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ABSTRACT

Regulatory networks involving different cell types
control inflammation, morphogenesis and tissue
homeostasis. Cell-type-specific transcriptional pro-
filing offers a powerful tool for analyzing such
cross-talk but is often hampered by mingling of
cells within a tissue. Here, we present a novel method
that performs cell-type-specific expression measure-
ments without prior cell separation. This involves
inter-species transplantation or chimeric co-culture
models among which the human mouse system is
frequently used. Here, we exploit the sufficiently
divergent transcriptomes of human and mouse
in conjunction with high-density oligonucleotide
arrays. This required a masking procedure based
on transcriptome databases and exhaustive fuzzy
mapping of oligonucleotide probes onto these
data. The approach was tested in a human–mouse
experiment, demonstrating that we can efficiently
measure species-specific transcriptional profiles
in chimeric RNA samples without physically sep-
arating cells. Our results stress the importance
of transcriptome databases with accurate 30 mRNA
termination for computational prediction of accurate
probe masks. We find that most human and mouse
30-untranslated region contain unique stretches to
allow for an effective control of cross-hybridization
between the two species. This approach can be
applied to xenograft models studying tumor–
host interactions, morphogenesis or immune
responses.

INTRODUCTION

Chimeric models have been applied extensively to study
tumor–host interactions or embryonic morphogenesis, both

of which are controlled by a precisely tuned interplay of
different, specialized cell types. For instance, epithelial/
mesenchymal interactions have been identified to be essential
for formation and patterning of limb buds and epidermal
appendages and often involve a complex hierarchy of cross-
talk between the two tissues (1–5). Similarly, interactions
between carcinoma cells and tumor stroma have been recog-
nized which are causally involved in cancer progression and
metastasis (6–9). Attempts to address the complexity of this
cross-talk led to the development of cell-type-specific tran-
scriptomics based principally on fluorescent activated cell
sorting (FACS) or laser captured micro-dissections (LCM).
Known limitations in the FACS approach follow from lengthy
dissociation protocols, which can affect the transcriptional
program, and from the requirement of appropriate surface
markers, which might not be available for all cell types.
LCM has been successfully adapted to a variety of experi-
mental settings. However, the isolation of individual cell
types based only on morphologic criteria or the isolation of
single cells from samples with significant intermingling is
limited. In particular, LCM is prone to destroy the immediate
interface of adjacent cells that are most important in the
analysis of cell–cell communication.

Our approach for cell-type-specific profiling is based on the
possibility of studying cell–cell interactions using chimeric
models (10,11) and the divergence of genes in their untrans-
lated regions (UTRs). The availability of complete trans-
criptomes constituted a key resource in the development
of our method. In particular, accurate information about
30-untranslated regions (30-UTR) of mRNAs is crucial to pre-
cisely measure expression of genes in highly similar gene
families. This is reflected in the design of GeneChip arrays
where probes from UTRs are over-represented. This permitted
us to perform species-restricted expression measurements of
even highly conserved ortho- and paralogues as sufficient
divergence exists in the 30-UTRs of such genes between dif-
ferent species. We computationally derived masks based on
transcriptome databases that allowed us to extend expression
profiling to chimeric RNA samples, without loosing the
species specificity of the measurements.
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Probe masks have been recently used to increase sensitivity/
specificity of expression measurements in mammalian species
that lack available arrays, but are sufficiently close to humans
to permit use of human arrays (11,12). Here, we proceed
further in measuring species-specific expression in yet more
complex samples, namely mixtures of human and mouse
RNAs. Key factors in this method include the generation
of probe masks from accurate transcriptomes, together with
exhaustive and fuzzy mapping of all oligonucleotide probes
onto these transcriptomes. These developments allow us to
measure species-specific and hence cell-type-specific expres-
sion levels in chimeric RNA samples.

MATERIAL AND METHODS

Expression data

Labeled cRNA was generated from the human colon carcin-
oma cell line LS174T (HC), human heart (HH; Clontech,
Palo Alto, CA) and mouse liver (ML) according to Affymetrix
protocols. These cRNAs were mixed in different combinations
and hybridized to Human Genome U133 Plus 2.0 GeneChips
and Mouse Genome 430 2.0 arrays (details in Table 1). Raw
data is available at http://sib-pc27.unil.ch/felix/Chimeric.

Masks and normalization

To filter cross-species signals, we identified all individual
oligonucleotide probes (25mer) on the Human Genome
U133 Plus 2.0 array susceptible to detect spurious signal from
mouse mRNA. We used a mouse transcriptome as defined by
the union of two databases, RefSeq6 (http://www.ncbi.nlm.
nih.gov/RefSeq) and tromer (13) (ftp://ftp.licr.org/pub/
databases/trome). To exhaustively find all sequence similarit-
ies with a given number of mismatches (MMs), gapless global
Smith–Waterman alignments were performed using Gene-
Matcher hardware (Paracel, Pasadena, CA). The whole pro-
cedure was repeated by mapping the probes of the Mouse
Genome 430 2.0 array onto the human transcriptome in
order to allow measurements of mouse transcripts from chi-
meric RNA samples (mask files can be accessed at http://
sib-pc27.unil.ch/felix/Chimeric). Statistics about the number
of probes masked for various stringencies can be found in
Table 2. Probes were classified as coding or non-coding
if unambiguously mapped onto the coding sequence (CDS)
or 30-UTR part of RefSeq sequences. Probes that mapped to
several RefSeq sequences were considered only if they
mapped to the 30-UTR in all cases, or vice versa for the
CDS. Probe masking is implemented by modifying the cdf
environment in BioConductor (14) and standard RMA signal
estimation (15) was subsequently applied to the truncated
probe sets (PSs). CEL files were quantile normalized as
part of the standard RMA signal estimation procedure.

SAGE data

A test set of genes differentially expressed in heart or colon
was identified using SAGE (cf. Figure 2). For this, we used
SAGE Genie (http://cgap.nci.nih.gov/SAGE) and compared
libraries from colon cancer cell lines with heart tissue (para-
meters used: F = 2, P = 0.05).

Raw data, masks, scripts for signal estimation are imple-
mented as an R package available at http://sib-pc27.unil.ch/
felix/Chimeric.

RESULTS

To establish and verify our approach, RNA was isolated from
the human colon carcinoma cell line LS174T (HC), human
heart (HH) and mouse liver (ML). These RNAs were labeled,
mixed in different combinations and hybridized to Affymetrix
GeneChips (Table 1). The transcriptional profile of the HC
sample was determined and compared to the profiles of HC
diluted 1:1 by ML prior to hybridization. This design enabled
us to analyze both the effects of cross-species hybridization
and the decrease in signal strength induced by diluting the
human sample with mouse (Figure 1a and b). Cross-species
hybridization was evident as outliers above the diagonal in
Figure 1a. The profile of the mouse liver sample was measured
separately on a mouse array and confirms that the outliers
can be explained by highly expressed mouse transcripts hybri-
dizing to human probes. As expected, most of these genes
increase the expression measurements of the corresponding
human orthologue, however cross-hybridization between non-
orthologous genes also occur (data not shown).

Masking cross-species hybridization

To control cross-species hybridization, we defined masks with
increasing stringency by discarding probes with zero up to four
mismatches (MMs) to any documented transcript in the

Table 1. Proportions of human colon (HC), human heart (HH) and mouse liver

(ML) cRNA in the samples

Mixtures Human
colon
(HC)

Human
heart
(HH)

Mouse
liver
(ML)

PolyA
spikes

Hybrid.
spikes

100% HC 100 0 0 100 100
20% HC + 80% HH 20 80 0 20 100
50% HC + 50% ML 50 0 50 100 100
10% HC + 40% HH + 50% ML 10 40 50 10 100
25% HC + 75% ML 25 0 75 100 100
100% ML 0 0 100 100 100

The first five samples were hybridized onto Human Genome U133 Plus 2.0
arrays and the last sample onto the Mouse Genome 430 2.0 array. The polyA
spikes are added prior to cRNA synthesis and are used as controls (cf. Figure 3a,
cyan dots). Hybridization spikes are added to the final cRNA samples at equal
amounts in each sample.

Table 2. Masked probes and discarded probe sets (PS) of the Human Genome

U133 Plus 2.0 and Mouse Genome 430 2.0 arrays after masking all probes with

a fixed maximal number of MMs onto the transcriptome of mouse or human,

respectively

Maximal Human array Mouse array
number of
mismatches

Discarded PSs
(total 54 675)

Probes masked
(total 604 258)

Discarded PSs
(total 45 101)

Probes masked
(total 501 592)

0 81 (0.14%) 11 159 94 (0.17%) 9718
1 410 (0.75%) 31 611 355 (0.64%) 27 925
2 1432 (2.6%) 61 028 1301 (2.3%) 55 048
3 3448 (6.3%) 102 306 3230 (5.9%) 92 308
4 7568 (13.8%) 231 692 6933 (12.7%) 200 856

PSs were discarded when the number of probes per PS was <4.
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competing species (Table 2). A consequence of increased
stringency was the rapid decrease in the number of probes
left in each probe set (PS) (Figure 2a) when MMs beyond
three were considered. For example, the number of PSs
with the original number of eleven probes drops from 49 to
4% when four instead of three MMs were considered. Thus,
discarding up to three MMs provided the maximal masking
stringency compatible with sufficient number of probes per
PS. Signals for each transcript were re-calculated using the
reduced PSs and the remaining number of outliers was determ-
ined in function of the maximal number of MMs (Figure 2b).
These statistics confirm that three MMs provide an optimal
masking stringency, as the 3 MM line lies systematically
below the 2 MM line. As expected, probes which had to be
masked are strongly enriched in the coding part of mRNAs
(Figure 2c) thus reflecting evolutionary constraints. Sequence
divergence and hence species specificity is larger in the 30-
UTR, as was found from all probes with unambiguous matches
in RefSeq (cf. Methods). Association between masked oligos
and their location in 30-UTRs was highly significant for any
masking stringency (c2 statistics, P � 0, 2 · 2 contingency
table for 3 MMs is shown in Figure 2c).

We further tested whether we could restrict masking only
to those probe–target pairs with long, perfectly aligned
stretches. However, we found no straightforward and gener-
ally applicable criteria. In Figure 2e, all individual probes
belonging to the 100 most outlying PSs in Figure 1a were
stratified according to two criteria: the number of MMs to
their predicted target and the longest, perfectly matching
stretch. It is seen that relatively short stretches in the range
of 12–16 often sense mouse signals. Such lengths correspond
to stretches found in single mismatch probes (MM), known
to measure a fair amount of specific signal (11). Therefore,
the length criteria cannot be used alone. On the other
hand, existing free energy models of DNA/RNA hybrids have
not been developed to precisely predict annealing of short
oligonucleotide sequences with several MMs and cannot be
used reliably either (16). Since the masking performance was
satisfactory and the fraction of lost PSs was small, we opted for
a stringent masking based only on the number of MMs.

Next, we established the minimum number of probes per PS
that still provide sufficient precision for differential expression

measurements. For this, we calculated the variability in expres-
sion ratios between the 100% HC and 50% HC + 50%
ML profiles as a function of the minimal number of used probes
(Figure 2d). This showed that the inter-quartile range was
not very sensitive to the number of probes used, and indicated
that using four probes per PS provided a precision comparable
to the full set. Consequently, only 6.3% of all human PSs with
fewer than four remaining probes were discarded from our
analyses (counts for other stringencies in Table 2).

Signals for each transcript were re-calculated from the
reduced PSs using the standard RMA algorithm (15). This
enabled us to eliminate virtually all cross-species hybridiza-
tion (Figure 1b). This is reflected in the lack of outliers in
Figure 1b; the one clear outlier remaining represents a PS
consisting of repetitive sequences with no sequence match
on either the human or mouse genome. Such PSs can easily
be identified and filtered out a posteriori.

Sensitivity/specificity assessment of chimeric samples

A mixture of human colon and heart RNA was used to evaluate
the sensitivity of our approach in detecting gene expression
changes after dilution with mouse RNA (Figure 3). When
comparing the human colon/heart mixture to the pure human
colon sample, we expect to see an entire range of induced
genes (theoretical ratio is unbound for heart-restricted genes)
while the most repressed, colon-restricted genes are reduced
by 5-fold (or log2 (1/5) = �2.32). This asymmetry is visible in
Figure 3a, with genes above the diagonal showing stronger
induction than the ones below. Notice that this comparison
uses different dilutions with mouse RNA on the two axes
(x-axis 1:3 and y-axis 1:1) indicating the robustness of our
method. To assess our method, a test set of differentially
expressed genes was identified independently by comparing
published SAGE libraries from colon cancer cell lines
and heart tissue (http://cgap.nci.nih.gov/SAGE). Notice that
about half of the genes predicted by SAGE do not show clear
differential expression in our samples even in the undiluted
comparison, indicating partial overlap between the two tech-
nologies. Nevertheless, in transcripts that are heart-restricted
in both our measurements and the SAGE analysis, the meas-
ured inductions after dilution with mouse RNA correlate very

Figure 1. Raw and masked expression signals. (a) and (b) compare expression signals of a 1:1 human colon (HC) and mouse liver (ML) mixture versus pure HC RNA.
+/� 2-fold lines are indicated in green. (a) Standard RMA algorithm16 without masking or normalization. (b) Masked and normalized data. Oligonucleotide probes
with three or fewer MMs to a mouse transcript in RefSeq or tromer were masked, and PSs with <4 probes left were discarded.
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Figure 2. Oligonucleotide probe masks. (a) Distribution of probes per probe set (PS) of the Human Genome U133 Plus 2.0 array after masking all probes onto the
mouse transcriptome with a fixed maximal number of MMs. (b) Masking efficiency. Outlier counts according to Figure 1b as a function of log-ratio thresholds. ‘U’ is
the unmasked results, ‘0’ masks only probes with perfect matches, ‘1’ with up to one mismatch, etc. (c) Number of probes in the coding (C) or non-coding (N) part of
mRNAs after masking up to a given number of MMs (x-axis). The number of used or masked probes with 3 MMs in relation to its localization in the coding or UTR
part of mRNAs is shown in the insert. Only probes with matches on RefSeq are considered. (d) Accuracy of expression signals for truncated PSs in the 50% HC + 50%
ML versus 100% HC comparison. Analysis is stratified according to the number of probes (NP) left after masking. Only pairs with mean intensity >7 (unit and scale
according to RMA output) are used. Boxplots show uniform behavior in function of NP, and tight correlation between diluted and undiluted signal estimates: 50% of
the data are reproducible within a factor of 20.15�1.1. (e) All individual probes belonging to the 100 most outlying PSs in Figure 1a are stratified according to the
number of MMs to their predicted target and the longest perfectly matching stretch (s).
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well with the measurements in pure human samples (Figure 3c
and d). This demonstrated that neither the dilution with
mouse RNA nor the masking hinders measuring differential
expression. Expectedly, higher dilutions induced progressive
compression in the dynamic range, as seen in the nested
distributions of log2 ratios (Figure 3b). To refine our evalu-
ation, we defined a larger set of differentially expressed genes
as positives, which consisted of 2% of the most up- and down-
regulated genes in the undiluted comparison. These genes
were then monitored in the presence of 1:1 and 1:3 human/
mouse dilutions, and the fraction of recovered positives was
calculated as the function of the false discovery rate (FDR)
(Figure 3e and f ). Although dilution of samples pose an
intrinsic signal to noise problem, the obtained results indicate
that our procedure can recover high percentages of positives
with acceptable FDRs, e.g. >80% of the upregulated positives
can be recovered after 1:1 dilution with a FDR rate of 20%
(Figure 3e). The higher FDR observed for repressed genes
(Figure 3f) follows from the asymmetric distribution of dif-
ferentially expressed genes in our experimental design.

DISCUSSION

Our study has shown that species-specific, and hence cell-
type-specific transcriptional profiles of chimeric tissues can
be obtained. We have developed a robust approach, which
allows accurate measurements of differential expression even
in experimental settings with changing species proportions.
More precisely, our data showed that dilutions, with RNA
from different species in the range of 1:3–3:1 and possibly
larger, did not significantly affect the sensitivity and specificit-
ies of the profiling method. Such ranges will be sufficient for
most applications.

It is interesting that the number of probes homologous to
transcripts in the other species increases rapidly when matches
with >3 MMs out of 25 nt are considered (cf. Table 2).
More precisely, the number of masked probes increases by
a factor more than two between 3 and 4 MMs, at which
level more than a third of all oligonucleotides potentially
cross-hybridize. At 5 MMs, we found that the entire array
would be masked, presumably reflecting the overall level of

Figure 3. Assessment of human-specific differential expression after dilution with mouse RNA. All samples were masked and normalized as in Figure 1b. (a) (10%
HC + 40% HH + 50% ML) versus (25% HC + 75% ML). Genes differentially expressed in heart (magenta) or colon (green) according to SAGE (P < 0.05). The
cyan polyA spikes should fall onto the indicated 10-fold line (Table 1). (b) Compression induced by dilution. The density of log2 ratios is narrowest for 1:3
human:mouse mixture (green) and widens for smaller dilutions (red is 50%, and black 0% mouse). (c and d) Comparison of the expression changes for genes in the
test set (green and magenta in panel a) in the pure human mixture (80% HH + 20% HX) versus the human mixture diluted 1:1 with mouse. (e and f ) Fraction of
positives recovered after addition of mouse RNA plotted against the FDR for the 1:1 (black) and 1:3 (red) human:mouse mixtures. Here, ‘positives’ were defined as
the 2% most induced or repressed genes in the undiluted 20% HC 80% HH versus 100% HC comparison.
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conservation between mouse and human transcripts. This
indicates that the degree of divergence between human and
mouse 30-UTRs, together with the stringency of short
oligonucleotide hybridization allows for an effective control
of cross-hybridization between human and mouse. Since we
found that oligonucleotides with 3 MMs to an RNA molecule
in the target can easily pick up signals under the current
hybridization conditions (cf. Figure 2b), this approach
would be difficult for more closely related species.

Additionally, our results stress the importance of trans-
criptome databases with accurate 30 mRNA termination for
computational prediction of accurate probe masks. Indeed,
use of RefSeq alone was unable to provide optimal masking.
Several reasons contribute to this: first, RefSeq sequences
often do not contain complete 30-UTRs (17), which is crucial
since oligonucleotide probes are located primarily in these
regions. Second, the tromer database used in this study com-
piles available expressed sequence tags and mRNA, and there-
fore presents a broader coverage of human or mouse
transcriptomes than RefSeq. It would be interesting to explore
whether similar masking can be exploited for better control of
cross-hybridization in standard single-species experiments.
Since hybridization is essentially governed by mass-action
kinetics (18), it is almost unavoidable that highly expressed
genes lead to spurious signals onto probes corresponding to
lowly expressed transcripts. Therefore, one might consider
identifying highly expressed genes with unmasked signal
estimation, then predict the probes susceptible to contamina-
tion and mask these before re-computing the expression sig-
nals. Our masking strategy considered every possible
transcript and did not incorporate expression data for the ana-
lyzed tissues. This is essential to correctly identify upregulated
genes which are normally not expressed in the analyzed cell
types but might be induced in the course of the experiment,
e.g. during metastatic colonization of liver tissue. Neverthe-
less, this very generalized masking strategy allowed precise
measurement of 94% of PSs, and we consider that the cover-
age under the proposed stringency is sufficient for most
screening applications.

We have demonstrated that cell-type-specific, transcrip-
tional profiles of chimeric tissues can be obtained by combin-
ing GeneChip arrays with probe masks. This new approach
will facilitate the study of reciprocal interactions in a variety of
chimeric systems either by co-cultures in vitro or after trans-
plantation in vivo. Future applications of our profiling method
can be envisaged in the field of tumor/stroma interactions
in cancer progression and metastasis (19,20), studies of the
hematopoietic system (21) or of tissue interactions during
organogenesis (22) and homeostasis.
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