structure and train the main 
FIS structure. The ant colony optimization method is selected as the main learning algorithm. For the selection 
of membership function, in general, in the subtractive clustering method, when the CIR number is defined in 
the method number of the membership function is dictated for each input parameter. For example, as Fig. 1 
shows, by selecting CIR number 0.5, several membership functions (21 membership functions) are distributed in 
each input parameter. However, decreasing the number of CIR in the method number of membership functions 
rises in each input parameter, representing a direct correlation between the number of CIR and membership 

(16)
∂

∂t
(ρL ∈L K)+∇(ρL ∈L uLK) = −∇

(

∈L
µeff ,L

σK
∇k

)

+ ∈L (G − ρLε)

(17)
∂

∂t
(ρL ∈L ε)+∇(ρL ∈L uLε) = −∇

(

∈L
µeff ,L

σε
∇ε

)

+ ∈L
ε

K
(Cε1G − Cε2ρLε)

(18)wi = µAi(X)µBi(Y)µCi(Time)µDi(V)µEi(ǫg )

(19)wi =
wi

∑

(wi)

(20)wifi = wi(miX+ niX+ oiY+ piY+ qiY+ ri)
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functions. In this regard, to select the correct number of CIR, the sensitivity analysis is implemented in this study 
to evaluate the level of model accuracy and learning computational time.

For analysis, we evaluate both testing and training data. For example, as shown in Fig. 2, we put 3000 points 
in the training process, and used 20 numbers of ants, as shown R reaches 0.71. The data used in the training 
process was also used in the testing process, and our evaluation R reaches 0.72, which is very close to the evalu-
ation level in the training process.

Despite the previous data, we increase CIR, and therefore, R decreases significantly, and the system does not 
show an intelligent signal (prediction capability) in Fig. 2. By increasing CIR, as shown in Fig. 2, the intelligence 
of the system is decreasing. With CIR number 0.4, the intelligence of the system reachers R = 0.4 , and the testing 
and training processes are very close to each other. Finally, with CIR number 0.5, the intelligence of the system 
reaches its lowest amount that is R = 0.3. Figure 3 shows the three inputs in the training process with the CIR 
number 0.2. In this regard, the system reaches an average intelligence which is 0.83.

In this domain, by increasing the system’s CIR to 0.5, the system’s intelligence starts decreasing; however, 
comparing it to the previous Figure, the amount of decrease is lower. As shown in Fig. 4, the system’s intelligence 
increases significantly in both training and testing processes. In this part, we studied four inputs for the AI sys-
tem, and from the beginning with CIR number 0.2, the intelligence of the system reaches 0.99 in both training 
and testing. The signal relating to the intelligence of the system reveals that by increasing the number of inputs 
in the system, we can significantly increase its intelligence. As such, the number of inputs plays a key role in 
the intelligence of the system, so increasing the number of inputs can increase the intelligence of the system. 
In continuation of explaining Fig. 4, despite increasing the CIR number to 0.5, the intelligence of the system 

Table 1.  Model parameters in the generation of FIS and clustering classification for ACO, GAFIS, PSOFIS 
algorithms.

Methods ACOFIS GAFIS PSOFIS

Number of inputs 5 5 5

Maximum of iteration 70 70 70

Percentage of data in training process 75 75 75

Type of FIS Sugeno Sugeno Sugeno

Clustering type Subtractive Clustering Subtractive Clustering Subtractive Clustering

Cluster influence range as subtractive clustering parameter 0.5 0.5 0.5

Accept ratio as subtractive clustering parameter 0.5 0.5 0.5

Reject ratio as subtractive clustering parameter 0.15 0.15 0.15

Pheromone effect as ACO parameter 0.2 – –

Number of ants as ACO parameter 20 – –

Swarm size as GA parameter – 20 –

Crossover percentage as GA parameter – 0.7 –

Mutation percentage as GA parameter – 0.5 –

Population size as PSO parameter – – 20

Inertia weight damping ratio as PSO parameter – – 0.99

Personal learning coefficient as PSO parameter – – 1

Global learning coefficient as PSO parameter – – 2

Figure 1.  FIS system based on ACO algorithm in the learning process, using subtractive clustering in the best 
of ACOFIS intelligence when CIR is 0.5, number of ants is 20, and the pheromone effect is 0.2.
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does not tend to decrease, emphasizing the point that the system reaches its full amount of intelligence, and the 
parameters that previously affect the intelligence of the system negatively seems to become neutral.

Figure 5 shows interesting results. By enhancing the number of inputs, the network becomes greatly intel-
ligent, and the R reaches unity. By increasing the CIR of the system, the number stays the same. The results also 
show that when the number of input is smaller than four, CIR number should be small. In general small CIR, 
number requires expensive computational runs and calculations. However, when the input number is four or 
five, we can observe different behavior in the model. In this case, the model can accurately predict datasets with 
a high number of CIR (0.5) with lower computational time.

For better understanding the intelligence of the system, we study an error distribution diagram. As shown 
in Fig. 6, the error relating to zero has the highest amount of aggregation, and when we have such a diagram in 
the middle of a graph, by aggregation of the points in zero, it shows an intelligent system. This visualization was 

Figure 2.  CIR (clustering parameter) changes in the ACOFIS learning processes when the pheromone effect is 
0.2 and number of inputs is 2.

Figure 3.  CIR (clustering parameter) changes in the ACOFIS learning processes when the pheromone effect is 
0.2 and number of inputs is 3.
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done for CIR number 0.5 and 5 inputs in the system. Also, we plotted a general error for each of the data sets, so 
that we could observe the amount of error in the system. We face an oscillation of errors, but it does not decrease 
the swarm intelligence of the system (see Fig. 7).

Figure 8a–j show the inputs comparing to each other. As shown in the Figures, the CFD results are completely 
in agreement with the numerical results of swarm intelligence and fuzzy logic system. Results from the ACOFIS 
system can accurately predict the CFD results which are shown in Fig. 8.

To understand the main algorithm and all assessment criteria and check the model accuracy and predic-
tion capability the designed flow chart is illustrated in Fig. 9. In the initial steps of running ACOFIS, the input 
parameters and output parameters are selected in the model. The subtractive clustering is defined to build up the 
main FIS structure. Then, all parameters of subtractive clustering and ACO are described in the algorithm. In the 
next step, the FIS structure is generated based on subtractive clustering. To design (train) the FIS structure, the 
ant colony optimization method is used. However, to increase the ability of method in learning datasets, errors 

Figure 4.  CIR (clustering parameter) changes in the ACOFIS learning processes when the pheromone effect is 
0.2 and number of inputs is 4.

Figure 5.  CIR (clustering parameter) changes in the ACOFIS learning processes when the pheromone effect is 
0.2 and number of inputs is 5.
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are recorded in the method, and if the error is not sufficient to achieve the high level of accuracy or prediction 
capability, model parameters are changed for another training process. In the case of having a small error in the 
model, the coefficient of determination is evaluated for the model, and the trained model is validated based on 
“non-trained” datasets. In the final stage of the method, the method’s prediction section is evaluated to show the 
liquid temperature distribution in the domain of calculation.

For better evaluation of the current training model (ACO) this model is compared with other training algo-
rithms, such as GA and PSO with respect to model accuracy, coefficient of determination  (R2). Figure 10 shows 
the comparison between models for training and testing processes for different training models generating FIS 
structure. R2 for all models are very high R2 > 0.999 for both training and testing. However, for better evalua-
tion of prediction capability, temperature distribution as a function of the number of data can be considered. 
Figure 11 shows the prediction capability for ACOFIS, GAFIS, and PSOFIS models. The liquid temperature in 
the reactor is predicted with different models. The results show that all models are very accurate in predicting the 
liquid temperature of the reactor. However, there is a small discrepancy in predicting local points for all machine 
learning models. This difference does not have an impact on the overall prediction of temperature distribution 
in the reactor. To thoroughly analyze the difference between machine learning methods, various assessment 
methods are considered such as MSE, RMSE, mean error, StD, R and R2 for the training and testing processes. 
In addition to that, training time and prediction time are computed for all methods and compared together (see 
Table 2). The results show that all methods are similar with regards to model accuracy and evaluation criteria. For 
example, R and R2 for ACOFIS, PSOFIS, and GAFIS in the training and testing processes are more than 0.999. A 

Figure 6.  Testing errors histogram in the best of intelligence when CIR is 0.5, number of ants is 20, and the 
pheromone effect is 0.2.

Figure 7.  Test_ErrorsnewACO, nIP = 5, CIR = 0.5, ndata = 3000, Subtractive, MaxEpoch = 70, P = 75, nant = 20, 
q = 0.2, CIR = 0.2.
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similar finding is achieved for other error evaluation parameters, such as MSE and RSME, and STD. Table 2 also 
shows that the PSOFIS model can train datasets in half a time compared by ACOFIS. However, the prediction 
time for all models is less than one second. These results show that all ACOFIS, PSOFIS, and GAFIS models can 
be a good replacement prediction model instead of CFD computing models in estimating the temperature in 
the bubble column reactor. Table 1 shows all model parameters for different machine learning models, ACOFIS, 
GAFIS, and PSOFIS.

Conclusion
Generally, the swarm intelligence and the fuzzy logic system can be a prediction model for physical and chemi-
cal processes. In the current study, we make an AI model from a multi-phase flow in the 2-dimensional bubble 
column reactor data generated by CFD. In the BCR, we used the heating sources and created them in the CFD 

Figure 8.  Liquid temperature prediction by high level of ACOFIS intelligence when pheromone effect is 0.2 and 
CIR is 0.5 based on each two inputs.
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model. The data from CFD used in the ACOFIS model for training and prediction processes. Moreover, in the 
machine learning area, we made a FIS structure based on the training of the ACO model. As far as ant colony 
optimization is a local point optimization system and used to optimize discrete problems, we design it to optimize 
a group of data in a continuous domain. The swarm intelligence or ant colony can provide a good capability for 

Figure 8.  (continued)

Figure 9.  Flowchart for ACOFIS method, including ACO training part and generation of the FIS structure.
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Figure 10.  Comparison of coefficient of determination for training and testing processes for different methods.

Figure 11.  Prediction of liquid temperature in the bubble column reactor by ACOFIS, GAFIS, PSOFIS 
methods.
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the fuzzy interface system in terms of training processes. We used five inputs and one output in the training 
process to see this capability in the system. The output was the temperature of the fluid in the reactor. In the 
domain of sensitivity of the study, we take advantage of the effects of the cluster range in the model. After the 
training and prediction, we came to this conclusion that by increasing the number of inputs in the system, the 
system reaches a high swarm intelligence. Like the ants that they find their path to their food and optimize their 
path, the system can optimize the prediction of the fluid flow very fast. This is a transformation concept from 
ant behavior to bubbly flow behavior in the reactor. Therefore, increasing the number of inputs in the system 
can increase the swarm intelligence of the ants. For designing a machine learning system, we need to add the 
inputs as much as we can so that a system can reach a high intelligence. Sometimes, the inputs are not completely 
related to the system, but the AI system can find a meaningful relationship between the inputs and the outputs. 
The sensitivity analysis (tuning model) parameters can impact the accuracy and the overall prediction capability. 
Alternatively, the tuning model can make the model cost-effective with regards to learning computational time. 
The result shows that the small number of CIR (such as 0.2) can improve the model’s accuracy up to three input 
parameters. However, as the number of inputs increases, such as four or five, the small CIR number (0.2) makes 
the inaccurate model with an expensive computational run (high learning time). In this case, CIR number 0.5 
can generate a cost-effective model with a high level of accuracy. For better evaluation of the ACOFIS model, 
this machine learning algorithm is compared with GAFIS and PSOFIS models in terms of model accuracy, 
prediction capability, training time, and prediction time. It was found that the ACOFIS model is very accurate, 
along with GAFIS and PSOFIS models. Additionally, all machine learning models can predict the processes in 
less than one second after the reactor’s temperature distribution training. However, the PSOFIS model can train 
the datasets in a shorter time than ACOFIS and GAFIS models. As far as this approach is a meshless method, 
except for the 100% data which were studied, we can create a meshless domain except for the inputs so that 
the prediction process can be studied in this domain. For example, x and y-direction positions make a square 
or a rectangle in a 2-dimensional domain, and the meshes could show thousands of points in themselves. We 
can create millions of data via AI, but the point worth mentioning here is that the data could be created in a 
particular domain, a square or a rectangle. On the other hand, millions of data that are created in the domain 
could be different from previous points.
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