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Abstract
There is increasing awareness of the role genetic risk variants 
have in mediating vulnerability to psychiatric disorders such 
as schizophrenia and autism. Many of these risk variants en-
code synaptic proteins, influencing biological pathways of 
the postsynaptic density and, ultimately, synaptic plasticity. 
Fragile-X mental retardation 1 (FMR1) and cytoplasmic frag-
ile-X mental retardation protein (FMRP)-interacting protein 
1 (CYFIP1) contain 2 such examples of highly penetrant risk 
variants and encode synaptic proteins with shared function-
al significance. In this review, we discuss the biological ac-
tions of FMRP and CYFIP1, including their regulation of (i) 
protein synthesis and specifically FMRP targets, (ii) dendritic 
and spine morphology, and (iii) forms of synaptic plasticity 
such as long-term depression. We draw upon a range of pre-
clinical studies that have used genetic dosage models of 
FMR1 and CYFIP1 to determine their biological function. In 
parallel, we discuss how clinical studies of fragile X syndrome 

or 15q11.2 deletion patients have informed our understand-
ing of FMRP and CYFIP1, and highlight the latest psychiatric 
genomic findings that continue to implicate FMRP and  
CYFIP1. Lastly, we assess the current limitations in our under-
standing of FMRP and CYFIP1 biology and how they must be 
addressed before mechanism-led therapeutic strategies can 
be developed for psychiatric disorders.

© 2020 The Author(s)
Published by S. Karger AG, Basel

The Synapse and Postsynaptic Density Proteins

Neurotransmission between presynaptic and postsyn-
aptic terminals is the adaptive communication mecha-
nism linking neurons and other cell types into neural cir-
cuits and networks, which form the basis of synaptic plas-
ticity, cognition, and behaviour [1, 2]. The majority of 
excitatory, glutamatergic synapses in the mammalian 
brain are located at small dendritic protrusions, or spines 
[3], and contain a prominent assembly of proteins at the 
postsynaptic membrane known as the postsynaptic den-
sity (PSD) [4, 5]. Proteomic profiling of the PSD has re-
vealed over 1,000 different proteins [6–8], many of which 
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converge on the regulation of synaptic plasticity through 
biological pathways controlling protein synthesis, recep-
tor trafficking, or structural rearrangements [9–11].

Synaptic FMRP: Regulator of mRNA and Local 
Translation

One such synaptic protein is fragile-X mental retarda-
tion protein (FMRP), encoded by the FMR1 gene (Xq27.3) 
[12] and the monogenic cause of neurodevelopmental 
disorder fragile X syndrome (FXS) [13]. FMR1 mRNA is 
expressed in the neuronal cell body, developing and ma-
ture axons, dendrites and dendritic spines, and the nucle-
us [14, 15], but not across all neuronal populations [16, 
17]. FMRP is an RNA-binding protein with multiple 
structural motifs for binding RNA (such as the K homol-
ogy domain and arginine-glycine-rich, RGG, box) [18], 

capable of regulating the dendritic sequestering, and lo-
calization, of hundreds of target neuronal mRNAs [19, 
20], either through direct interactions or via intermediary 
interactions with noncoding RNA [21, 22].

FMRP, its target mRNA, and other protein partners 
together form large messenger ribonucleoparticles 
(mRNPs) [23]. Within the mRNPs, FMRP plays a key role 
in the translational silencing of its target mRNA [24–27], 
required during the transport of mRNA along dendrites 
[28], before synaptic activation results in the docking of 
the mRNPs to the spines and subsequent translation [29, 
30]. FMRP specifically regulates the rate-limiting step of 
cap-dependent mRNA translation initiation by binding 
to the initiation factor eIF4E and FMRP-binding partner 
cytoplasmic FMRP-interacting protein 1 (CYFIP1) (see 
section “Synaptic CYFIP1: A Negative Regulator of Pro-
tein Synthesis and Cytoskeletal Dynamics” later) [31, 32], 
although initiation may also be regulated via FMRP ubiq-
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Fig. 1. Biological roles of synaptic FMRP 
and CYFIP1 in postsynaptic neurons. 
FMRP plays a key role in negatively regu-
lating the translation of hundreds of FMRP 
targets, including activity-regulated cyto-
skeleton associated (ARC), by forming a 
complex with CYFIP1, alongside the initia-
tion factor eIF4e. The control of mRNA 
translation, and its repression by the CY-
FIP1-FMRP complex, is partly mediated 
through activation of upstream NMDA 
and mGluR5 receptors. FMRP targets such 
as ARC can drive changes in synaptic plas-
ticity through regulation of α-Amino-3-
hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptor trafficking/inter-
nalization and increasing actin cytoskele-
ton stability. Meanwhile, CYFIP1 can bind 
and inhibit the WAVE regulatory complex, 
thereby blocking the promotion of actin 
cytoskeleton rearrangements. Preclinical 
evidence suggests that under conditions of 
synaptic activation, CYFIP1 redistributes 
between the 2 main complexes, with great-
er association with the WAVE complex 
and a reciprocal decrease with the FMRP 
complex. FMRP, fragile-X mental retarda-
tion protein; CYFIP1, cytoplasmic FMRP-
interacting protein; mGluR5, metabo-
tropic glutamate receptor 5.
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uitination or sumoylation [33–35]. FMRP also controls 
elongation stages of mRNA translation by stalling ribo-
somes on FMRP target transcripts [19, 24], although how 
FMRP switches between the regulation of initiation and 
elongation is currently unknown [36]. FMRP is, there-
fore, a critical mediator of local translation of mRNA tar-
gets, acting at both presynaptic and postsynaptic termi-
nals [24, 37, 38]. Some of the key biological roles of FMRP 
at postsynaptic terminals are highlighted in Figure 1.

Beyond translational silencing, FMRP plays other bio-
logical roles [39], including RNA editing [40], regulation 
of mRNA target stability [41], and ion-channel binding 
[42, 43], collectively influencing calcium signalling [44], 
activity-dependent neurodevelopment [45], and the bal-
ance of excitatory/inhibitory circuits [46, 47]. The addi-
tional functions of FMRP might explain instances where 
FMRP does not appear to be a straightforward repressor 
of protein synthesis [48], perhaps most pertinently 
through FMRP’s ability to influence the stability of a sub-
set of mRNAs [22, 49].

FMRP Targets

Considerable effort has been made to identify the 
mRNAs targeted by FMRP so that biological pathways 
affected by mutations in FMR1 can be better predicted. 
Such studies have used immunoprecipitation followed by 
either microarray [50, 51] or high-throughput sequenc-
ing [19, 52] to determine FMRP-bound mRNAs. Due to 
varied methodology and tissues (as well as influence from 
type I and II errors), these lists of FMRP targets differ 
considerably [52, 53]. Therefore, precisely which mRNAs 
are bound by FMRP is uncertain and likely to be some-
what tissue-specific. Two studies using mouse cortical tis-
sue and comparable methodology (high-throughput se-
quencing of RNA isolated by cross-linking immunopre-
cipitation) yielded highly overlapping results: 89% of 
mRNAs identified as FMRP targets by Darnell and col-
leagues [19] were also identified by Maurin et al. [52]. 
Still, only a small subset of the proposed targets have been 
validated [23, 49, 54–57].

Gene ontology analyses of brain-derived FMRP tar-
gets confirm an overrepresentation of genes involved in 
functions related to synaptic activity, plasticity, develop-
ment, and anatomy [19, 52, 58], consistent with studies of 
FMRP function. The proteins they encode include both 
presynaptic and postsynaptic components. Of these are 
subunits and interactors of receptor complexes consid-
ered central to synaptic plasticity phenotypes associated 

with FXS, chiefly the of metabotropic glutamate receptor 
5 (mGluR5) and N-methyl-D-aspartate (NMDA) recep-
tor signalling complexes [19]. The observation that FMRP 
binds some presynaptic proteins supports the evidence 
that FMRP regulates protein synthesis during axon devel-
opment and synapse formation [59–62].

Whilst studies of FMRP targets have identified prob-
able interactions between FMRP and ribosomal mRNAs, 
further work is needed to determine whether the transla-
tion of these mRNAs is indeed repressed by FMRP with-
in the regulatory complex together with CYFIP1 and 
eIF4E proteins in the cell [31, 32].

Synaptic CYFIP1: A Negative Regulator of Protein 
Synthesis and Cytoskeletal Dynamics

CYFIP1 is a highly dynamic synaptic protein involved 
in numerous biological pathways through an array of 
protein-protein interactions (Fig.  1) [63]. Originally 
known as specifically Rac1-activated protein 1 (SRA-1) 
[64], CYFIP1 was later found to bind with FMRP [12, 65], 
forming a critical CYFIP1-FMRP complex at the synapse 
[31]. Specifically, FMRP-bound CYFIP1 acts as a non-
canonical eIF4E-binding protein [31], thereby providing 
competition for the binding of eIF4E to the translation 
initiation complex (eIF4E-eIF4G) [66, 67]. Overall, it is 
this eIF4E-CYFIP1-FMRP complex, together with its tar-
get mRNA, that represses translation at dendritic and 
synaptic sites [31]. Upon synaptic activation via tropo-
myosin receptor kinase B or group I mGluRs, eIF4E is 
released from CYFIP1-FMRP and permits the translation 
of target mRNAs [31]. A subsequent study has implicated 
a mitogen-activated protein (MAP)-kinase-interacting 
kinase-dependent pathway in the release of the inhibitory 
CYFIP1-FMRP complex from target mRNA, via MAP-
kinase-interacting kinase phosphorylation of CYFIP1, in 
the early phase of long-term potentiation (LTP), thereby 
permitting translation [68].

Aside from its role in regulating protein synthesis,  
CYFIP1 forms part of the ∼400-kDa heteropentameric 
WAVE regulatory complex, which also contains 
WAVE1/2/3, abl interactor-1/2 (ABI1/2), Nck-associated 
protein 1 (NCKAP1), and haematopoietic stem/progeni-
tor cell protein 300 (HPSC300) components [69]. With-
out CYFIP1, the WAVE complex promotes actin cyto-
skeleton remodelling via the Arp2/3 complex [70–72], 
impacting on aspects of dendritic spine formation, stabil-
ity, morphology, migration, and excitability [73]. The 
role of CYFIP1 is to maintain the WAVE complex in an 
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inhibited state, until the GTPase, Rac1, causes the disso-
ciation of CYFIP1 from the WAVE regulatory complex 
and allows actin remodelling to proceed via Arp2/3 [74].

CYFIP1 belongs to the two aforementioned complex-
es, FMRP and WAVE, in a mutually exclusive manner, 
skewed towards greater association with the WAVE com-
plex, under basal conditions [74]. Notably, synaptic acti-
vation changes the protein conformation of CYFIP1, 
from globular to planar, and drives the distribution of 
CYFIP1 further towards the RAC1-WAVE complex, with 
a concomitant decrease in the eIF4E-CYFIP1 complex 
[71, 74, 75]. Therefore, CYFIP1 is a central molecular me-
diator that bridges the 2 processes of mRNA translation 
and actin dynamics, both essential for synaptic plasticity 
[76–78]. Other molecular roles for CYFIP1 are being ex-
plored, including its role presynaptically. For instance, 
presynaptic function is altered in the hippocampus of  
juvenile Cyfip1 knockout (KO) mice, thought to derive 
from changes in presynaptic terminal size and enhanced 
vesicle release probability, and driven by dysregulation of 
the WAVE complex [79]. These findings closely align 
with previous findings in cyfip1 mutant fly models that 
specifically found alterations in actin polymerization in 
presynaptic terminals [65, 80]. More recently, Cyfip1 KO 
mice were found to have decreased myelination of callo-
sal axons, alongside impaired presynaptic neurotrans-
mission in the corpus callosum [81].

CYFIP1 has a closely related paralogue, CYFIP2, with 
over 88% amino acid identity [12]. Like CYFIP1, CYFIP2 
is found at excitatory [82] and inhibitory [83] synapses, 
and binds both to the WAVE complex [63, 69] and to 
FMRP [12]. Interestingly, CYFIP2 additionally binds to 
FMRP-related proteins, FXR1P and FXR2P, while CY-
FIP2 mRNA is a target of FMRP [19], implying a further 
layer of feedback between FMRP and the family of CY-
FIPs. However, the molecular redundancy between these 
paralogues is limited, given that the deletion of both cop-
ies of CYFIP1 is embryonically lethal [74, 84]. Further-
more, CYFIP1, but not CYFIP2, has been consistently as-
sociated with neuropsychiatric disorders [82, 83; howev-
er, see 85].

Psychiatric Disorders and the Synapse

Considerable evidence suggests that a wide range of 
neuropsychiatric disorders, such as FXS, autism spec-
trum disorders (ASDs), schizophrenia, intellectual dis-
abilities (IDs), and bipolar disorder, exhibit convergent 
synaptic pathology [6, 32, 86–91]. Synaptic dysfunction 

has been observed at several levels, including genetic al-
terations [92–94],aberrant proteins [95] and their trans-
lation [25, 96–98], molecular signalling pathways [99–
101], spine morphology [102], aberrant synaptic plastic-
ity [103–105], neurocircuitry, and connectivity [106]. 
These interrelated observations highlight impaired syn-
aptic function as a common feature of several neuropsy-
chiatric disorders [91, 94, 107].

In light of this view, and the biological importance of 
FMRP and CYFIP1 at the synapse (outlined in sections 
“Synaptic FMRP: Regulator of mRNA and Local Transla-
tion” and “Synaptic CYFIP1: A Negative Regulator of 
Protein Synthesis and Cytoskeletal Dynamics”), we will 
now consider the role of FMRP and CYFIP1 in the aetiol-
ogy of psychiatric disorders, using data from human pa-
tient studies, especially psychiatric genomics, and pre-
clinical models.

FMRP and FMRP Targets in Psychiatric Disorders

FXS Patients and Fmr1 KO Models
In humans, transcriptional silencing of the FMR1 gene 

by a triplet repeat expansion (beyond 200 repeats, typi-
cally ∼800) in the 5-untranslated region of FMR1[108] 
leads to FXS [13, 109]. FXS patients display a broad range 
of abnormalities, including increased immaturity of den-
dritic spines [110–112], altered molecular signalling [23], 
increased levels of basal protein synthesis [113, 114], al-
tered neuron and circuit excitability [115], structural and 
connectivity defects in brain networks [116], and a range 
of cognitive and behavioural phenotypes that overlap 
considerably with ID and ASD [117–119]. Indeed, FXS 
represents the single most common form of inherited ID 
with a prevalence of 1:4,000 males and 1:8,000 females 
[120] and the most common, single-gene cause of ASD 
[108, 117]. FMRP may also be involved in other neuro-
psychiatric disorders, beyond FXS and related ASDs, in-
cluding schizophrenia and bipolar disorder [121–125].

The effects of Fmr1 mutations have been interrogated 
preclinically for 25 years through the Fmr1 KO mouse 
model [126] and, with the advent of modern gene-target-
ing technologies, the Fmr1 KO rat model [127, 128]. 
Many of the features of human FXS have been recapitu-
lated in Fmr1 KO mouse and rat models, especially in 3 
key areas: dendritic spine maturation [112, 127, 129, 130], 
elevated basal protein synthesis [127, 131–133], and be-
havioural/cognitive phenotypes, including ASD-like ab-
normalities [134], abnormalities in social interaction and 
interest [135], social anxiety [136], and reduced behav-
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ioural flexibility/reversal learning in a variety of tasks 
[127, 137–141].

In addition to heightened global protein synthesis, 
Fmr1 KO rodents display a lack of mGluR-dependent 
translational control, which results in an elevated protein 
synthesis-dependent form of synaptic plasticity, known 
as mGluR-mediated long-term depression [127, 142–
145]. Increased mGluR-dependent translation is thought 
to occur through excessive activation of the mGluR5 sub-
type, given that reductions in mGluR5 expression [132], 
or the mGluR5 antagonist 2-Methyl-6-(phenylethynyl)
pyridine (MPEP)[46, 146], can rescue several Fmr1 KO 
phenotypes. The altered mGluR5 signalling in the ab-
sence of Fmr1 appears to be mediated through the pref-
erential interaction of mGluR5 with activity-dependent 
isoforms of Homer1 over constitutive Homer proteins 
[147, 148].

The deletion of Fmr1 results in the loss of the repres-
sive eIF4E-Cyfip1-FMRP complex, which de-represses 
the initiation complex, eIF4F, required for cap-depen-
dent translation initiation of FMRP targets [149]. It was 
shown that an inhibitor of the eIF4F complex, which cre-
ates free eIF4E, increases the abundance of the eIF4E-CY-
FIP1-FMRP complex (with a parallel decrease in the CY-
FIP1-WAVE complex) in Fmr1 KO mice, and the resto-
ration of this imbalance rescues spine and memory 
deficits in these animals [150]. Hence, studies of the Fmr1 
KO rodent model have illuminated a variety of molecular 
mechanisms relevant to FXS, especially those pertinent to 
the regulation of protein synthesis, and may provide bio-
logical targets for therapeutic intervention [24], comple-
menting ongoing clinical trials in human FXS patients 
[151, 152].

FMRP and FMRP Targets in Psychiatric Genomic 
Studies
Beyond repeat expansions in the FMR1 gene, a num-

ber of rare pathogenic point mutations have been report-
ed that cause developmental delay and ID reminiscent of 
FXS [153–157]. Further evidence suggests that mutations 
in the autosomal homolog FXR2 gene might also contrib-
ute to ID [158–160]. Whilst variants affecting the related 
FXR1 gene confer risk to schizophrenia, bipolar disorder, 
and autism [161–165], the genetic link between FMR1 
and psychiatric disorders derives from enrichment of as-
sociation within the gene targets of FMRP (among which 
the fragile-X family genes themselves are included).

A set of FMRP target mRNAs derived from a study of 
mouse cortical polyribosomes [19] have been recurrently 
highlighted in the literature due to their enrichment for 

genes associated with an array of psychiatric disorders. 
Through large-scale genome-wide association studies, 
these 842 FMRP targets have been shown to be geneti-
cally associated with schizophrenia [161, 162], autism 
[166], major depressive disorder [167], and bipolar disor-
der [58]. In addition to the risk conferred from common 
variation, this gene set is enriched for rare variants from 
patients with schizophrenia [168–171], autism [172], and 
bipolar disorder [173]; de novo variants from patients 
with schizophrenia [174] and autism [175–177]; and to a 
lesser extent copy number variants from patients with 
schizophrenia [178–180]. The convergence of risk from 
multiple different types of genetic variants forms a strong 
evidence base, implicating this gene set in psychiatric pa-
thology. Conversely, FMRP targets derived from a study 
of human embryonic kidney cells [51] do not appear to 
be associated with psychiatric disorders [166, 168], high-
lighting the tissue specificity of these relationships.

Brain FMRP targets overlap considerably with other 
gene sets associated with psychiatric disorders, such as 
genes encoding PSD proteins and those involved in cal-
cium signalling, synaptic plasticity, learning, and memo-
ry [19, 52, 58, 181]. However, despite these overlaps, the 
enrichment of brain FMRP targets for association with 
psychiatric disorders is independent [58, 162, 168] and 
proportional to the confidence of binding by FMRP [58]. 
Moreover, in many instances, it appears that FMRP tar-
gets capture subsets of these other gene sets in which ge-
netic association is concentrated [58]. Hence, this set of 
genes locally regulated by FMRP during plasticity and de-
velopment at the synapse may represent a collection of 
biological pathways important for the manifestation of a 
range of psychiatric disorders.

CYFIP1 in Psychiatric Disorders

15q11.2 Copy Number Variants and Cyfip1 Dosage 
Models
The proximal long arm of human chromosome 15 

(15q11.2–13.3) is a region of numerous low-copy repeats 
that can lead to aberrant meiotic chromosomal rear-
rangements. These result in deletions or duplications of 
sections of DNA, known as copy number variants (CNVs), 
and occur at any of 5 common breakpoints (BP1–BP5) on 
chromosome 15 [182]. Neurodevelopmental psychiatric 
disorders Prader-Willi syndrome and Angelman syn-
drome are caused by deletions of paternal or maternal 
origin, respectively, and occur as either large deletions 
(type I, between BP1 and BP3) or smaller deletions (type 
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II, between BP2 and BP3). Meanwhile, CYFIP1 is cytoge-
netically positioned in the non-imprinted 500-kb region 
between BP1 and BP2 on chromosome 15 (15q11.2 inter-
val), along with 3 additional genes: non-imprinted in 
Prader-Willi/Angelman 1 (NIPA1) and 2 (NIPA2), and 
tubulin gamma complex-associated protein (TUBGCP5) 
[183]. The 15q11.2 chromosomal region was first impli-
cated with neurodevelopmental psychiatric disorders 
through the observation that type I deleted Prader-Willi 
syndrome or Angelman syndrome patients, who lack the 
15q11.2 interval, had more severe behavioural pheno-
types than type II deleted patients, in whom the 15q11.2 
interval is intact [184, 185]. Later, patients were identified 
with deletions and duplications between BP1 and BP2, 
which specifically flanked the 15q11.2 interval itself [182].

Deletions or duplications of 15q11.2 are present in 1 of 
100 people who present for genetic screening, whilst in-
cidence in the general population is likely to be nearer 1 
in 500 people [186]. The CNV causes patients to display 
language/motor deficits or delays, behavioural problems, 
autism, and seizures [187–189], with deletions being the 
most impactful on cognition [187] and referred to as 
Burnside-Butler syndrome [182, 186]. It was recently ob-
served that 15q11.2 deletion patients have structural and 
functional changes in the brain that likely relate to the ac-
companying cognitive phenotypes, including a smaller 
left fusiform gyrus and altered activation in the left fusi-
form and the left angular gyri using functional magnetic 
resonance imaging [190]. In subsequent diffusion tensor 
imaging studies, 15q11.2 deletion carriers show increased 
fractional anisotropy [191], indicating alterations in the 
white matter microstructure [192]. In keeping with these 
findings, white matter changes in 15q11.2 deletion pa-
tients closely mirror the phenotypes of FXS patients 
[193], suggesting a common pathogenic pathway derived 
from disruption of CYFIP1-FMRP complexes. Although 
the 15q11.2 deletion is not fully penetrant, as a significant 
proportion of the general population are healthy carriers 
with no overt phenotypes [194], it is likely that subclinical 
cognitive phenotypes exist even in these “healthy” carri-
ers [195].

Among the genes located within the 15q11.2 locus, 
CYFIP1 is widely regarded as the most likely to confer the 
biological and behavioural phenotypes associated with 
15q11.2 BP1–BP2 CNVs [84, 191]. This is due, in part, to 
its known functional association with the FXS-relevant 
protein FMRP (see sections “Synaptic FMRP: Regulator 
of mRNA and Local Translation,” “FMRP Targets,” “Syn-
aptic CYFIP1: A Negative Regulator of Protein Synthesis 
and Cytoskeletal Dynamics,” and “FMRP and FMRP Tar-

gets in Psychiatric Disorders”) [31, 74]. Furthermore, the 
expression of CYFIP1 and components of the WAVE 
complex is disrupted in patients carrying 15q11.2 dele-
tions [196]; iPSCs derived from these patients exhibit cel-
lular phenotypes mediated by the CYFIP1-WAVE com-
plex [197]; and the knockdown of CYFIP1, specifically, in 
human progenitor cells alters cytoskeletal remodelling 
[198]. However, the biological roles of the three remain-
ing genes within the 15q11.2 interval requires further de-
lineation, as, like CYFIP1, they are all expressed in the 
central nervous system and their expression is altered in 
patients with 15q11.2 CNVs [199].

Great strides have been made in understanding the 
consequences of altered Cyfip1 dosage through a variety 
of in vitro and in vivo rodent preclinical models. For in-
stance, the heterozygous deletion of Cyfip1 in mice results 
in changes in dendritic and spine morphology [74, 82], 
which are similarly observed in a forebrain-specific con-
ditional homozygous KO model [83], whilst the overex-
pression of Cyfip1 also impinges on dendrite and spine 
morphology [82, 200]. Meanwhile, Cyfip1 appears to af-
fect protein synthesis under basal and activity-dependent 
conditions. The knockdown of Cyfip1 in cortical neurons 
in vitro increases the translation of FMRP target, activity-
regulated cytoskeleton associated (ARC), under basal 
conditions and also ablates the activity-dependent trans-
lation of ARC, using brain-derived neurotrophic factor 
treatment to mimic synaptic activation [74]. Similar find-
ings were reported in vivo using Cyfip1 heterozygous KO 
mice, whereby brain-derived neurotrophic factor treat-
ment was insufficient to release the Cyfip1-FMRP com-
plex from eIF4E, preventing the formation of the eIF4F 
complex, which subsequently prevented activity-depen-
dent translation of ARC protein [68].

Measures of synaptic plasticity in preclinical models of 
altered Cyfip1 dosage have revealed elevated levels of 
mGluR-mediated long-term depression, which become 
disassociated from mRNA translation pathways [84] – 
findings that are reminiscent of Fmr1 KO rodent models 
[127, 144]. Overexpressing Cyfip1 in CA1 hippocampal 
neurons can lead to increased excitatory neurotransmis-
sion, and a concomitant decrease in gamma aminobu-
tyric acid (GABA)ergic neurotransmission at inhibitory 
synapses, shifting the overall excitation/inhibition bal-
ance towards excessive excitation [83]. The same study 
also showed that the conditional, homozygous KO of Cy-
fip1 in CA1 hippocampal neurons increased inhibitory 
GABAergic neurotransmission, along with increased ex-
pression of GABA receptors, suggesting a shift of excita-
tion/inhibition balance towards greater inhibition [83]. 
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However, in the haploinsufficient Cyfip1 mouse model, 
which better models the reduced dosage of CYFIP1 in 
15q11.2 deletion patients, GABAergic signalling remains 
unaltered in the hippocampal dentate gyrus [201].

Brain connectivity and white matter architecture ap-
pear to be especially sensitive to reduced Cyfip1 dosage. 
In Cyfip1 heterozygous KO mice, bilateral connectivity 
was shown to be reduced across multiple brain regions 
using resting-state functional magnetic resonance imag-
ing [81]. These alterations were likely due to changes in 
corpus callosal white matter architecture, measured by (i) 
a decrease in fractional anisotropy using diffusion tensor 
imaging and (ii) altered levels of myelination and presyn-
aptic function. Furthermore, many of the white matter 
phenotypes, including decreased fractional anisotropy, 
were mirrored in a comparable rat model of Cyfip1 hap-
loinsufficiency [202]. However, it is currently unclear 
why fractional anisotropy might be decreased in rodent 
models of reduced Cyfip1 dosage but increased in 15q11.2 
deletion patients. This will require further study and may 
alter our current perception of the effect of CNVs of the 
15q11.2 interval.

In vivo models of altered Cyfip1 dosage also offer the 
chance to thoroughly assess changes in behaviour and 
cognition, prominent features in 15q11.2 deletion (and 
duplication) patients. Bozdagi and colleagues [84] were 
the first to behaviourally assess Cyfip1 haploinsufficient 
mice, and found many aspects of spatial and fear learning 
and memory to be intact, with the exception of a rapid 
loss of extinction memory assessed using the inhibitory 
avoidance paradigm. Subsequent analysis of Cyfip1 het-
erozygous KO mice and rats has shown specific deficits in 
motor learning [81, 203], sensorimotor gating measured 
by prepulse inhibition [81], and behavioural flexibility 
[202]. Meanwhile, the overexpression of Cyfip1 results in 
cellular phenotypes, particularly at the dendritic level 
[200], but appears to have little effect on behaviour and 
cognition, with the exception of exaggerated fear re-
sponses [204]. Overall, there is accumulating evidence 
that altering the dosage of Cyfip1 in preclinical models 
leads to profound alterations in cellular and plasticity 
phenotypes, alongside mild behavioural phenotypes, 
many of which not only overlap with FXS and the Fmr1 
KO model (Fig. 2), but also closely match the key clinical 
phenotypes of patients with chromosomal deletions (and 
duplications) of the CYFIP1-containing 15q11.2 interval.

CYFIP1 Variants in Psychiatric Genomic Studies
Genomics studies in psychiatric populations have im-

plicated the 15q11.2 BP1–BP2 deletion with a wide range 

of psychiatric, neurodevelopmental disorders, including a 
2- to 4-fold increased risk for schizophrenia [205, 206], a 
finding that has been replicated in many subsequent stud-
ies [92, 179, 207–210]. Additionally, 15q11.2 deletions, 
and duplications, predispose individuals to a 5-fold risk of 
epilepsy [211], developmental and ID [212–214], atten-
tion deficit hyperactivity disorder [215], major depression 
[216], and autism [187, 217] [for further review, see 182, 
186]. Meanwhile, common variants in CYFIP1 have been 
reported to increase the risk for ASD [218, 219]. Consis-
tent with the genetic findings, proteomic analysis of pre-
frontal cortex post-mortem tissue from schizophrenia pa-
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Fig. 2. Core set of overlapping phenotypes from preclinical Fmr1 
and Cyfip1 deletion models. Rodent models of Fmr1 deletion 
(Fmr1−/y, whereby the single X-linked copy of Fmr1 is deleted in 
males) or heterozygous Cyfip1 deletion (Cyfip1+/−) mirror clinical 
populations with FXS and 15q11.2 CNV deletions, respectively. 
Moreover, these 2 rodent models share a core set of functionally 
related neurobiological phenotypes, including (i) altered spine and 
dendritic morphology, (ii) dysregulated protein translation and 
(iii) elevated long-term depression. Further work is required to 
fully delineate the consequences of Fmr1 and Cyfip1 deletion, and 
characterize the similarities. FXS, fragile X syndrome; CNV, copy 
number variant.
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tients revealed altered levels of CYFIP1 and other proteins 
belonging to protein synthesis pathways [220].

The relevance of CYFIP1 to schizophrenia becomes 
especially apparent when considered in the wider context 
of its biological actions within protein complexes. CY-
FIP1 is involved in the regulation of ARC protein and 
ARC-related genes, sometimes referred to as the “ARC 
complex” (a gene ontology-based complex). CYFIP1 was 
first associated with schizophrenia in studies that showed 
an enrichment of the ARC complex (containing 25 genes, 
of which CYFIP1 is one) in de novo CNV deletions from 
patients with schizophrenia [92]. The genetic association 
of this ARC complex with schizophrenia has subsequent-
ly been confirmed by exome sequencing studies that as-
sessed single nucleotide variants (SNVs) and indels [168, 
174] and larger studies of CNV deletions [178, 179]. Fur-
thermore, the genetic association with schizophrenia of 
FMRP targets (section “FMRP and FMRP Targets in Psy-
chiatric Genomic Studies”), which are regulated by the 
CYFIP1-FMRP complex, lends additional evidence to the 
relevance of CYFIP1 to schizophrenia.

Summary of Findings and Future Directions

FMRP and CYFIP1 are hubs for several biological 
pathways critical to synaptic plasticity. From preclinical 
models, we know that reduced expression of either CY-
FIP1 or FMRP results in a set of core phenotypes: altered 
spine and dendritic morphology, dysregulated protein 
synthesis, and elevated long-term depression. A further 
layer of complexity is added when it is considered that the 
concerted action of FMRP and CYFIP1, as part of the CY-
FIP-FMRP complex, represses the translation of hundreds 
of FMRP targets, likely influencing multiple downstream 
pathways. The importance of this system to synaptic func-
tion is recurrently highlighted by genetic studies demon-
strating the risk conferred to psychiatric disorders by vari-
ants affecting genes encoding CYFIP1, FMRP, and their 
targets.

Nevertheless, there are many questions that still sur-
round the biology of FMRP, CYFIP1, and FMRP targets 
in health and disease. For example, whilst FMRP synaptic 
biology is well-characterized and preclinical techniques 
can reverse disorder-relevant phenotypes [132, 151], at-
tempts to move these therapies into the clinic have been 
largely ineffective [152]. This suggests that further mech-
anistic insights into the actions of FMRP are needed, 
alongside further refinement of therapeutic targets and/
or strategies. Similarly, whilst FMRP targets are a disease-

relevant group of mRNAs, their precise identity and bio-
logical function remain underexplored. Meanwhile, the 
study of CYFIP1 has seen unprecedented advances in re-
cent years, revealing an extensive array of synaptic roles, 
far beyond its initial characterization as a binding partner 
to FMRP. Despite the rapid expansion of CYFIP1 studies, 
many fundamental questions remain and can be ad-
dressed in future studies, aided by advances in RNA se-
quencing, genetic-editing, and proteomic technologies. 
Whilst extensively characterized, it is also worth noting 
that the behavioural phenotypes in models of Fmr1 and 
Cyfip1 deletion are only broadly similar, and in some cas-
es diametrically opposed [221]. These behavioural dis-
crepancies could reflect the diversity of biological func-
tion, but might also derive from highly transient and lo-
calized interactions between these two proteins.

Penetrant risk variants affecting this biological path-
way increase psychiatric vulnerability to a range of psy-
chiatric disorders. For example, CNVs affecting CYFIP1 
predispose carriers to increased risk for schizophrenia 
(mainly 15q11.2 deletions), autism, and ID (mainly 
15q11.2 duplications), and likewise FMR1 deletions pre-
dispose carriers to autism and ID. These apparently pleio-
tropic effects might suggest that the categorical nature of 
diagnoses for psychiatric disorders needs to be funda-
mentally re-evaluated. Indeed, at the clinic, there are 
many common patient symptoms that span across diag-
nostic categories, and patients often present with comor-
bidities. The genomic findings point towards a continu-
um of causality, whereby common biological mecha-
nisms, influenced by a range of convergent genetic factors, 
span across the traditional diagnostic boundaries of psy-
chiatric disorders. The highly tractable mechanism of 
CYFIP1-FMRP and the regulation of ARC are one such 
biological pathway, offering a unique entry point for con-
tinued study and phenotypic rescue. Future development 
of novel mechanism-based therapeutic approaches will 
be vital to meet the ever-growing need to treat these com-
mon, yet debilitating, psychiatric disorders.
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