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Abstract

The computational prediction of drug responses based on the analysis of multiple types of genome-wide molecular data is
vital for accomplishing the promise of precision medicine in oncology. This will benefit cancer patients by matching their
tumor characteristics to the most effective therapy available. As larger and more diverse layers of patient-related data
become available, further demands for new bioinformatics approaches and expertise will arise. This article reviews key
strategies, resources and techniques for the prediction of drug sensitivity in cell lines and patient-derived samples. It
discusses major advances and challenges associated with the different model development steps. This review highlights
major trends in this area, and will assist researchers in the assessment of recent progress and in the selection of approaches
to emerging applications in oncology.
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Introduction

The accurate computational prediction of the response of can-
cer patients to therapies based on the patient’s molecular and
clinical profiles is vital in the era of precision medicine [1–5].
This is crucial to assist clinicians in making decisions on the
most effective and least toxic therapeutic options available, and
will enable a smarter selection and monitoring of patients in clin-
ical trials [6–8]. This has been motivated in large part by an import-
ant transformation in cancer classification: Moving from solely
analyzing histopathologic characteristics of tumors, into analyzing
molecular features that are indicative of treatment response.

These molecular features comprise different types of gen-
omic aberrations, ranging from point mutations, deletions, in-
sertions and translocations of gene sequences. Such alterations
may represent the direct targets of therapies. This comprises
treatments already approved for clinical use and others
undergoing further investigations [2, 5]. Examples of clinically
actionable alterations are those involving EGFR and ALK genes,
which may be targeted with kinase inhibitor drugs [9]. In lung

cancers, point mutations and deletions in EGFR and EML4-ALK
fusions may be found in a minority of patients [9]. Annotated
catalogues of clinically relevant genomic alterations are avail-
able at the ClinVar (http://www.ncbi.nlm.nih.gov/clinvar) and
COSMIC databases (http://cancer.sanger.ac.uk/cosmic).

Moreover, the computational prediction of drug responses
can significantly contribute to preclinical research as in silico
drug screening tools [10–12]. These tools can help biologists to
prioritize candidate compounds in their research, and may repre-
sent useful strategies for efficiently planning experiments and
reducing costs. These opportunities have been investigated in dif-
ferent preclinical and clinical application domains in oncology
with diverse computational approaches and ‘omics’ data types.

The computational prediction of drug responses in cancer
involves significant research challenges. It is a biological chal-
lenge because of the complexity of cancers as highly heteroge-
neous and multi-factorial diseases. It is a data challenge
because of the complexity of potentially useful data sets avail-
able: in terms of volume, noise and heterogeneity. Furthermore,
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as the need for integrating data increases, new challenging
technical questions arise, such as the harmonization and nor-
malization of data originating from multiple sources. It is antici-
pated that these challenges, and opportunities, will be
augmented as the cost of data generation is reduced and soci-
etal expectations on the promise of precision medicine grow.

Critical questions in the development of computational
models for drug response prediction include: Which data sets
should be selected for training and testing models? Are models
specific to cancer types or generalizable as pan-cancer models?
Which computational approaches are suitable for application?
How such models are evaluated and validated? Furthermore,
other user-centric issues, such as model interpretability and re-
porting, are crucial not only from the standpoint of bioinforma-
ticians, but also from that of biologists and clinicians.

This article reviews the application of computational models
for predicting drug responses in cancer research. It addresses
the above-mentioned challenges and questions by reviewing
key resources, approaches and examples with relevance to
preclinical and clinical research. Although most applications re-
ported to date are based on gene expression data, models based
on other data types, e.g. DNA-level aberrations and protein ex-
pression, are also discussed here. This article dose not aim to
cover all design aspects of computational modeling, and does
not emphasize a particular technique or cancer area. Rather, it
discusses central distinguishing features of data sources, mod-
eling techniques and applications. It discusses challenges relat-
ing to the generation and validation of these models, as well as
critical concerns about their reporting and interpretability. This
review highlights the prediction of drug sensitivity using clinic-
ally relevant in vitro models and patient-derived data as inputs
to supervised learning techniques. The latter represents the
most used and representative prediction strategy to date. A de-
tailed discussion of machine learning methods is out of the
scope of our article. A review of the topic in the context of gen-
omic research has been recently published elsewhere [13].
Other aspects related to drug response, such as side effects or
cell type-specific drug effects, have been reviewed in other jour-
nals [14, 15]. Although the prediction of drug responses is

relevant to drug repositioning, i.e. the use of ‘old’ drugs for new
disease applications, the latter is based on specific design re-
quirements and prediction goals that are not discussed here. In
a typical drug repositioning setting, researchers are not a priori
interested in a specific set of candidate drugs. In the application
scenarios discussed here, the focus on specific candidate com-
pounds usually drives both model design and evaluation. The
models resulting from drug repositioning investigations may
offer descriptions of drug mode of action. Conversely, while the
models discussed here may provide the basis for further mech-
anistic understanding, their main objective is to accurately esti-
mate the response of a given biological sample to a particular
drug. A review on current trends in drug repositioning was
recently published in this journal [16].

Overall computational strategy

The development of computational models for predicting drug
response requires four essential steps, which draw in part from
the standard strategy for developing machine learning models
(Figure 1) [13]. In the first step, data sets are selected and prepro-
cessed. This involves the expert- or computer-driven selection
of potentially relevant data sub-sets, their normalization and
initial filtering of noisy or irrelevant data features. This com-
prises the detection of putative significant associations between
molecular features and the drug response to be predicted. There
is no universal solution to the problem of feature selection. The
potential relevance of the selected features depends on the
characteristics of the prediction problem investigated, including
factors such as the amount of data available and the represen-
tation of the outcome variable. This may be done with different
statistical methods, such as univariate correlations between
gene expression levels and drug sensitivity measurements (e.g.
IC50 values). Moreover, the selection of significant molecular
features may also be part of, or embedded into, the model train-
ing phase. Reviews on feature selection and dimensionality re-
duction have been published in this journal.

Drug sensitivity investigations often include samples
exhibiting ‘extreme’ responses to treatments, and typically a

Figure 1. Key steps in the development of computational models for predicting drug response. Data obtained from cell lines, animals or humans are stored in different

data repositories, including public databases. These resources also include drug response information. Data sets are obtained to be subsequently used as training data

sets, and may contain one or more types of ‘omics’ data, e.g. transcriptomics and DNA sequence. Such data are used as inputs to statistical or machine learning tech-

niques. The prediction problem may be defined as either a classification or a regression problem, and a variety of techniques may be applied. The predictive perform-

ance of the models is assessed with cross-validation sampling techniques. The most-promising models are selected and evaluated using testing data sets, which were

not used during the training phase. The model and its predictions undergo human expert interpretation and their reporting to stakeholders follows. Further independ-

ent validations using clinically relevant data are required to continue bridging the gap between the laboratory and the clinic.
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non-standard hard thresholding for sensitivity versus resistance
is defined. However, as discussed in more detail below, recent
models are incorporating a wider range of cell lines or clinical
samples, which more accurately represent tumor heterogeneity
and treatment responses. Furthermore, prediction models that
make numerical estimations of sensitivity without prior selection
of response thresholds are also being investigated.

The second step comprises the training phase of the model
chosen to address the prediction problem. To achieve this task,
standard procedures for fitting models to data and for measur-
ing the predictive quality of the resulting models are available.
A wide variety of techniques derived from the statistical and
machine learning research areas can be applied, and their selec-
tion is constrained by different factors, such as the type of input
data and the characteristics of the drug response prediction
problem, as discussed below.

After completing model training and selecting a model that
appropriately fits the data, researchers implement multiple
tests on independent data. This process, also referred to as in-
dependent evaluation, verifies that candidate models can ac-
curately predict responses on unseen samples, and ideally is
applied to multiple data sets obtained by different laboratories
or measurement platforms. These training-testing phases may
be based on the analysis of data obtained from clinical studies
or from in vitro experiments using cancer cell lines, as discussed
below. At the end of a training-testing cycle, new training-
testing iterations may also be required for model refining or for
incorporating prior biological knowledge into the model.
Although thousands of cell lines necessary for training and test-
ing prediction models have become publicly available, key limi-
tations remain. One of them is that such data sets do not offer
extensive cell line collections for all cancer types, which makes
the implementation of accurate cancer type-specific models
hard to achieve. Additionally, major data repositories empha-
size cytotoxic drugs or targeted ones already in clinical use.

In a preclinical research context, models are typically trained
on data coming from in vitro experiments using cell lines, and
the most promising model is then tested on either new data
generated by in vitro experiments or from animals. This testing
phase may be followed by the application of the model to data
that more closely resemble clinically relevant characteristics of
a particular cancer type. For example, models trained on cell
line-derived data can be tested on solid or liquid biopsies dir-
ectly obtained from patients. In the case of models trained on
patient-derived samples, the resulting model may be further
applied to a different cancer sub-type or patient cohort. Other
critical issues are the implementation of suitable methods for
reporting predictions and for facilitating their interpretation by
clinically oriented experts. The following sections will discuss
these steps, summarized in Figure 1, in more detail.

Public data resources for building
computational prediction models

Drug response prediction models are typically trained on data
sets generated by different research consortia. When a consor-
tium is driven by a specific clinical need in a particular oncology
domain, this scenario enables applications that are tailored to
specific biological hypotheses or patient characteristics. This
setting is, however, potentially limited by problems of scale:
number of patients analyzed, number of molecular readouts
measured or the types of (omics and clinical) data that may be
incorporated into model development. An alternative approach
that is gaining significant support from the community is the
training (and/or testing) of models based on publicly available
data generated by large research consortia.

Two of the most significant resources of publicly available
data for investigating drug responses are the Cancer Cell Line
Encyclopedia (CCLE) [17] and the Genomics of Drug Sensitivity in
Cancer (GDSC) project [18], which offer baseline data (i.e. coming
from untreated samples) obtained from different ‘omic’ modal-
ities and diverse measurements of drug sensitivity in cancer cell
lines (Table 1). The CCLE contains mutation, gene copy numbers
and gene expression data from >1K cell lines from 36 tumor sites.
Moreover, drug sensitivity data from >11K experiments that
tested 24 anticancer drugs on >500 cell lines are also publicly
available. The GDSC offers around 75K experiments that tested
138 anticancer drugs on >1K cell lines from diverse cancer types.
The baseline data include gene copy number and expression
data, as well as somatic mutations in 75 genes relevant to cancer.
Another key resource is the NCI-60 cancer cell line collection [19],
which is a pioneer in the characterization of drugs in vitro and
whose cell lines are also included in the CCLE and GDSC. The
NCI-60 provides drug screening data for thousands of drugs with
potential applications in cancer therapy and 60 cell lines repre-
senting nine cancers (Table 1). The cell lines are described by dif-
ferent types of data, including those included in the CCLE and
GDSC, as well as protein expression data. These three resources
and associated projects also offer Web sites or programmatic ac-
cess for querying or downloading their data [17, 20–22], and new
interactive resources that contain subsets of those data are
becoming available [23, 24].

In principle, all these data sets can be integrated to build
drug sensitivity prediction models. In practice, researchers have
typically developed models that focus, for example, on a par-
ticular database for model training and the resulting model is
tested on privately owned data. Conversely, after training a
model on public data, the resulting model is applied to a second
public data set. Critical issues that need to be considered when
combining data sets or using any of them to ‘validate’ the pre-
diction capability of a model are: the statistical harmonization

Table 1. Summary of key public resources for enabling the development of computational models for predicting drug response

Attribute CCLE GDSC NCI-60

# cell lines >1000 >1000 60
# compounds 24 138 >15 K
# drug tests >11 K >75 K >100 K
Main omics data sets Mut, Gcn, Gexp Mut, Gcn, Gexp Mut, Gcn, Gexp, Prot
# cancers 36 >15 9
Reference [17] [18] [19]
Website http://www.broadinstitute.org/ccle http://www.cancerrxgene.org/ discover.nci.nih.gov/cellminer/

Note. CCLE ¼ Cancer Cell Line Encyclopedia; GDSC ¼ genomics of drug sensitivity in cancer; NCI-60 ¼ the US National Cancer Institute 60 human tumor cell line drug

screen database; # ¼ number of; Mut ¼mutations; Gcn ¼ gene copy numbers; Gexp ¼ gene expression; Pexp ¼ protein expression.

822 | Azuaje

http://www.broadinstitute.org/ccle
http://www.cancerrxgene.org/
http://discover.nci.nih.gov/cellminer/


of data sets, processing of data present in one data set but miss-
ing in another one and data re-scaling procedures. Moreover,
even if different databases use the same carefully characterized
cell lines, it is important to note that different experimental
and/or mathematical procedures may have been used to esti-
mate drug responses, i.e. drug sensitivity measures. These fac-
tors are crucial to investigate the predictive performance and
reproducibility of models. Although concerns have been previ-
ously reported about potential inconsistencies between the
CCLE and the GDSC in terms of the drug response information
stored in these data sets [25], other research has highlighted
their concordance at different analysis levels. A recent joint
study by the CCLE and the GDSC demonstrated a considerable
concordance between these resources, not only in terms of drug
response measures, but also regarding predictive features for
those responses [26].

Input data types for prediction modeling

Models may also be characterized on the basis of the data types
used as their inputs (Figure 2A). Several models have been de-
veloped with publicly and privately owned data sets consisting of
single-nucleotide mutations, gene copy numbers and gene ex-
pression [27, 28]. Different examples of models based on single or
multiple sources, e.g. gene expression data only or their combin-
ation with gene copy number data, have been reported with gene
expression data as the most widely used source [29, 30].
Comparative analyses have usually shown that gene expression
data encode the most powerful predictive features, and that inte-
grated models may only marginally increase the accuracy of drug
response predictions [27, 28]. However, such observations mainly
refer to global tendencies across cell lines, and the level of pre-
dictive capability is constrained by the type of cancer investi-
gated, training data size, algorithm choice and drugs selected for
modeling [31]. In multiple myeloma, for instance, Amin et al. [32]
reported that gene expression data alone are insufficient to pre-
dict responses for a small number of drugs and using a variety of
models. Nevertheless, this study focused on the classification of
samples in terms of two treatment response classes only: ‘com-
plete’ versus ‘partial’ responses. A more recent study, by Cortes-
Ciriano et al. [33], showed that the combination of compound
structure, protein, gene and miRNA expression values can indeed
offer added value in the prediction of drug sensitivity trained on
the NCI-60 data set. Such a diversity of results underlines the

need for further studies using different data and applications. In
practice, the identification of the most predictive data sets is a
context-specific problem, which depends on both cancer type
and compounds investigated.

In an effort to enable accurate and interpretable predictions,
computational models based on the analysis of protein or com-
pound structure, methylation, protein expression data and the
activity of hallmark signaling pathways in cancer are increas-
ingly becoming the focus of investigation [24, 33–37]. Fey et al.
[35], for instance, recently reported a novel approach based on
patient-specific simulations of signaling pathway activity, with
a focus on the c-Jun N-terminal kinase pathway under stress.
Network structure and logic were estimated with prior know-
ledge and protein expression experiments in a zebrafish model
of neuroblastoma. Simulations of network perturbations,
including those mimicking drug effects, were run on the result-
ing network. To validate this model in patients, the authors
tackled an important requirement: Only gene expression data
were available in the patient cohorts. The authors showed rea-
sonable levels of correlation between the expression of the pro-
teins included in the animal model and patient-derived
transcript expression. This allowed independent tests on mul-
tiple cohorts consisting of hundreds of patients, and the dem-
onstration of the prognostic utility of the model. This study
exemplifies not only a novel computational modeling approach,
but also the combination of different data types to meet study
requirements and constraints.

Oncology application domains

Researchers have benefited from omics and drug response data
available in public repositories across all cancer types for build-
ing (pan-cancer and cancer-specific) prediction models. Once
these models have been trained, researchers can test them on
their own data sets (or others) for the particular cancer types or
tissue sites of interest. To assess their potential clinical rele-
vance, drug response prediction models are evaluated with
tumor data originating from patients [38, 39]. Moreover, this
may be preceded by testing the model’s predictive capacity on
clinically relevant tumor xenografts implanted in animals, such
as rodents [40] and zebrafish [35]. Although there is still a need
to advance this practice, individual research groups and large
consortia are increasingly reporting such patient-oriented in-
vestigations for enabling clinical decision-making support.

Figure 2. A graphical synthesis of the diversity of computational models available for the prediction of drug responses. (A) List of data types most commonly used. (B)

Categorization of models on the basis of the prediction problems addressed. (C) General hierarchy of statistical and machine learning techniques most commonly

investigated. (D) Fundamental data sampling strategies for assessing model prediction capability.
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The following training-testing application scenarios have
been the most commonly reported: (i) models are trained on
public cell line-derived data resources and tested on publicly
available patient data from clinical trials or other cohorts [30,
41]; (ii) models are trained on privately owned cell line-derived
data and tested on patient data from clinical trials or other
patient cohorts [42]; and (c) models are both trained and tested
on patient-derived data from clinical trials or other patient co-
horts [38, 39].

In these settings, different clinical outcomes are used as in-
dicators of treatment response, such as survival and disease re-
currence times. In applications in which models are trained on
cell line data and tested on clinical cohorts, model predictions
are interpreted as surrogates of patient response. This means
that the assessment of prediction capacity, in the test mode, is
based on the analysis of the predicted responses, e.g. drug sen-
sitivity, and their relation to the observed patient responses.
This is done by applying the model evaluation techniques intro-
duced below, and includes analysis of correlations between pre-
dicted and observed responses.

Geeleher et al. [30] trained models on gene expression data
and drug responses from the Cancer Genome Project, part of the
GDSC, and performed independent tests on publicly available
data from clinical trials in myeloma and non-small-cell lung
cancers. Other application scenarios have focused on (either
public or private) data that are relevant to a particular cancer for
both training and testing purposes. For instance, Daemen et al.
[29] generated drug sensitivity data for 138 drugs and molecular
profiles from 70 cell lines in breast cancer, which were used to
train models for classifying samples into two categories: good
and poor treatment responders. Then, using independent
patient-derived data, they validated their model on two drugs
used for treating breast cancers (tamoxifen and valproic acid).
Although further independent validations are warranted,
Daemen et al. [29] and Geeleher et al. [30] showed that their cell
line-based models can accurately predict therapeutic response
in patients, including relapse-free survival.

Using lung cancer cell lines and patient data from the BATTLE
study, Byers et al. [40] demonstrated how a 76-gene (expression)
signature could distinguish between epithelial and mesenchymal
tumor samples. Next, they correlated such groups with drug re-
sponses, which were defined as IC50 values in the cell lines and
as disease control categories in the patients. Although the ana-
lysis focused on a relatively small number of patients with a spe-
cific phenotype (EGFR/KRAS wild-type patients), the authors
made a solid case for the association between the epithelial-like
signature with good clinical outcome. The study also enhanced
its potential clinical applicability by showing that the signature is
robust across different microarray platforms, and its selection
was based on a combination of hypothesis- and data-driven
approaches.

In colorectal cancer, Guinney et al. [41] implemented an elas-
tic net model based on gene expression data, which accurately
classified colorectal cancer samples according to their RAS
phenotype. The model improves on the traditional clinical clas-
sification that relies on KRAS mutation status. They trained and
tested models using multiple data sets from patients, cell lines
and mouse xenografts. For instance, they tested the model’s
capacity to predict resistance to cetuximab, an anti-EGFR anti-
body used to treat colorectal cancer, on mouse xenografts and
three independent patient cohorts. This study exemplifies the
potential clinical utility of modeling specific cancer phenotypes
and molecular activity, and demonstrates the power of tapping
into a diversity of publicly available data sets.

In gynecological cancers, Pereira et al. [43] reported evidence
that posttreatment survival may be accurately estimated based
on the amount of tumor DNA detected in the blood of patients.
However, additional work is warranted owing to the limited
number of samples (10 patients) and the lack of independent
validation. In ovarian cancer, Chen et al. [38] showed the poten-
tial relevance of a 61-transcript expression signature for predict-
ing patient’s response to platinum-taxane chemotherapy. More
specifically, the model accurately assigned patients to two poor
and one good survival groups. Moreover, when the expression
signature was combined with BRCA1/2 mutation status, which
is a traditional prognostic marker in this disease, a better pa-
tient stratification of clinical response was achieved. Another
distinguishing feature of this study was the relatively large
amounts of independent patient data used for model training
(data from The Cancer Genome Atlas [44]) and testing (eight
data sets from different studies).

Other disease- or drug-specific modeling approaches have
been investigated for breast [37], colorectal [41, 45], lung [46], dif-
fuse large B-cell lymphomas [42] and neuroblastoma [47]
cancers.

Although the usefulness of cell lines in cancer research is
indisputable and they offer opportunities for developing drug
response prediction models, their translation into clinical appli-
cations poses major challenges [48]. It has been shown that pre-
diction models based on these samples may not always have
clinical or translational value [11, 49]. Among the reasons for
the failure of previous research are that cell lines often tend to
be more similar to each other than to the primary samples that
they supposedly model, and that cell lines from specific ana-
tomical sites may incorrectly match tumors originating from
different locations [50, 51]. Moreover, in vitro-derived data do
not take into account the influence of the tumor microenviron-
ment on drug responses. In general, a crucial challenge is the
selection of cell lines that accurately reflect the ‘omic’ profiles
observed in tumors, a problem that is compounded by a sub-
stantial molecular diversity across and within cancers [48]. The
latter means that drug response prediction models applicable to
one cancer type may not always be successfully translated to
another type. Another important factor that explains transla-
tional failure is the lack of sufficient numbers of cell lines that
are representative of specific cancer types and sub-types [52],
which significantly limits the feasibility of developing accurate
predictions for specific tumors and drugs.

More recently, it has been shown that cell lines directly ob-
tained from fresh patient material and kept under short-term
culture can better capture tumor heterogeneity and maintain
the genomic profile of the parental tumor [53, 54]. The similarity
between cell lines and their tumors of origin, as well as their po-
tential clinical relevance, have been carefully assessed for a few
cancer types and is the topic of ongoing investigations [55, 56].

Despite these and other advances, model validations using
clinically focused patient-derived data are still needed across
cancer domains. These efforts will be hampered by restrictions
to appropriately annotated data sets. Thus, there is a pressing
need for sharing patient-derived data from clinical trials,
including omics profiles and treatment response data, through
public or user-restricted access.

Typical prediction problems and outcomes

Computational models typically estimate drug sensitivity for the
single drugs included in a training data set. Hence, during testing,
predictions may be made for each drug (or their combinations
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when possible) and for each sample included in a test data set
(Figure 2B). To date, the application scenario most widely investi-
gated involves building models that make sensitivity predictions
for multiple single compounds. Here these models are referred to
as pan-cancer single-drug response prediction models [27, 57].
Models trained and tested on the CCLE data are representative
examples in this category [17, 27].

Other models focus on making predictions for one or a few
treatments that undergo investigations in a specific patient co-
hort or clinical trial. This could involve, for example, models for
predicting sensitivity (or resistance) to either a particular drug
class or tailored to a specific cancer type [38, 46]. Here these mod-
els are referred to as drug- or cancer-focused response prediction
models. Blumenschein et al.’s [39] model for predicting response
to sorafenib in lung cancer patients from the BATTLE trial illus-
trates a novel and clinically relevant application in this category.

More recently, different efforts have been invested in the pre-
diction of sensitivity for combinations of individual drugs [58, 59].
Here these models are referred to as combinatorial-drug response
prediction models. As part of the DREAM Challenges initiative,
for example, 31 models for predicting the response to drug com-
binations (pairs) were reported [59]. In this setting, models were
trained on proprietary gene expression data from treated and un-
treated cell lines, including 14 compounds. During training, mod-
els were provided with drug response information derived from
single compounds, and afterward the models made predictions
for 91 compound pairs. The best performing method, DIGRE [58],
predicted (sequentially applied) combinations based on the hy-
pothesis that the transcriptional effects induced by the first drug
also contribute to the effects of the second drug. Thus, DIGRE first
calculated the similarity of the gene expression effects individu-
ally induced by two drugs, and then used this information to-
gether with dose-response curves as inputs to a mathematical
model that estimated the residual effect. The last step involved
the calculation of combinatorial effect scores for each of the two
treatment sequences [59]. Alternative combinatorial-drug re-
sponse prediction models and applications will increasingly be
developed as larger data sets become accessible [60, 61].

Overview of techniques for building prediction
models

The most widely applied computational approaches to building
models for drug response prediction are based on supervised
learning techniques (Figure 2C). Although here I focus on these
techniques, it is important to note that unsupervised learning,
including standard clustering techniques, can provide the basis
for generating prediction models. They enable important tasks,
such as data selection and visualization, before the implemen-
tation of supervised learning [24, 40, 62].

The wide spectrum of supervised learning approaches avail-
able can be divided into regression (also known as continuous)
and classification (also known as categorical) models. The former
are applied to generate numerical estimates of drug sensitivity,
e.g. activity areas above drug–dose response curves or their IC50
values [42, 63]. Classification models make predictions of sensitiv-
ity according to predetermined response levels, such as high ver-
sus low sensitivity [27, 64]. Jang et al. [27] compared different
regression and classification models, and showed that (i) there is
no general solution, and (ii) one approach can outperform the
other depending on the training data set (e.g. CCLE or CGP) and the
measure of drug sensitivity used (e.g. IC50 or activity areas). A var-
iety of applications based on methods originating from statistics

and machine learning have been reported, ranging from multiple
linear regression and support vector machines to random forests
and k-nearest neighbors (KNN) models and others [32, 33, 38, 46,
65]. Comparative analyses using public and proprietary data have
underscored the lack of all-purpose solutions [31]. Although no
single approach can consistently outperform others on different
data sets and across different drugs, it has been shown that regres-
sion models, such as elastic net and ridge regression [26], tend to
offer good and robust performance in different settings [27]. In a
recent study, an elastic net model was trained on the GDSC data
and tested on the CCLE data, then vice versa, and a reasonable
consistency of response predictors was reported [26].

Models can also be categorized according to their capacity to
handle multiple types of inputs (numerical, nominal, missing
values). Additionally, different model building strategies may be
applied when dealing with multiple types of input data, e.g.
gene expression and gene copy number. The most commonly
reported approach involves training a single model that incorp-
orates all the features available in a data set [29, 63]. Another
promising approach that has received relatively less attention is
the generation of model ensembles, i.e. models that achieve
more accurate predictions based on the combination of predic-
tions originating from multiple individual (data source specific)
models [33, 57]. Other studies have also boosted prediction cap-
acity through the implementation of ensembles of different
techniques or multi-task learning frameworks [28, 57, 66].

Another integrative approach consists of combining the data
sets as (or during) a preprocessing step, i.e. data sets are first
harmonized and then combined into a single input (e.g. vector
based) representation [26]. Other examples, such as those based
on network-based data representations merit further investiga-
tions in this area [35, 36, 67]. An interesting example of the latter
was reported by Zhang et al. [36], who generated similarity net-
works, between cell lines and between drugs independently,
based on their gene expression and (1D and 2D) structural cor-
relations, respectively. These two networks were integrated by
linking the cell lines in the first network to their corresponding
(previously tested) drugs in the second network. For a given cell
line, sensitivity predictions were obtained in each network in-
dependently using the observed responses for the neighboring
nodes (either cell lines or drugs) in the networks. The network-
specific predictions were then combined in a weighted model to
report the final response prediction.

Different adaptations of standard techniques are also being
investigated. For instance, Neto et al. [63] proposed the STREAM
algorithm that combines a Bayesian inference model with
ridge-regression to develop prediction models trained and
tested on public data (CCLE and CGP data separately). In another
investigation, using expression data, Park et al. [68] improved
prediction robustness by combining the elastic net and princi-
pal component analysis. Furthermore, they showed that the
analysis of the data in the principal component space allows a
more effective detection of sample outliers.

Readers who are interested in additional examples of the
application of specific computational techniques may refer to
[27, 28] and the DREAM challenges Web site (http://dreamchal
lenges.org).

Computational evaluation and selection of
prediction models

In practice, different computational models are trained, com-
pared and those showing the most promising predictive
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performance are selected for subsequent independent testing
(Figure 2D). Different statistical indicators of predictive perform-
ance are available and chosen according to the aim of the pre-
diction task investigated. Given training and testing data sets
containing the sensitivity measure experiments, a general strat-
egy is to use multiple indicators of error that compare the ‘good-
ness’ of the computational predictions versus the observed
experimental values. In the regression modelling context, it is
common to use correlations, root mean squared errors and the
coefficient of determination as measures of error. For (categor-
ical) classification models, standard indicators, such as accur-
acy, precision and recall are required, together with more
detailed assessments including areas under the receiver operat-
ing characteristic curve and precision-recall curves [69–71].

An essential objective of model training is to generate a
model that is generalizable beyond the data used for building
the model. When a model does not achieve this objective, one
may conclude that the model ‘over-fitted’ the data or that over-
fitting occurred. Multiple factors, including the amount and
diversity of the training data, determine the occurrence of over-
fitting, and are key research topics in the machine learning
community [72]. Despite the complexity of the problem, a
standard strategy has been established for estimating predictive
performance: model cross-validation [73, 74]. This strategy ba-
sically consists of dividing the full data set available for training
into two major disjoint data sub-sets: one for implementing the
actual training and the other for ‘validating’ the resulting
model. In the machine learning and bioinformatics literature,
the latter data set is commonly referred to as either the valid-
ation, evaluation or test data sets, but should not be confused
with the independent data set(s) used for testing the selected
model (Figure 1D).

In drug response prediction modeling, the most widely
applied cross-validation schemes are the K-fold (KF-CV) and the
leave-one-out (LOO-CV) cross-validation methods. In the KF-CV,
the full training data set is divided, by random sampling, into K
partitions (folds), and (K-1) of the resulting partitions are used
for training. After fitting the model to these data, the model is
then tested on the left-out data partition. This process is re-
peated until all folds have been used as test data sets. Thus, pre-
diction performance indicators are estimated for each test set
independently, and an indicator of overall performance across
the K-folds (typically the mean values) are reported. When in-
sufficient amounts of data are available, the random partition-
ing procedure is implemented multiple times and overall
performance indicators across such partitions are summarized.
The LOO-CV may be seen as a version of KF-CV, in which the
left-out data set contains a single sample from the data set, i.e.
K ¼ N, where N is the total number of samples in the data set.
A more detailed discussion of cross-validation is provided in
[73, 74].

Model interpretability and reporting

Another important challenge, which deserves more attention
from the translational bioinformatics community, is to ensure
that prediction models meet a minimum level of interpretability
by end-users, especially clinicians. Model interpretability refers
to the idea of allowing users to clearly visualize and understand
the outcomes of the model. According to the prediction aims,
this may also entail the implementation of models whose par-
ameters are both statistically relevant and clinically meaning-
ful. In other situations, bioinformaticians may also be required
to provide models with some prediction explanation capability,

i.e. descriptions of the evidence used to come up with a particu-
lar prediction or of the mechanism applied to make an infer-
ence. These issues are also relevant to the reporting of results in
articles for the translational and clinical research communities.

Some of the most commonly investigated prediction models
possess intrinsic properties that are amenable for supporting
end-user interpretability and even explanatory capabilities. For
example, multiple regression models and KNN learning
approaches fall into this category. In the case of the former, a
model may be represented in a relatively compact manner: a
formula that contains inputs and outputs, with regression coef-
ficients that may be interpreted as associations between spe-
cific input features, e.g. gene markers, and the prediction
outcome, i.e. drug sensitivity measure. In the case of KNN mod-
els, predictions for a particular sample may be explained by
visually representing the ‘previous cases’ used to make the pre-
diction, i.e. the nearest neighbors that were retrieved from the
training data set to estimate the drug response for the query
sample. Both techniques are also relatively easily (or intuitively)
understandable to researchers, and the KNN technique when
presented as a ‘case-based reasoning process’ may especially
appeal to clinicians.

The granularity and quality of information reported for
model interpretation and reproducibility are critical issues that
will continue necessitating careful consideration. Although the
community is increasingly aware of the importance of data and
software sharing for drug response prediction modeling [21, 22,
75], there is still room for improving transparency and accessi-
bility. In this and other data-driven research areas, key ques-
tions deserve further attention: Is a software implementation of
the model available for peer-reviewers and the community at
large? Is the code for such implementation or at least a suffi-
ciently detailed algorithmic description available? Are training
and testing data sets, or at least versions of them, shared at the
time of publication? Positive answers to these questions will
need stronger incentives for researchers, while considering con-
straints and expectations from research managers, funders and
publishers [76]. Better sharing and transparency practice will
not only facilitate the reproducibility of results, but also the
understandability of models. In the long-term, these factors will
contribute to the acceptability of models by end-users in the
clinical domain.

Conclusions

The development of computational models for predicting drug
response remains a crucial challenge. Advances in this area are
necessary for delivering on the promise of precision medicine.
Moreover, as larger and more complex ‘omic’ data sets become
available, the greater the expectations and opportunities for
generating novel applications. Such systems are also likely to be
based on new investigations about the interplay of multiple
types of molecular data and their capacity for predicting drug
responses. These models will progressively incorporate infor-
mation encoded at various levels of biological control (e.g.
tumor epigenetics), resolution analyses (e.g. multiple biopsies
per tumor) and the tumor microenvironment. Also, as new ad-
vances in cancer immunotherapy materialize, there will be add-
itional opportunities for developing prediction models tailored
to this type of treatments or their combination with small-
molecule drugs.

Although new research may build on existing statistical and
machine learning techniques, it will also require the formulation
of alternative approaches to representing, integrating and
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analyzing multiple data sets. For instance, unbiased systems-
based approaches, which tap into the power of networks for rep-
resenting data and discovering new knowledge, merit further
investigations. Further research on the influence of cell types or
specific therapies on drug response prediction is also needed, i.e.
biological context-specific models [77, 78]. To date, prediction
models have been primarily based on pan-cancer data analyses,
which do not consider such context specificity owing to the rela-
tively small data sets available for specific tissues or drugs.

There are strong reasons to continue investigating predic-
tion models based on cell line-derived data. However, bioinfor-
maticians should be well informed about the limitations of cell
lines for clinically relevant research. The selection of cell lines
that poorly reflect tumor biology, and the lack of sufficient
numbers of cell lines for modeling response in specific cancers,
are crucial failure factors to consider.

To bring these models closer to the clinic, it is important to
require high levels of expertise and involvement from bioinfor-
maticians and clinically oriented researchers during all key de-
velopment phases. Similarly, as new opportunities and
expectations arise, there will be further needs for powerful, in-
terpretable and reproducible computational methods in differ-
ent cancer domains, especially those with limited treatment
options for patients. This will be accompanied by a higher de-
mand for researchers who can design, adapt and evaluate these
models, as well as for clinicians well trained to interpret results
and to facilitate the creation of stronger bridges between the lab
and the clinic.

Key Points

• Large data sets, which contain pretreatment molecular
profiles and drug response data, are publicly available
and facilitate the development of computational mod-
els for predicting drug sensitivity.

• Computational models built on cell line-derived data
are applicable to the prediction of clinical responses in
patient cohorts.

• A diversity of techniques from statistics and machine
learning have been investigated and will continue to
be adapted to new applications in oncology.

• There is still a need for model validations using clinic-
ally relevant animal models and patient data.
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