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Abstract: Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder frequently accompanied by
cognitive impairment. Contributing factors such as modern lifestyle, genetic predisposition, and gene
environmental interactions have been postulated, but the pathogenesis remains unclear. In this study,
we attempt to investigate the potential mechanisms and interventions underlying T2DM-induced
cognitive deficits from the brain–gut axis perspective. A combined analysis of the brain transcriptome,
plasma metabolome, and gut microbiota in db/db mice with cognitive decline was conducted.
Transcriptome analysis identified 222 upregulated gene sets and 85 downregulated gene sets, mainly
related to mitochondrial respiratory, glycolytic, and inflammation. In metabolomic analysis, a total of
75 significantly altered metabolites were identified, correlated with disturbances of glucose, lipid,
bile acid, and steroid metabolism under disease state. Gut microbiota analysis suggested that the
species abundance and diversity of db/db mice were significantly increased, with 23 significantly
altered genus detected. Using the multi-omics integration, significant correlations among key genes
(n = 33), metabolites (n = 41), and bacterial genera (n = 21) were identified. Our findings suggest that
disturbed circulation and brain energy metabolism, especially mitochondrial-related disturbances,
may contribute to cognitive impairment in db/db mice. This study provides novel insights into the
functional interactions among the brain, circulating metabolites, and gut microbiota.

Keywords: type 2 diabetes mellitus; cognitive impairment; transcriptome; metabolome; gut microbiota

1. Introduction

Type 2 diabetes (T2DM) is a group of metabolic syndromes strongly influenced by
a complex combination of metabolic, genetic, and environmental factors [1]. Although
the pathogenesis of T2DM is inconclusive, it is highly associated with insufficient insulin
secretion or insulin resistance (IR) of target organs [2]. Recently, increasing evidence has in-
dicated that cognitive impairment is a severe complication and comorbidity of T2DM [3–5].
Pre-diabetes and T2DM could accelerate the progression from cognitive impairment to
dementia [6,7]. Alzheimer’s disease (AD) is the major cause of dementia, accounting for
60 to 80% of all cases [8]. The risk of AD and other dementia in individuals with T2DM is
1.5 times that of individuals without T2DM [9]. Interestingly, AD has been considered by
some as type 3 diabetes mellitus, a neurometabolic disorder [10–12]. Abnormal insulin sig-
nals, dysregulated glucose metabolism, and the formation of advanced glycation products
are common etiologies of cognitive impairment due to T2DM, and these are also indicated
as potential associations between T2DM and AD [13]. Despite shared pathological features,
including insulin resistance and β-Amyloid (Aβ) deposition, it is still unclear what specific
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alterations in T2DM could be responsible for the increased susceptibility to AD [10]. With
the advent of population aging, more than 50 million people suffer from dementia globally,
which will increase to 152 million by 2050 [14]. It is conceivable that the increasing incidence
of cognitive impairment and dementia are possibly on account of not only population aging
but also the T2DM epidemic [15]. Therefore, exploring the risk factors and prevention
mechanisms of cognitive dysfunction associated with T2DM will make a great difference.

Owing to the rapid development of high-throughput technologies and bioinformat-
ics technologies, omics-based approaches (genomics, transcriptomics, metabolomics, etc.)
have gained interest and brought great convenience to system biological research [16].
System biology as an interdisciplinary field of study focuses on complex interactions within
biological systems, enabling researchers to better understand how molecules change in
normal processes and disease status [17]. Based on metabolomics analysis, Kavanagh
et al. discovered that peripheral glucose dysregulations in T2DM monkeys are coincident
with alterations in cerebral metabolism and correlate with early amyloid deposition within
the brain [18]. In recent years, studies have shown that gut microbiota is a key factor of
most chronic diseases, including diabetes, Alzheimer’s disease, and Parkinson’s disease,
etc. [19–21]. Microbiome analysis shows that altered composition of the gut microbiota is
commonly observed in both AD and T2DM animal models, such as Bacteroidetes, Actinobac-
teria, or Firmicutes phyla, etc. [22]. In addition, human studies have also confirmed these
observations, reporting a changed microbial characterization in the two diseases [20,23].
Growing evidence has indicated that gut microbiota not only could participate in the
metabolism of the body [24] but could also regulate brain function through the brain–gut–
microbiota axis [25], which provides a potential relevant link between cognitive impairment
and metabolic dysregulations.

Although the single omics-based approach is able to investigate a specific type
of molecules (genes, metabolites, and proteins, etc.) comprehensively, it cannot cap-
ture the synergistic interactions and complementary effects between multiple types of
molecules [26]. In order to do so, the multi-omics approaches should be given priority,
which helps to reveal the molecular interrelations and molecular dynamics at a disease
state [26,27]. Therefore, to explore the potential mechanisms and interventions underlying
T2DM-induced cognitive impairment, we conducted a combined analysis of the brain tran-
scriptome, plasma metabolome, and gut microbiota in T2DM mice with cognitive decline.

2. Results
2.1. Cognitive Impairment in db/db Mice

Compared with wild-type (wt) mice, db/db mice showed significantly higher body
weight and fasting blood glucose levels (Figure 1A). The Morris water maze (MWM) test
illustrated a notable difference in cognitive performance between the db/db group and the
wt group. During the training trials, escape latencies were significantly higher in the db/db
group than in the wt group, especially on day 5 (Figure 1B). In the probe test, db/db mice
spent significantly more time to reach the escape platform than in the wt group (Figure 1C).
Moreover, the number of platform crossings was significantly reduced in the db/db group
compared to the wt group (Figure 1D). Taken together, the tests demonstrated deficient
spatial learning and memory in the db/db group relative to the wt group.
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Figure 1. Body weight and blood glucose measurement and cognitive function assessment. (A) The
body weight and blood glucose of 4-month-old db/db mice were significantly higher than those of
wild-type (wt) mice (t-test; ** 0.001 < p < 0.01, **** p < 0.0001). (B) Line chart of average escape latency
(Two-way ANOVA; * 0.01 < p < 0.05). (C,D) On day six, the average escape latency of db/db mice
was significantly prolonged, while the number of platform crossing was significantly reduced (t-test;
* 0.01 < p < 0.05).

2.2. Transcriptomic Analysis

The gene count data of db/db mice and wt mice are presented in Table S1. Based
on the aforementioned threshold (|logFC| ≥ 1, p < 0.05), 80 genes (48 upregulated and
32 downregulated) were filtered as differentially expressed genes (DEGs) (Figure 2A). Gene
set enrichment analysis (GSEA) was performed to detect which biological pathways were
enriched in db/db mice, based on the Reactome database. Two hundred and twenty-two
gene sets were identified as upregulated and 85 gene sets were downregulated (Figure 2B,
Table 1). Among them, the top five gene sets were selected respectively based on the P-value
ranking, to generate GSEA enrichment plots. As shown in Figure 2C, “Gene expression
(transcription)”, “Metabolism of RNA”, “RNA polymerase II transcription”, “Process-
ing of capped intron-containing pre-mRNA”, and “Cell cycle” had higher expression in
db/db mice. “The citric acid (TCA) cycle and respiratory electron transport”, “Complex
I biogenesis”, “Metabolism”, “Respiratory electron transport”, and “Extracellular matrix
organization” were downregulated in db/db mice (Figure 2C), indicating dysregulated
mitochondrial metabolism in the brain of db/db mice.
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Figure 2. Differential gene expression analysis and GSEA. (A) Volcano plot of differentially expressed
genes (DEGs). Red represents upregulated genes, blue represents downregulated genes, and black
represents genes with no significant change in expression. (B) Volcano plot of gene set enrichment
analysis (GSEA) based on the Reactome database. Red represents pathways mainly composed of
upregulated genes, blue represents pathways mainly composed of downregulated genes, and black
represents pathways with no significant change in gene expression. The size of dots represents the
count of genes in each pathway. For visualization purposes, −log10 (p-value) greater than 6 was
defined as equal to 6. (C) Enrichment plots for top five upregulated and downregulated pathways
based on the p-value.
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Table 1. Gene set enrichment analysis based on the Reactome database (top 50 based on p-value).

Pathway Name p-Value NES Size

Gene expression (Transcription) 3.42 × 10−19 1.909039 916
Metabolism of RNA 3.14 × 10−18 2.090669 526

RNA Polymerase II Transcription 2.50 × 10−17 1.883699 820
Processing of Capped Intron-Containing Pre-mRNA 3.31 × 10−13 2.227814 223

Cell Cycle 4.68 × 10−12 1.87915 503
Generic Transcription Pathway 1.19 × 10−11 1.750073 705

mRNA Splicing 4.21 × 10−11 2.190093 174
pre-mRNA splicing 1.59 × 10−10 2.178913 168
Cell Cycle, Mitotic 3.26 × 10−10 1.870694 423

Cell Cycle Checkpoints 1.22 × 10−7 1.903855 230
M Phase 2.68 × 10−7 1.754935 315
S Phase 5.32 × 10−7 1.958874 131

G1/S Transition 1.52 × 10−6 2.018423 99
Extracellular matrix organization 4.83 × 10−6 −2.067058 185

Respiratory electron transport 6.76 × 10−6 −2.37502 85
Mitotic G1 phase and G1/S transition 6.94 × 10−6 1.900258 121

Metabolism 1.24 × 10−5 −1.39958 1391
Mitotic Metaphase and Anaphase 1.68 × 10−5 1.707057 199

Mitotic Anaphase 1.95 × 10−5 1.701565 198
DNA Replication 2.58 × 10−5 1.851959 114

Transport of Mature mRNA derived from an Intron-Containing Transcript 2.91 × 10−5 1.982446 67
DNA Repair 5.03 × 10−5 1.643199 240

Synthesis of DNA 6.43 × 10−5 1.816823 106
SUMOylation 6.54 × 10−5 1.731646 138

Transport of Mature Transcript to Cytoplasm 7.11 × 10−5 1.927207 75
DNA Replication Pre-Initiation 8.43 × 10−5 1.856579 77

G1/S DNA Damage Checkpoints 8.51 × 10−5 1.900279 63
G2/M Checkpoints 8.74 × 10−5 1.780989 121

Complex I biogenesis 9.29 × 10−5 −2.392202 52
RNA Polymerase II Transcription Termination 9.81 × 10−5 1.912934 60

Separation of Sister Chromatids 0.000126 1.702185 152
SUMO E3 ligases SUMOylate target proteins 0.000133 1.716686 133

Mitotic Prometaphase 0.000142 1.679872 163
Epigenetic regulation of gene expression 0.000157 1.997729 47

RNA Polymerase II Pre-transcription Events 0.00021 1.855255 75
The citric acid (TCA) cycle and respiratory electron transport 0.000253 −1.974008 156

Respiratory electron transport, ATP synthesis by chemiosmotic coupling,
and heat production by uncoupling proteins. 0.000285 −2.125326 109

p53-Dependent G1 DNA Damage Response 0.000305 1.921084 61
p53-Dependent G1/S DNA damage checkpoint 0.000305 1.921084 61

Syndecan interactions 0.000318 −2.137732 14
Chondroitin sulfate biosynthesis 0.00032 −2.018888 18

ECM proteoglycans 0.000339 −1.985636 22
mRNA 3′-end processing 0.00035 1.874325 51

Transcriptional Regulation by TP53 0.000365 1.513781 268
DNA Double-Strand Break Repair 0.000366 1.682974 114

TP53 Regulates Transcription of Cell Cycle Genes 0.00044 1.955699 29
Non-integrin membrane-ECM interactions 0.000441 −1.994996 18

Cross-presentation of soluble exogenous antigens (endosomes) 0.000448 1.858045 41
MET activates PTK2 signaling 0.000453 −2.076443 14

Cellular responses to external stimuli 0.000508 1.458568 323

NES = normalized enrichment score; SUMO = small ubiquitin-related modifier protein; ECM = extracellular
matrix; MET = mesenchymal–epithelial transition factor; PTK = protein tyrosine kinase.
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2.3. Metabolomic Analysis

To analyze the distribution of detected metabolites (Tables S2 and S3), metabolites
were classified into carbohydrates, lipids, hormones and transmitters, nucleic acids, organic
acids, peptides, steroids, vitamins, and cofactors based on the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. As shown in Figure 3A, lipids accounted for the highest
percentage, followed by peptides, with fewer hormones, transmitters, and organic acids.
Compared to wt mice, nucleic acids in db/db mice were significantly decreased (p = 0.003),
while organic acids were significantly increased (p = 0.032), suggesting metabolic disorders
of nucleic acid and organic acid in the diseased group (Figure 3B).

Figure 3. Metabolite abundance analysis. (A) Stacked bar graph of metabolite abundance. (B) Violin
plots of nucleic acids abundance and organic acids abundance in two groups of mice.

Based on the Student’s t-test and orthogonal partial least squares-discriminant anal-
ysis (OPLS-DA), a total of 75 significantly altered metabolites were identified, including
34 upregulated and 41 downregulated metabolites (Figure 4A). On the basis of the Re-
actome database, metabolite set enrichment analysis (MSEA) was further performed to
detect pathways with significant alteration between two groups. Ten upregulated and
26 downregulated pathways were identified (Figure 4B, Table 2). Enrichment plots were
generated for the top five pathways ranked based on the p-value. The results showed that
significantly upregulated pathways included “The citric acid (TCA) cycle and respiratory



Molecules 2022, 27, 1904 7 of 23

electron transport”, “Phenylalanine and tyrosine metabolism”, “Pyruvate metabolism and
Citric Acid (TCA) cycle”, “Pyruvate metabolism”, and “Glycerophospholipid biosynthesis”,
and downregulated pathways consisted of “Nucleotide salvage”, “Purine salvage”, “Trans-
port of nucleosides and free purine and pyrimidine bases across the plasma membrane”,
“Pyrimidine salvage”, and “Nucleobase catabolism” (Figure 4C).

Figure 4. Differential metabolite analysis and MSEA. (A) Volcano plot of significantly different
metabolites. Red represents a significant increase in abundance, green represents a significant decrease
in abundance, and black represents no significant change in abundance. The size of dots represents
the VIP of metabolites. (B) Volcano plot of metabolite set enrichment analysis (MSEA) on basis of
the Reactome database. Red and blue represent pathways mainly enriched by metabolites with
increased or decreased abundance, respectively. Black represents pathways enriched by metabolites
with no significant alteration. For visualization purposes,−log10 (p-value) greater than 6 was defined
as equal to 6. (C) Enrichment plots for top five pathways mainly composed of metabolites with
increased or decreased abundance based on the p-value.
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Table 2. Metabolite set enrichment analysis based on the Reactome database.

Pathway Name p-Value NES Size

Adaptive Immune System 0.039127 −1.399622 2
Aflatoxin activation and detoxification 0.046795 1.316706 1
Aspartate and asparagine metabolism 0.033776 1.490742 4

Biosynthesis of DHA-derived sulfido conjugates 0.046795 1.316706 1
Biosynthesis of maresin conjugates in tissue regeneration (MCTR) 0.046795 1.316706 1

Biosynthesis of protectin and resolvin conjugates in tissue regeneration (PCTR and RCTR) 0.046795 1.316706 1
C-type lectin receptors (CLRs) 0.039127 −1.399622 2
CLEC7A (Dectin-1) signaling 0.039127 −1.399622 2

Cytokine Signaling in Immune system 0.007981 −1.639997 4
DAG and IP3 signaling 0.039127 −1.399622 2
ERK1/ERK2 pathway 0.014242 −1.575384 3

Fc epsilon receptor (FCERI) mediated NF-κB activation 0.039127 −1.399622 2
FLT3 Signaling 0.007981 −1.639997 4

FCERI signaling 0.039127 −1.399622 2
Gamma carboxylation, hypusine formation, and arylsulfatase activation 0.034649 −1.505648 4

Glycerophospholipid biosynthesis 0.027534 1.563377 11
Histidine catabolism 0.018443 −1.610865 5

MAPK family signaling cascades 0.014242 −1.575384 3
Metabolism 0.015173 −1.465771 109

Nucleobase catabolism 0.004696 −1.825806 22
Nucleotide metabolism 0.007471 −1.804005 24

Nucleotide salvage 0.000174 −2.036357 17
Phenylalanine and tyrosine metabolism 0.009249 1.590928 4

Purine salvage 0.001607 −1.851134 8
Pyrimidine catabolism 0.014483 −1.661637 11

Pyrimidine salvage 0.004541 −1.800858 9
Pyruvate metabolism 0.019494 1.606548 5

Pyruvate metabolism and Citric Acid (TCA) cycle 0.012356 1.706404 6
RAF/MAP kinase cascade 0.014242 −1.575384 3

RAS processing 0.014242 −1.575384 3
SLC-mediated transmembrane transport 0.036751 −1.512534 40

Synthesis of diphthamide-EEF2 0.034649 −1.505648 4
The citric acid (TCA) cycle and respiratory electron transport 0.004119 1.757392 7

Transport of nucleosides and free purine and pyrimidine bases across the plasma
membrane 0.002303 −1.831755 11

Transport of small molecules 0.025099 −1.574603 45
Transport of vitamins, nucleosides, and related molecules 0.010163 −1.765573 24

NES = normalized enrichment score; DAG = diacylgycerol; IP = inositol triphosphate; ERK = extracellular signal-
regulated kinase; NF-κB = nuclear factor κB; FLT = fms-like tyrosine kinase; MAPK = mitogen-activated protein
kinase; RAF = rapidly accelerated fibrosarcoma; MAP = mitogen-activated protein; RAS = rat sarcoma virus;
SLC = solute carrier; EEF = Eukaryotic elongation factor.

2.4. Gut Microbiota Analysis

The observed operation taxonomy units (OTUs) were presented in Table S4. The
abundance-based coverage estimators (ACE) and Chao1 were used to assess the abundance
of gut microbiota, and the Shannon and Simpson index was used to assess species diversity.
As shown in Figure 5A, all the four indexes of the disease group were significantly higher
than the control, suggesting that the species abundance and diversity of db/db mice were
significantly increased. Principle coordinate analysis (PCoA) based on both weighted and
unweighted unifrac distance revealed that samples with different phenotypes could be clus-
tered obviously into two groups and separated from each other in the first axis (Figure 5B).
Non-metric multidimensional scaling (NMDS) also showed significant separation between
the two groups, suggesting a significant variation in microbial communities (Figure 5B). A
total of 23 significantly altered genus were detected based on Linear discriminant analysis
Effect Size (LEfSE) analysis with a threshold of log10 (linear discriminant analysis, LDA) > 2
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and p < 0.05, including Butyricimonas, Parabacteroides, Mucispirillum, Desulfovibrio, etc.
(Figure 6).

Figure 5. Bacterial diversity assessment. (A) Comparisons of α-diversity. The abundance-based
coverage estimators (ACE), Chao1, Shannon, and Simpson indexes are displayed. (B) Principle
coordinate analysis (PCoA) based on weighted or unweighted unifrac distance and NMDS are shown
from left to right.

2.5. Correlation Analysis

Spearman correlation analyses were carried out on 75 metabolites and 23 genera with
significant alteration in db/db and wt mice, respectively. As shown in Figure 7A, the cluster-
ing of the two groups differed significantly. p < 0.05 and absolute values of correlation coef-
ficients greater than 0.6 were set as the threshold to define significant correlations. A total of
82 metabolite–genus correlation pairs were detected in the db/db group, of which 49 were
significantly positively correlated and 33 negatively correlated. In wt mice, 124 significantly
metabolite–genus correlation pairs were detected, of which 74 were positively correlated
and 50 were negatively correlated (Figure 7B). The correlation coefficients of 164 metabolite–
genus correlation pairs consisting of 64 metabolites with 22 genera were drastically al-
tered between db/db and wt groups (Figure 8A). Among them, in the db/db group,
the correlations of 80 combinations were increased (Dorea—2′-Deoxyuridine, Dorea—L-
Methionine, and Bilophila—1-Myristoyl-sn-glycerol-3-phosphocholine, etc.) and 84 were
decreased (Sutterella—3-Methylhistidine, Bilophila—Glucuronolactone and Bilophila—
Thymine, etc.).
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Figure 6. Taxonomic differences of fecal microbiota between db/db and WT mice. (A) A cladogram
reporting the differences which were represented in the color of the most abundant class between
the two groups of mice. Red indicates db/db mice, green wt mice, and yellow non-significant. The
diameter of each circle is proportional to the relative taxon’s abundance. (B) The histogram of linear
discriminant analysis (LDA) scores. The length of each bar represents the impact size of the bacterial
taxa differentially abundant.

Integration using linear models of metabolomics and gene expression data (IntLIM)
was further used to detect the alteration of correlation between DEGs and metabolites in
both db/db and wt mice. The absolute value of the change in correlation coefficient > 0.5
and p < 0.01 were defined as the threshold to filter the metabolite–gene correlations. Based
on the metabolites list from the metabolite–genus combinations in the previous step, 68 pairs
of metabolite–gene correlations (consisting of 33 metabolites and 41 genes) were screened
as significantly altered (Figure 8A). According to the STITCH database, the interaction
network between candidate genes and metabolites was constructed, which was enriched
in “Synthesis of bile acids and bile salts via 7 alpha-hydroxycholesterol”, “Synthesis of
bile acids and bile salts”, “Bile acid and bile salt metabolism”, “G alpha (i) signaling
events”, “G Protein-Coupled Receptor (GPCR) downstream signaling”, “Signaling by
GPCR”, “Metabolism of steroids”, “G alpha (s) signaling events”, “Metabolism of vita-
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mins and cofactors”, “Metabolism”, “The citric acid (TCA) cycle and respiratory electron
transport”, “Transport of small molecules”, “Signaling Pathways”, “Metabolism of lipids”,
“Post-translational protein modification”, and “Metabolism of proteins” (Figure 8B,C).

Figure 7. Correlation analysis of metabolites and microbes. (A) Heatmaps for correlation coefficients
of metabolites and microbes in db/db and wt mice. Red represents positive correlation and blue
represents negative correlation. (B) Arc diagrams for significantly correlated metabolite–microbe
combinations. Light yellow edges represent significant positive correlations and light green edges
represent significant negative correlations. Blue and yellow nodes represent microbes and metabo-
lites, respectively.
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Figure 8. Integration of correlation analysis for metabolites–microbes and metabolites–genes. (A) Scat-
ter plots for the alteration of correlation coefficients. Compared to wt mice, red represents an increase
in the correlation coefficient, while blue represents a decrease. The size of the dots represents the
absolute value of the change in correlation coefficients. (B) Interaction network of selected metabolites
and genes based on STITCH database. The color of each node represents the classification of each
selected feature. The size of the node represents the betweenness centrality. The thickness of each
edge represents the interaction strengths between nodes. (C) Bar graph for Over-representation
analysis (ORA) of selected metabolites and genes based on the Reactome database.

2.6. Integrated Multi-Omics Analysis

Partial least squares discriminant analysis (PLS-DA) was performed in each omics
data, suggesting that db/db and wt mice were significantly separated (Figure 9). After
integrating correlation pairs of metabolites–genus and metabolites–genes, a multivariate
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method with unbiased variable selection in R (MUVR) was carried out for candidate genes
(n = 41), metabolites (n = 33) ,and genus (n = 21). The predictive accuracy of candidate omics
signatures were100%, 87.5%, and 100%, respectively, indicating a significant separation
between the two groups (Figure 10A).

Figure 9. PLS-DA for multi-omics data. (A) Grimon visualization for multi-omics data. Each
plane represents a two-dimensional visualization of the Partial least squares discriminant analysis
(PLS-DA) result of each omics data. The same sample in different planes was connected. (B–D) Two-
dimensional projections of PLS-DA results in each grimon plane. The color represents the group of
each sample.
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Figure 10. Performance of integrative modeling on multi-omics in db/db and WT mice. (A) Swim
lane plots for classification analysis using multivariate methods with unbiased variable selection in
R (MUVR). Each lane presents predictions for each sample, individually and overall. The colors of
the dots represent the prediction of classes. The smaller dots indicate the class probabilities from
individual repetitions, while the larger dots represent probabilities averaged over all repetitions.
Circled dots represent the misclassified predictions. (B) The diagnostic plot indicates the correlation
between components from each omics data and the power to separate two groups of mice. (C,D) The
circos plot and relevance network represent correlations between selected signatures from each
omics data. Orange and black edges of the circos plot indicate positive and negative correlations,
respectively. The size of each node in the relevance network represents the betweenness centrality.
(E) The heatmap represents the scaled expression of selected signatures from each omics data.
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Data integration analysis for biomarker discovery using a latent component method
for omics (DIABLO) was further performed on the selected multi-omics signatures, and
latent components composed of five features from each omics data were identified. The la-
tent components were highly correlated to each other and contributed to a great separation
between the two groups (Figure 10B). The close correlation between different types of omic
signatures is shown in Figure 10C,D. Based on the betweenness centrality, Nicotinamide
N-oxide, N-Docosanoyl-4-sphingenyl-1-O-phosphorylcholine, Indoleacrylic acid, and 1-
Palmitoyllysophosphatidylcholine may play key roles in the network. Compared with wt
mice, the expression or abundance of Coprobacillus, L-Methionine, Ndufs5, Indoleacrylic
acid, 1-Palmitoyllysophosphatidylcholine, rc4_4, Pon3, N-Docosanoyl-4-sphingenyl-1-O-
phosphorylcholine, Nicotinamide N-oxide, Naaladl1, and Abca8a were significantly de-
creased, while expression or abundance of Bilophila, Wdfy1, Dorea, and Dehalobacterium
were significantly increased (Figure 10E).

3. Discussion

In the present study, we applied omics-based approaches to explore the core dif-
ferentially expressed pathways and molecules underlying T2DM-associated cognitive
deficits. Using the multi-omics integration, significant correlations among key genes
(n = 33), metabolites (n = 41), and bacterial genera (n = 21) were identified under patho-
logical state. Further functional analysis revealed that they are mainly involved in the
disturbances of the TCA cycle, mitochondrial respiratory electron transport, bile acid syn-
thesis and metabolism, steroid, and lipid metabolism and GPCR-related signals, etc. Taken
together, our results provided an essential link between the brain–gut axis and cognitive
impairment in db/db mice.

The mitochondrial metabolism-related molecules, especially those associated with
oxidative phosphorylation and the TCA cycle were differentially expressed in both brain
genes and serum metabolites. Those genes, such as Ndufs5 (encoding NADH dehydro-
genase, complex I), COX3 (encoding cytochrome C oxidase III), Me2 (encoding malic
enzyme 2), and Atp5d (encoding ATP synthase F1 subunit), showed lower expression
levels in db/db mice compared to wt mice. NADH (Nicotinamide adenine dinucleotide)
dehydrogenase as the first enzyme complex in the respiratory electron chain, functions in
transferring electrons derived from NADH to oxygen molecules [28]. Likewise, cytochrome
C oxidase is the rate-limiting enzyme at the end of the mitochondrial respiratory chain,
also known as mitochondrial complex IV [29]. By converting oxygen molecules into H2O
and driving ATP synthase to produce ATP, complex IV plays an important role in cell
energy metabolism [29]. Impairment of the respiratory chain will lead to a decrease in ATP
synthesis and excessive production of reactive oxygen species (ROS), which in turn induces
cell apoptosis [30]. It has been proposed that high concentrations of ROS can promote
the accumulation of hypoxia-inducible factors (HIF-1), and the cumulative effect of HIF-1
leads to a decrease in the TCA cycle as well as an increase in anaerobic glycolysis [31].
Similarly, the HIF-1 signaling pathway was upregulated in the transcriptome analysis of
this study. Consistent with alterations in brain transcription, the intermediate products
of the TCA cycle, malic acid, showed a cumulative increase in serum metabolites, while
the products of anaerobic glycolysis, lactate were increased significantly. Sickmann et al.
discovered that the TCA cycle activity was reduced more than anaerobic glycolysis in the
brain of T2DM rats [32]. Lactate functions as a signaling molecule that not only regulates
the polarization and inflammatory response of macrophages, but also induces the release
of TNF-α, IL-6, and IL-8 from astrocytes cultured in vitro [33]. Previous studies also have
found that an increased lactate concentration may be linked to cognitive deficits in human
and animal models [34–36]. Thus, our hypothesis-free approach further supported that
the disturbances of circulated and central energy metabolism may contribute to cognitive
impairment in db/db mice.

We also observed disturbances of bile acid and steroid metabolism in both transcrip-
tome and metabolome analysis, which provide evidence that the close interaction among
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microbiota, metabolites, and brain may play a key role in db/db mice with cognitive
deficits. Hepatocytes are the primary site of bile acid synthesis in humans and mice. Prior
to secretion from the liver, primary bile acids are combined with glycine or taurine to
generate conjugated bile acids, such as glycocholic acid, which are subsequently secreted
into the gallbladder for storage with phospholipids and cholesterol [37,38]. Conjugated
bile acids are thereafter released into the intestine and further metabolized by intestinal
microorganisms into secondary bile acids, such as deoxycholic acid [37,38]. It has been con-
sidered that bile acids modulated by the gut microbiota facilitate absorption and digestion
of lipids and fat-soluble vitamins [38]. Importantly, bile acids can act as signaling molecules
involved in the regulation of brain function, and the majority of brain bile acids derive
from systemic circulation [39]. Our results showed that the levels of taurine and cholesterol
were significantly increased, and the Slc10a1 gene (encoding taurocholate co-transporting
polypeptide) was significantly downregulated, both of which indicated impaired bile acid
transport. Studies verified that taurine concentration was increased in the brain of whether
aged diabetic rats or db/db mice with cognitive decline or early AD rats [40]. Clinical
investigations also suggested that elevated taurine levels may indicate the occurrence
of early cognitive impairment, and its level is negatively correlated with the progress of
cognitive impairment [40,41]. Therefore, it is possible that bile acids as a potential link
between the gut microbiome and the brain play a critical role in cognitive impairment.

The downregulation of GPCR signaling further supported the relative interactions
between brain and gut microbiota. GPCR, the G protein-coupled receptor superfamily,
comprises various receptors, such as glucagon-like peptide 1 (GLP-1) receptor, free fatty
acid receptor 1 (GPR40), and G-protein-coupled bile acid receptor 1 (Gpbar1), which
are involved in the regulation of neurotransmitters, hormones, nutrients, and metabo-
lites, etc. [42]. Studies by Kristoffer and colleagues have revealed that intestinal-derived
molecules may modulate the vagal afferents present in the gastrointestinal mucosa via
GPCR signaling, and thereby, signaling to the brain [43]. Under physiological conditions,
Gpbar1 signaling contributes to the release of intestinal GLP-1, and circulating GLP-1
further activates GLP-1 receptors in intestinal vagal afferents to indirectly influence the
metabolism of brain glucose and bile acid [44,45]. More recent, striking evidence demon-
strates the presence of Gpbar1 in the astrocytes and neurons suggesting this gut-derived
signaling may directly affect brain function [46,47]. In the AD mice, activation of Gpbar1
with tauroursodeoxycholic acid (TUDCA) triggers the AKT/GSK3β pathway to exert anti-
inflammatory effects [48,49]. Additionally, induction of TUDCA can inhibit mitochondrial
apoptosis through the E2F1/p53/BAX pathway to reduce neuronal death as well as Aβ

deposition [50,51]. In T2DM mouse models, researchers have found that downregulation of
GPR40 correlates with decreased expression of brain-derived neurotrophic factor (BDNF),
which might be an underlying molecular mechanism associated with cognitive impair-
ment in diabesity [52]. Collectively, these findings further support that GPCR signaling
is critical to regulating normal brain function, becoming a potential therapeutic target for
cognitive disabilities.

Furthermore, through multi-omics analysis, significantly correlated key molecules
were identified as potential biomarkers, which may predict the disease status of mice.
NADH dehydrogenase, the entry enzyme for mitochondrial oxidative phosphorylation,
was encoded by Ndufs5. Downregulation of this gene may indicate mitochondrial dys-
function and developing oxidative stress [53]. Paraoxonase 3, encoded by Pon3, has
antioxidative and anti-inflammatory properties, as well as a protective effect on mitochon-
dria by regulating superoxide production and resisting apoptosis [54]. The Naaladl1 gene
encoding a homolog of glutamate carboxypeptidase II is widely expressed in the small
intestine. This metallopeptidase could function as imaging and therapeutic targets for
neuronal injury [55]. ATP binding cassette subfamily A member 8 was encoded by Abca8.
Apart from the promotion of lipid transport in the brain, the function of this protein in
the central nervous system is still not well known [56], and further exploration of the role
of Abca8 in neurodegenerative diseases is needed. The protein encoded by Wdfy1 is a
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phosphatidylinositol 3-phosphate binding protein. The upregulation of this protein would
enhance the activation of NF-κB, type I interferon, and inflammatory cells through the TLR3
and TLR4 pathways, thereby promoting inflammation [57]. Consistent with our results,
previous research has demonstrated that Bilophila, Akkermansia, and Dehalobacterium
were positively correlated with bile acid (such as taurocholic acid) level, Coprobacillus posi-
tively associated with glucose metabolism, Dorea positively related to pyruvate level, rc4_4
positively correlated with tryptophan metabolism [58]. Methionine, one of the essential
amino acids, as a major source of methyl groups is closely related to the folate cycle and
the one-carbon cycle. Recent studies have shown that methionine deficiency could cause
homocysteine metabolism disorder and mitochondrial dysfunction, and as a consequence
lead to hypomethylation of choline metabolism in the hippocampus, as well as reduced
choline levels and cognitive deficits [59,60]. Indoleacrylic acid is one of the products of
tryptophan decomposition by intestinal microbiota, which is closely related to tryptophan
metabolism and has the effects of enhancing intestinal epithelial barrier function, regulating
glucose metabolism, and anti-inflammation [61]. Previous studies have also reported that
indole propionic acid, another tryptophan metabolite, plays a potential neuroprotective
role by scavenging oxygen free radicals to prevent Aβ-induced neuronal damage [62].
1-Palmitoyllysophosphatidylcholine and N-docosanoyl-4-thienyl-1-O-phosphorylcholine
are phospholipids, both of which are closely related to lipid metabolism. Niacinamide
N-oxide belongs to the nicotinamides, a class of organic compounds, which can promote
the production of NADP (+) and NADPH, playing a role in blood glucose control and
neuroprotection [63].

Altogether, these findings reflected that the influence of the above key predictors on
cognitive impairment in db/db mice should not be underestimated. However, correla-
tion does not imply causation. In the future, collecting multi-omics data from mice at
different time points and making causal inferences may be conducive to obtaining more
specific conclusions. In addition, experiments are still needed to further verify and explore
the bioinformatics prediction results. This study provides novel insights into the func-
tional interactions among the brain, circulating metabolites, and gut microbiota. Further
functional investigations underlying the mechanisms behind the dysregulation of energy
metabolism and cognitive decline will become a critical step in the development of future
targeted therapies.

4. Materials and Methods
4.1. Animals

Fourteen-week-old diabetic (db/db, B6.BKS(D)-Leprdb/db, 4 males and 4 females) and
wt (C57BL/6J, 4 males and 4 females) mice were purchased from the Shanghai Model
Organisms Center, Inc. (Shanghai, China). Genotype, body weight, and fasting blood
glucose were assessed by the Shanghai Model Organisms Center, Inc. (Shanghai, China).
The animals were fed in a specific pathogen-free environment under the standard conditions
(12:12-h light-dark cycle, 22 ± 2 ◦C room temperature, and a relative humidity of 40–60%).
All animals were given unlimited access to standard sterile chow and tap water during the
whole experimental period. All animal experiments were conducted based on the Guide
for the Care and Use Laboratory Animals of the Ruijin Hospital. This study was reviewed
and approved by the Institutional Animal Care and Use Committee of the Shanghai Jiao
Tong University.

4.2. Morris Water Maze Test

After 3 weeks, the MWM test was performed to assess the spatial learning and memory
of the mice. The MWM test was conducted in a circular pool (diameter 100 cm, height
60 cm) filled with water at 22 ± 2 ◦C. On day 0, the mice were subject to habituation
training with visible escape platform (1 cm above the water surface) and undyed water.
Then the water was made opaque by food-grade titanium dioxide and the escape platform
was submerged 2 cm below the water surface. The mice were trained to reach the hidden
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escape platform for 5 consecutive days (day 1–day 5, 4 trials per day). If a mouse could not
find the escape platform within the maximum observation period (60 s), it was guided to
the platform by the operator and allowed to stay for 10 s. On day 6, the mice were tested
in a 60 s probe trial without the platform. For each trial, the time and latency to reach
the platform and the number of platform crossings were recorded using EthoVision XT
software (Noldus Information Technology b.v., Wageningen, The Netherlands). Analyses
of the behavioral data were conducted using two-way ANOVA and t-test by Graphpad
Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA).

4.3. Sample Preparation

Before the MWM tests, fecal samples were collected about 100 mg (wet weight) per
mouse after defecation, respectively. Extraction of microbial DNA was performed using the
E.Z.N.A.® Stool DNA Kit (Omega Bio-Tek, D4015-01, Norcross, GA, USA). After detecting
the concentration and quality, the DNA was diluted to 1 ng/µL using sterilized water and
stored at −80 ◦C prior to 16S rDNA sequencing.

After the MWM tests, retro-orbital sinus sampling of each anesthetized mouse was
collected and processed to serum and stored at −80 ◦C before untargeted metabolomic
analysis. Afterward, 100 µL serum was added to a 400 µL precooled methanol/ acetonitrile
mixture (1:1), following vortex oscillation for 60 s. The mixture was placed at −20 ◦C for
30 min and centrifuged at 14,000× g for 20 min at 4 ◦C. Then, the supernatant was dried in
a vacuum environment and dissolved by a 100 acetonitrile/water mixture (1:1), followed
by vortex oscillation. After centrifugation at 14,000× g for 20 min at 4 ◦C, the upper phase
as the sample was subjected to mass spectrometry analysis.

After general anesthesia, the mice were killed by cervical dislocation and brain tis-
sues were isolated immediately. Total RNA was extracted from brain tissues using TRIzol
Reagent (Thermo Fisher Scientific, 15596018, Waltham, MA, USA), according to the manu-
facturer’s protocol. Nanodrop ND-2000 system (Thermo Scientific, Waltham, MA, USA)
was used to detect the A260/A280 absorbance ratio of RNA samples, and the Agilent Bioan-
alyzer 4150 system (Agilent Technologies, Santa Clara, CA, USA) was used to determine the
RIN value of RNA. The qualified RNA was used for subsequent transcriptomic analysis.

4.4. Transcriptomic Analysis of Brain Samples

Library preparation and transcriptome sequencing were performed at the Shanghai
Applied Protein Technology Co., Ltd. (APTBIO, Shanghai, China). In brief, a total of
1 µg RNA per sample was used for library construction by a NEBNext®Ultra™ RNA
Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, USA), following the
manufacturer’s protocol. An Agilent Bioanalyzer 2100 system (Agilent Technologies,
Santa Clara, CA, USA) was used for library quality assessment. Paired-end reads were
generated by the Illumina Novaseq 6000 platform (Illumina, San Diego, CA, USA). Raw
data were processed through in-house perl scripts of APTBIO to remove the adapter
sequence and filter out reads with low quality or an N ratio (the base information could
not be determined) greater than 5%. Subsequently, clean data were aligned to the reference
genome of mice using HISAT2, and reads numbers mapped to each gene were counted by
FeatureCounts [64,65].

The EdgeR package was used for differential expression analysis [66]. p < 0.05 and the
absolute value of log2 fold change (log2FC) > 1 were set as the threshold. To explore whether
predefined gene sets were differentially expressed in different groups, we further performed
GSEA using the multiGSEA package on the basis of the Reactome database [67,68]. Gene
sets with p < 0.05 and the absolute value of normalized enrichment score (NES) > 1 were
considered as significantly differentially expressed gene sets.

4.5. Metabolomic Analysis of Serum Samples

Liquid Chromatograph Triple Quadrupole Mass Spectrometer (LC-MS/MS) was car-
ried out in APTBIO. Briefly, HILIC separation was performed using an Agilent 1290 infinity
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LC UHPLC system (Agilent Technologies, Santa Clara, CA, USA) and a 2.1 mm × 100 mm
ACQUIY UPLC BEH 1.7 µm column (Waters Chromatography Ireland Ltd, Finglas, Ireland).
The identification of metabolites and collection of primary and secondary spectra were
performed using a TripleTOF 6600 System (SCIEX, Framingham, MA, USA). Raw data
were converted to MzXML files by ProteoWizard before importing into XCMS software
(Scripps Research Institute, La Jolla, USA) for peak picking, retention time correction, and
peak area extraction [69,70]. Metabolites were identified using an in-house database based
on the accuracy mass (<25 ppm) and MS/MS spectra.

After the Pareto-scaling using MetaboAnalyst, OPLS-DA was performed [71]. Com-
bined with the results of a two-tailed Student’s t-test, metabolites with variable influence
on projection (VIP) > 1 and p < 0.1 were considered as significantly different metabolites.
MSEA was further carried out using the multiGSEA package on the basis of the Reactome
database. p < 0.05 and the absolute value of NES > 1 were set as cutoff values [67,68]. The
differences in the abundance of metabolites between the two groups were further detected
by a Student’s t-test.

4.6. Fecal Microbiota Analysis

The amplification of 16S rRNA genes, library preparation, and sequencing were car-
ried out in APTBIO. Specific primer with barcode (341F: CCTAYGGGRBGCASCAG, 806R:
GGACTACNNGGGTATCTAAT) and Phusion®High-Fidelity PCR Master Mix (New Eng-
land Biolabs, Ipswich, MA, USA) were used for amplification. The library was constructed
using the NEB Next®Ultra™ DNA Library Prep Kit for Illumina (New England Biolabs,
Ipswich, MA, USA), following the manufacturer’s protocol. A Qubit 2.0 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA) and an Agilent Bioanalyzer 2100 system
(Agilent Technologies, Santa Clara, CA, USA) were utilized to assess the library qual-
ity. Paired-end reads were generated by the Illumina Novaseq 6000 platform (Illumina,
San Diego, CA, USA) and merged using FLASH software (McKusick-Nathans Institute of
Genetic Medicine, Baltimore, MD, USA) [72]. The UPARSE package was used for sequences
analysis [73]. Sequences with at least 97% similarity were clustered as the same OTUs.
Representative sequences for each OTU were annotated by the Ribosomal Database Project
(RDP) classifier [74]. In-house perl scripts of APTBIO were run to analyze alpha and beta
diversity. LEfSe was used to detect different features between two groups [75]. LDA > 2
and p < 0.05 were set as cutoff values to define significantly different genus.

4.7. Correlation Analysis

Spearman correlation analysis for significantly differential genes and genus in wt and
db/db group were performed using the Hmisc package. With a correlation coefficient > 0.6
and p < 0.05 as the threshold values, the significantly correlated metabolites, and genus
were defined. The absolute value of the differences between the correlation coefficients of
the two groups greater than 0.5 was considered as drastically altered.

IntLIM can integrate transcriptome and metabolome data through linear models, to
assess whether the association relationship between genes and metabolites was significantly
different between the two different phenotypes [76]. IntLIM analysis based on the DEGs,
and differential metabolites was performed on the two groups, respectively. p < 0.01 and
the absolute change in correlation coefficient > 0.5 were defined as the threshold value of
the significantly changed correlation of metabolites–genes.

The lists of candidate genes, metabolites, and genus were obtained by integrating
metabolites–genus with drastically altered correlation coefficients and metabolites–genes
with significantly changed correlation coefficients. The STITCH database was used to
construct the network of interaction between candidate protein–protein and protein–
metabolites (minimum required interaction score = 0.4) [77]. Over-representation analysis
(ORA) of candidate genes and metabolites was further performed by the fgsea package
based on the Reactome database [78]. Cytoscape, ggplot2, pheatmap, and the ggraph
package were used for data visualization [79–82].
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4.8. Integrated Multi-Omics Analysis

PLS-DA was carried out in each omics data using ropls and visualized by the grimon
package [83,84]. Multivariate predictive modeling on candidate genes, metabolites, and
genus was constructed using MUVR based on partial least squares (PLS), respectively [85].
DIABLO was utilized to integrate multi-omics data from the same biological sample,
which could maximize the common or relevant information among different omics while
identifying key variables of each omics and grouping information [86]. The number of
components was determined by MUVR. A tuning procedure was used to select the optimal
number of key features in each omics.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27061904/s1, Table S1: Gene count of mice, Table S2:
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