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Abstract
JAK/STAT signaling pathway is involved in many diseases, including autoimmune diseases, which are characterized by a 
close interconnection between immune and bone system. JAK/STAT pathway is involved in bone homeostasis and plays 
an important role in proliferation and differentiation of some cell types, including osteoblasts and osteoclasts. Different 
molecules, such as cytokines, hormones, and growth factors are responsible for the activation of the JAK/STAT pathway, 
which leads, at the nuclear level, to start DNA transcription of target genes. Bone cells and remodeling process are often 
influenced by many cytokines, which act as strong stimulators of bone formation and resorption. Our aim, through careful 
research in literature, has been to provide an overview of the role of the JAK/STAT pathway in bone remodeling and on bone 
cells, with a focus on cytokines involved in bone turnover through this signal cascade. The JAK/STAT pathway, through the 
signal cascade activation mediated by the interaction with many cytokines, acts on bone cells and appears to be involved 
in bone remodeling process. However, many other studies are needed to completely understand the molecular mechanism 
underlying these bone process.
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Introduction

The Janus kinases (JAKs) are a family of protein tyrosine 
kinases (PTKs), named JAK1, JAK2, JAK3, and TYK2, 
that act on signal transducer and activator of transcription 
(STAT). The expression of JAK3 appears to be mainly in 
the hematopoietic cells. In contrast, the expression of the 
other members, JAK1, JAK2, and TYK2, is ubiquitous. 

After their activation, JAKs induce the phosphorylation of 
some STAT elements in the cytoplasm, which, subsequently 
their dimerization, are translocated in the nucleus. In the 
nucleus, STAT dimers bind to specific areas of DNA leading 
to the regulation of target genes responsible for the regula-
tion of migration, proliferation, and apoptosis [1–3]. JAK/
STAT signaling pathway (Fig. 1) plays a key role in sev-
eral cytokines, immune system regulators, hormones, and 
hematopoiesis factors [4]. A specific receptor is located on 
the surface of target cells that bind specific cytokines. These 
receptors, which can be composed of multiple subunits, are 
substantially associated with JAK monomer [5–9]. Initially, 
the JAK monomers appear to be inactive; consequently, the 
binding between the ligand and its receptor induces a JAK 
transphosphorylation receptor-associated and therefore its 
activation. Each member of the JAK family consists of four 
domains, including the SH2 domain, which is responsible 
for the link between the receptor and STAT member. In the 
cytoplasmic compartment, some receptor tyrosine residues 
are subject to an activated JAK-induced phosphorylation 
process. This process involves the formation of docking sites 
for the subsequent binding of the STAT components. The 
STAT family consists of seven members, named STAT1, 
STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6, 
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and each of these participates in the signal cascade depend-
ing on which cytokine binds to its receptor on the cell sur-
face [10, 11]. Each STAT member is characterized by some 
domains, which perform specific functions in the activation 
and transcription process. N-terminal and SH2 domains are 
responsible for the binding and interactions between dimers 
and proteins. Besides N-terminal domain is involved in 
STAT phosphorylation. STATs link DNA of target genes 
through the DNA binding domain, forming a protein-DNA 
complex. Lastly, the C-terminal transcription domain con-
tains highly conserved phosphorylated tyrosine (Y) and 
serine (S) residues required for STATs activation [12–15]. 
Through careful research in the literature, our purpose is to 
review how the JAK/STAT signaling pathway is involved in 
bone remodeling, how it acts at the cellular level, especially 
in osteoblasts and osteoclasts, and finally in which cytokines 
involved in the pathway may affect bone homeostasis.

JAK/STAT negative factors

The activation of the JAK/STAT pathway is negatively regu-
lated by a class of proteins called suppressor of cytokine 
signaling (SOCs), protein tyrosine phosphatase (PTP), and 
protein inhibitors of activated STAT (PIAS). SOCs protein 

class includes eight members named as follows: SOCS1, 
SOCS2, SOCS3, SOCS4, SOCS5, SOCS6, SOCS7 and CIS 
(cytokine-inducible SH2-containing protein) [16]. Each 
member of the family is made up of three common domains: 
a central SH domain, a C-terminal SOCS box, and a variable 
N-terminal domain. The conserved central domain SH2 is 
responsible for binding SOCs proteins with cytokine recep-
tors. In this way, the activity of the JAK kinases is blocked 
and the whole signaling complex undergoes proteasome-
mediated degradation. In addition, two members of the 
SOCS class, SOCS1, and SOCS3 contain a kinase inhibitory 
region (KIR), so, when they hook to the receptors, the cata-
lytic activity of JAKs is inhibited [17–19]. The N-terminal 
domain is variable in the different members of SOCS, with 
different lengths in each of them. In fact, it has been seen 
that the N-terminal region of SOCS4-7 is longer than the 
other member of the family [20]. In the end, a highly con-
served C-terminal SOCS box domain can enroll factors to 
the formation of ligase complex that leads to proteasomal 
degradation of ubiquitinylated proteins [21, 22].

PTP proteins belong to a large family of protein tyros-
ine phosphatase, whose function is mainly to cut out the 
phosphate group from tyrosine residues of phosphorylated 
proteins. PTPs have a catalytic domain within which a site-
active sequence is positioned. Based on the differences in 

Fig. 1  JAK/STAT pathway signaling. The binding of the cytokine to 
its receptor induces the activation of the JAKs, which phosphoryl-
ate the STATs elements. After the formation of STAT dimers, they 

migrate to the nucleus and, by binding to the target genes, they mod-
ify the transcription of DNA. Some elements can regulate the signal-
ing cascade
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the aminoacidic sequence in the catalytic domain, they are 
divided into 4 classes (I, II, III, and IV) [23–26]. Protein 
inhibitors of activated STAT (PIAS), as the name says, act 
on STATs proteins by inhibiting their transcriptional activity. 
The members of the PIAS family are five: PIAS1, PIASxα, 
PIASxβ, PIAS3, and PIAS4 (PIASγ) [27, 28]. Some stud-
ies show that every protein can interact with a particular 
STAT member. For example, PIAS1 and PIAS4 are capable 
of interacting with STAT1, while PIAS3 with STAT3 and 
STAT5. When PIAS proteins connect to STAT members, 
they induce the blockade of the link between STATs and 
DNA. Thus, the transcription co-factors of the STAT target 
gene are not recruited. In this way, PIAS proteins negatively 
regulate the STATs transcriptional activity [29–32].

JAK/STAT and bone cells

Many studies show that the JAK/STAT signaling pathway 
is involved in many diseases, including autoimmune dis-
eases, and that its inhibition may be a therapeutic strategy. 
In autoimmune diseases, such as rheumatoid arthritis, the 
immune system, and the bone system are closely intercon-
nected [33, 34]. The JAK/STAT pathway not only appears 
to be involved in bone homeostasis and response but also in 
the differentiation processes of some cells type. In particu-
lar, even the cytokines involved in the signaling pathway 
activation can act on this variety of cells, for example on 
osteoblasts, osteoclasts and osteocytes [35, 36]. The bone 
and the cells that regulate its remodeling are often subject 
to and/or influenced by the presence of cytokines belonging 
to the immune system. Many of them are strong modula-
tors of bone metabolism, to influence the processes of bone 
formation and resorption. The bone physiological remod-
eling mechanism is due to a perfect relationship between 
osteoblasts and osteoclasts. These cells are responsible for 
bone formation and resorption mechanisms, respectively, 
while the role of mechanosensing is attributed to osteocytes 
[36]. Although both cells type cooperates in this process, 
they have different origins; while osteoblasts and osteocytes 
are of mesenchymal origin, osteoclasts, on the other hand, 
derive from hematopoietic stem cells [37, 38].

Osteoblasts are responsible for bone formation process, 
protein production, and matrix mineralization [39, 40]. 
During the differentiation process of osteoblasts, two tran-
scriptional factors are very expressed. Shreds of evidence 
that these two factors, Runt-related transcription factor 2 
(Runx2) and osterix (Osx), are necessary for the regulation 
of differentiation and are involved in maintaining of osteo-
blasts functionality [41, 42]. However, the role of osteoblasts 
also concerns the regulation of osteoclast differentiation. 
Indeed, when these two types of cells interact, osteoblasts 
produce several soluble factors, among which macrophage 

colony-stimulating factors (M-CSF), receptor activator of 
nuclear factor-κB ligand (RANKL), and osteoprotegerin 
(OPG) [43]. During the osteoclastogenesis process, RANKL 
is an essential factor, as it binds to the RANK receptor pre-
sent on the surface of the precursors of the osteoclasts. 
This interaction also induces an increase in bone resorp-
tion capacity. In contrast, the RANK/RANKL interaction is 
negatively regulated by the presence of OPG. This molecule 
has a binding affinity with RANKL, thus, it prevents further 
binding (leads to a lower binding interaction) between the 
ligand and its receptor on osteoclasts [44, 45].

Recently, several studies have shown that different fac-
tors are involved during the osteoclastogenesis process 
[46]. This process leads to maturation and differentiation of 
osteoclasts from the monocyte/macrophage lineage. These 
cells are induced to differentiate starting from two factors, 
nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) 
and c-Fos, whose expression is promoted by macrophage 
colony-stimulating factor (M-CSF) and receptor activator 
of nuclear factor-κB ligand (RANKL). The main osteoclasts 
signaling pathway provides a signal cascade that includes 
several factors including TNF receptor-associated factors 
(TRAFs), mitogen-activated protein kinases (MAPKs), and 
consequently the activation of c-Fos factor that induces the 
activity of NFATc1 [47]. The role of NFATc1 is considered 
significant for the promotion of differentiation and activity 
of osteoclasts [48–51]. Indeed, some studies have reported 
that downregulation of NFATc1 due to PIAS3 compromises 
the osteoclastogenesis process, confirming that this factor 
is necessary for the differentiation of active osteoclasts 
[52–54].

Implication of JAK/STAT in bone metabolism

JAKs and STATs proteins, according to many studies, play 
an important role in the proliferation and differentiation 
of osteoblasts and osteoclasts. A murine study conducted 
on osteoblasts [55] has demonstrated that phosphorylation 
of JAKs proteins occurs in the presence of oncostatin-M. 
This indicates the involvement of the three members, JAK1, 
JAK2, and TYK2, in the bone formation process [1, 56–59]. 
Nevertheless, despite the expression of JAK3 is mainly lim-
ited to the leukocytes, its probable role in the bone remod-
eling process has recently been highlighted [37]. Other 
animal studies, conducted on JAK1-deficient mice, suggest 
that the absence of the JAK1 factor induces lower bone 
growth and significantly reduced body mass [60]. Experi-
mental evidence shows that the role of the JAK2 member is 
determined by coupling with the STAT5B factor [61, 62]. 
A JAK2/STAT5B signaling pathway is very important in 
the mechanism of growth hormone (GH) signaling which, 
in turn, regulates osteoblasts differentiation. Furthermore, 
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STAT5B is considered a transcriptional promoter of insulin-
like growth factor 1 (IGF-1), which is also produced in oste-
oblasts and is involved as a mediator during the bone growth 
process [63–65]. Also, other studies have highlighted the 
role of JAK2/STAT5B in osteoblastogenesis for the impli-
cation of some transcriptional factors and proteins, such as 
Runx-2, BMP-7, Tbx-3 [66–69]. Nevertheless, due to the 
strong interaction between JAK2/STAT5B, it is not easy to 
associate a respective function to each molecule. As for the 
three members, STAT2, STAT4, and STAT6, they do not 
seem to be directly involved in bone remodeling. Although, 
studies show that STAT2 could be implicated in bone 
homeostasis through STAT1; while STAT4 and STAT6 are 
involved in inflammatory arthritis [70]. It has been shown 
that STAT 3 inhibition induced a reduction of RANKL levels 
and decrease bone resorption through a decline of osteoclast 
activity mediated by RANKL in several experimental ani-
mal models of inflammatory arthritis [71, 72]; accordingly, 
in vitro studies showed that the STAT 3 inhibition induced 
a reduction of RANKL-mediated osteoclast differentiation 
from monocytes in mice and human [73, 74]. Among all the 
STATs proteins, STAT1 and STAT3 play a more important 
role in bone maintenance. Some studies show the critical 
role of STAT1 in the inhibition of the osteoclastogenesis 
process [75, 76]. On the contrary, other studies carried out 
on STAT1-deficient animal models highlight the suppres-
sor function that STAT1 has in bone formation, through its 
relationship with Runx2 [77].

To confirm this last hypothesis, some researchers found 
that the activity of osteoblasts, in the bone formation, is 
accelerated in the absence of STAT1 during fracture heal-
ing [78]. Further, in ovariectomized rat, STAT1/3 inhibition 
is associated to an increased osteoblast activity, expressed 
as enhanced osteocalcin al alkaline phosphatase production 
[79]. The key role as a transcription factor for bone cells is 
certainly assigned to STAT3 [33–35]. The involvement of 
STAT3, in addition to survival and cellular functionality, 
also concerns the pathways of many cytokines and growth 
factors [80]. A team of researchers observed swift activa-
tion and induction of STAT3 signaling in mesenchymal 
stem cells (MSC), important regulators of osteoblast dif-
ferentiation [81]. It has been widely discussed that STAT3 
partakes in bone maintenance through its expression in 
osteoblasts and its inactivation effectively decreases bone 
formation in vivo [82–84]. To confirm this, animal studies 
were conducted on knockout mice engineered on the CRE-
loxP system, highlighting that the inactivation of STAT3 
in osteoblasts leads to a lower BMD. Moreover, in a very 
recent study conducted by Davidson et al., it is highlighted 
that the participation of STAT3, during the regulation of 
the osteoclastogenic process, occurs in a different way in 
female than male osteoclastic cells. So, these data suggest 
that the STAT3 signal may have a key role in bone turnover 

[46, 84, 85]. Initially, an inactivating STAT3 mutation was 
found, which leads to a disease called Job syndrome. Among 
the characteristics found in patients with this syndrome, a 
reduced BMD and presence of fractures are not to be under-
estimated. Besides, the mutation results in increased bone 
resorption and a greater number of osteoclasts [86–89]. 
Some studies show that inhibition of STAT3 induces a 
decrease in the osteoclastogenesis process [52, 53]. Young 
et  al., in their animal experiment, show that STAT3 is 
involved in osteoclastogenesis in vivo and it can regulate 
the NFATc1 factor [90].

JAK/STAT, cytokines and bone cells

Many molecules, including cytokines, are involved in the 
cascade of the JAK/STAT signaling pathway. The recogni-
tion of cytokines with their receptors on the cell surface 
induces the activation of JAKs proteins. Consequently, the 
cascade activation mechanism of other components begins, 
such as the STATs, which, by binding to DNA, regulate the 
transcription processes of many genes [91]. The cytokines 
that are part of this pathway are more than 30, including 
numerous interleukins, tumor necrosis factor-α (TNF-α), 
interferon-α/γ (IFNα/γ), and oncostatin M (OSM), each 
of which is implicated in many pathologies [92]. Some 
cytokines (Table 1) are potentially involved in normal bone 
remodeling [93].

Interleukin‑6

Interleukin-6 plays a key role in bone turnover. Recently, 
experimental evidence has shown that IL-6 presents two 
forms, cis and trans, and that IL-6 trans form promotes 
bone formation [94]. Other studies suggest that, with the 
activation of STAT3 and the involvement of receptor subu-
nit gp130 to transduce signals, IL-6 can mightily inhibit 
RANKL-induced osteoclasts differentiation [95]. In contrast, 
IL-6 stimulates the production of RANKL in osteoblasts 
and it could also induce an increase in osteoclasts and bone 
resorption [96–98].

Interleukin‑1

Similarly, IL-1 also stimulates the process of osteoclas-
togenesis and bone resorption [99, 100]. A study has shown 
that the formation of TRAP-positive multinucleated cells 
(MNCs) is inhibited by using a molecule that blocks the 
action of IL-1 and IL-6 [37].
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Interleukin‑3

IL-3 could inhibit the process of osteoclast differentiation 
and bone resorption. On the other hand, it stimulates the 
process of osteoblastogenesis and consequently an increased 
bone formation. Moreover, IL-3 probably modulates, 
through the activation of JAK2/STAT5, a greater expres-
sion of both the soluble and membrane form of RANKL in 
calvaria osteoblasts, despite this does not involve the matura-
tion of multinucleated osteoclasts [101–105].

Interleukin‑4 and Interleukin‑7

Some studies suggest that IL-4 and IL-7 negatively regulate 
the osteoclastogenesis process [106, 47–107]. Therefore 
IL-4, through the phosphorylation of STAT6, inhibits the 
osteoclasts activity and bone resorption. However, a team of 
researchers has found that, through STAT5 signaling, IL-7 
induces the formation of osteoclasts [108].

Interleukin‑12

Several studies indicate that IL-12 also has inhibitory effects 
on the osteoclastogenesis process; however, the mechanism 
by which this inhibitory effect occurs is still being investi-
gated. Nevertheless, it has been shown that this interleukin 
induces STAT phosphorylation through two of the JAKs 
proteins, JAK2 and TYK2, but its negative effect appears to 
involve both interferon g and T cells [109–111].

Interleukin‑15 and Interleuikin‑17

In an animal study, in which the mice were defective of 
the IL-15 receptor, increased bone mass was shown, sug-
gesting the role of IL-15 in the formation of osteoclasts 
[90–112]. IL-17 is of great interest in the involvement 
of bone and inflammatory diseases. Recent studies have 
indicated that Il-17 may be directly involved in the pro-
cess of osteoblastogenesis and its implication in the rapid 
differentiation and maturation of osteoblasts results. The 

Table 1  Positive/Negative 
effect of citokines on bone cells, 
processes and bone remodeling

↑, Stimulation, increase, promotion; ↓, Inhibition, decrease, induction; ●, uncertain/contrasting effect

Citokine Effect on Osteoblast and bone 
formation

Effect on osteoclast and bone 
resorption

Bibliographic references

IL-1 – Positive effect
(↑ osteoclastogenesis)
(↑ bone resorption)

[37, 99, 100]

IL-3 Positive effect
(↑ osteoblastogenesis)
(↑ bone formation)

Negative effect
(↓ osteoclastogenesis)
(↓ bone resorption)

[101–105]

IL-4 – Negative effect
(↓ osteoclastogenesis)
(↓ bone resorption)
(↓ osteoclast activity)

[47, 106, 107]

IL-6 ● Positive effect
(↑ osteoblastogenesis)
(↑ bone formation)

Negative/Positive effect ●
(↓ osteoclastogenesis)
(↑bone resorption)
(↑ osteoclasts formation)

[94–98]

IL-7 ● – Negative/Positive effect ●
(↓ osteoclastogenesis)
(↓ bone resorption)
(↓ osteoclast activity)
(↑ osteoclasts formation)

[47, 106–108]

IL-12 – Negative effect
(↓ osteoclastogenesis)

[109–111]

IL-15 – Positive effect
(↑ osteoclastogenesis)

[90, 112]

IL-17 Positive effect
(↑ osteoblastogenesis)
(↑ bone formation)

– [113–115]

IL-23 – Negative effect
(↓ osteoclastogenesis)

[114, 116]

IL-27 Involvement in osteoblasts
(to be studied)

Negative effect
(↓ osteoclastogenesis)

[114, 116]
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role of IL-17 has been investigated in bone cells of spon-
dyloarthritis patients. Therefore, the researchers found that 
IL-17A induces the activity of osteoblasts through JAK2/
STAT3 signaling. Furthermore, the activation of osteo-
blasts is drastically reduced by blocking JAK2 and IL-17A 
through an inhibitor [112–115].

Interleukin‑23 and Interleukin‑27

Finally, IL-23 and IL-27 are also part of the gp130 family 
of cytokines. However, their functionality at the level of 
the bone compartment is still being studied. Despite this, 
IL-27 has been seen to induce the transcription process 
in osteoblasts through STAT3. Moreover, both seem to 
participate in the process of osteoclastogenesis by exhib-
iting their inhibitory effect and reducing the number of 
multinucleated osteoclasts [114–116].

Conclusions

Through careful research in the literature, we wanted to 
focus our attention on the molecular mechanisms that 
affect the involvement of the JAK/STAT pathway at the 
cellular level, specifically at the level of bone cells, osteo-
blasts, and osteoclasts, and how they behave in the remod-
eling process bone. At the same time, the knowledge of 
the interaction between the immune system and the bone 
system has allowed us to evaluate also how cytokines, 
through the JAK/STAT signaling pathway, influence and 
participate in the mechanisms that govern bone turnover. 
It should be underlined that JAK/STAT inhibition showed 
conflicting and often opposite effects both in experimental 
and clinical models, in a large variety of physio-patho-
logical relevant processes and in different tissues, includ-
ing bone, probably because they can act by nonspecific 
mechanisms. Further, the different effects depending on 
cellular and tissue context and the complex interaction 
with other regulatory signaling pathways. The develop-
ment of more specific JAK inhibitors, which target individ-
ual members of the STAT family, could contribute better 
to understand the role of JAK/STAT signaling in physi-
ological and pathological conditions, including skeletal 
disorders. On the other hand, many studies will still be 
needed that allows scientists to investigate the functional 
mechanisms of the JAK/STAT pathway and its involve-
ment in the bone system. This will allow us to develop 
new molecules and improve existing ones by inhibiting 
and/or blocking the JAK/STAT cascade with a view to new 
therapeutic strategies.
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