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Influenza virus is a long-lasting and severe threat to human
health. Seasonal flu epidemics, which are caused by the co-
circulating influenza A viruses (IAVs) and influenza B viruses
(IBVs), occur annually and lead to tens of millions of respi-
ratory illnesses and up to half a million human deaths
worldwide each year (Ginsberg et al., 2009). Influenza
pandemics are more devastating. The 2009 swine-originated
H1N1 virus, which caused the latest influenza pandemic,
spread from Mexico and U.S. to virtually all countries
throughout the world within only several months and was
associated much higher mortality among children, young
adults, and pregnant women than typical seasonal influenza
viruses (Fineberg, 2014). The zoonotic avian influenza
viruses, including H5N1, H5N6, H7N9 and H10N8, cause
alarmingly high fatality rate in human cases, raising a public
concern of pandemic influenza outbreak of avian origin
(Poovorawan et al., 2013; Barr, 2017; Bui et al., 2017).

Innate immune system is an important barrier of defend-
ing against influenza virus infection. According to the tradi-
tional paradigm, after IAV gets across the mucus that covers
the respiratory epithelium, it first invades and infects respi-
ratory epithelial cells, from where it spreads to other non-
immune and immune cells (e.g., macrophages and dendritic
cells). In these cells, the virus can be sensed by the pattern
recognition receptors (PRRs), triggering the production of
type I interferons (IFNs) which induce the expression of
hundreds of IFN-stimulated genes (ISGs) that block viral
replication and further virus spread. Simultaneously, activa-
tion of PRRs also leads to production of pro-inflammatory
cytokines (IL-6, IL-1β, IL-18, TNF, etc.) and chemokines.
Pro-inflammatory cytokines induce topical and systemic
inflammation, cause fever and anorexia, and direct the
adaptive immune response against the virus. Chemokines,
on the other hand, recruit innate immune cells (neutrophils,
monocytes, and NK cells) which engulf and inactivate the
virus, kill virally infected cells, and guide subsequent innate
and adaptive immune responses that mediate ultimate viral
clearance (Iwasaki and Pillai, 2014).

However, effective protection from influenza virus infec-
tion is provided by finely tuned antiviral immunity, while
excessive innate immunity causes detrimental inflammation.
Infection with influenza viruses is usually self-limited, though
the severe cases, especially caused by highly virulent
strains (e.g., the 2009 pandemic H1N1 virus, H5N1 and
H7N9) are characterized by severe pulmonary disease and
lethal acute respiratory distress syndrome (ARDS) (Bauer
et al., 2006; Ramsey and Kumar, 2011; Ma et al., 2017).
Influenza-induced ARDS, which involves the damage to the
epithelial-endothelial barrier of the pulmonary alveolus, flute
leakage to the alveolar lumen, and respiratory insufficiency,
is associated not only with direct viral damage to epithelial-
endothelial barrier, but also with inflammation mediated by
components of the innate immune response. The cytokines
produced in influenza virus infected epithelial and endothe-
lial cells, and cytokines and reactive oxygen species pro-
duced by neutrophils and macrophages recruited to
pulmonary alveolus all contribute to damage to the epithelial-
endothelial barrier (Short et al., 2014).

Both the protective and pathological roles of innate
immunity have been evidenced in human and experimental
animals. On one hand, genetic deficiency in production of
interferon or certain ISGs (e.g., MX and IFITM proteins)
increases the vulnerability to IAV infection (Ciancanelli et al.,
2015, 2016). On the other hand, genetic ablation of the pro-
inflammatory cytokine IL-6 (Dienz et al., 2012), or chemical
depletion of alveolar macrophages (Abboud et al., 2015), NK
(Abboud et al., 2015) or neutrophils (Tate et al., 2009) in
mice can exacerbate lung injury during IAV infection. These
data support that both IFN response and inflammatory innate
immune response are essential in protecting the host against
IAV infections. However, gene expression analysis displays
that early innate immunity signatures including pro-inflam-
matory cytokines (TNF, IL-1β, IL-6), chemokines (CCL2,
CCL3, CCL4, CXCL1) and neutrophil infiltration are strongly
associated with acute death of the mice infected with IAV
(Brandes et al., 2013). In addition, deletion of pro-
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inflammatory cytokines IL-1, TNF and various chemokines
decrease mortality in IAV-infected mice (Teijaro, 2015). Fur-
thermore, hyper expression of pro-inflammatory cytokines
and chemokines are linked to the high mortality in human
cases infected with highly pathogenic influenza virus strains
such as 1918 pandemic H1N1 virus and H5N1 virus (Loo
and Gale, 2007; Peiris et al., 2009). These data suggest that
exaggerate inflammation during lethal infection with IAV can
have fatal consequences. Therefore, benign outcomes of
influenza virus infection results from inducing sufficient IFN-
mediated antiviral immunity while avoiding harmful inflam-
matory response.

Most current knowledge about innate immunity in influ-
enza virus infection has come from IAV. Although IBV con-
tributes a significant part to the burden arising from the
worldwide epidemics of seasonal influenza, much less
attention has been paid to IBV than IAV because IBV does
not have a potential to cause a pandemic (Chai et al., 2017).
IBV is characterized by strict host range limits, initiates local
epidemics with a lower evolutionary rate and causes milder
clinical syndrome than IAV (Jiang et al., 2016). However,
little is known about the innate response against the IBV
infection.

Recently, we investigated the global transcriptome of the
human lung A549 cell line infected with IBV with RNA-
seq. We identified 340 differentially expressed genes
(DEGs) in these cells at 8 h after infection. Among them, we
found that type III IFNs (including IFN-λ1, IFN-λ2, and IFN-
λ3) were among the top highly up-regulated genes. How-
ever, type I IFNs (IFN-α/β) was not significantly up-regulated
and not listed among the DEGs. Besides, various antiviral
ISGs including almost all known antiviral effectors in the
innate immune system, including OAS proteins, MX proteins,
IFITM proteins, and viperin (Schneider et al., 2014), are also
highly up-regulated.

To verify this, we performed a qPCR analysis to determine
the expression level of IFNs genes, as well as three impor-
tant antiviral ISGs: Mx1, ISG20 and IFITM1 at 4, 8, and 12 h
post infection. Consistent with the RNA-seq data analysis,
IFN-λ expression was significantly increased at all the time
points. The Mx1, ISG20 and IFITM1 also displayed markedly
altered mRNA levels during IBV infection. In contrast, the
expression of IFN-α was not altered at all points (Fig. 1A).
Since the function of both IFN-λ and IFN-α is induction of
ISG expression via the same intracellular signaling path-
ways, we speculate that it is IFN-λ rather than IFN-α that
dominates the production of ISGs in IBV-infected A549 cells.
Indeed, the IBV NP protein levels were obviously decreased
in IFN-λ stimulated A549 cells, indicating the potent antiviral
activity during IBV replication in A549 cell (Fig. 1B).

Based on the above results and KEGG pathways assay,
we built the intracellular signaling pathway related to IBV
infection in A549 cells (Fig. 1C). IBV infection begins with
viral HA binding to α-2,3 or α-2,6 sialic acid on the host cell
surface. After binding to the receptor, the virus enters the

endosome, where the acidic environment triggers virus-host
cell membrane fusion, after which the viral RNA is released
into the cytoplasm. In the cytoplasm, the virus-derived RNA
is recognized by multiple canonical pattern recognition
receptors (PRRs), including the RIG-I-like receptors (RLRs,
RIG-I, and MD5), the Toll-like receptors (TLRs, TLR-3, and
7), the NOD-like receptors (NLR and NOD1/2), and the PKR,
and activates their respective signaling pathways. Activation
of these pathways leads to the expression of IFN-λs, which
then interact with their receptor, the heterogeneous dimer
IFNLR1/IL-10R, and activate the expression of ISGs through
the JAK/STAT pathway.

Interferons (IFNs) are classified into three categories
(type I IFNs, type II IFNs, and type III IFNs). All IFNs signal
through JAK/STAT pathway which leads to transcription of
ISGs, but their production cells and receptor specificity are
different (Chow and Gale, 2015). Type I IFNs include IFN-α,
β, ε, κ, and ω. They can be produced by almost all cell types
and their receptor is the widely-expressed heterodimer
composed of IFNR1 and IFNR2. Type II IFN is INF-γ, which
is produced by immune cells and forms dimmer to act on the
receptor complex consisting of two IFNR1 and two IFNR2.
Type III IFNs include IFN-λ1 (IL-29), IFN-λ2 (IL-28A), IFN-λ3
(IL-28B), and IFN-λ4. Their receptor is the heterodimeric
complex composed of IFN-λR1 and IL-10Rβ. IL-10Rβ is
broadly distributed, but the expression of IFN-λR1 is mainly
restricted to epithelial cells (Broggi et al., 2017).

Although discovered later than type I and type II IFNs,
type III IFNs in innate immunity are attracting more and more
attention. The potential importance of type III IFNs has been
suggested by life-threatening influenza developed in genet-
ically deficiency that leads to impaired production of both
type I and type III IFN production in a 9-year-old child
(Ciancanelli et al., 2015). IFNLR is expressed by human
hepatocytes, and IFNL polymorphisms are associated with
ameliorated outcome from HCV and HBV infection (Bibert
et al., 2013; Galmozzi et al., 2014). Clinical trials have

cFigure 1. The integrated signaling pathway for IBV

infection in A549 cells. (A) qRT-PCR analysis of the

expression of selected genes in IBV infected A549 cells

compared with uninfected controls. The fold difference was

determined using the 2−ΔΔCt method, and RNA levels were

normalized to GAPDH. Error bars represent the standard

deviation. (B) A549 cells were treated with recombinant

human IFN-λ (R&D systems) at final concentration of 0, 20,

50 and 100 ng/mL, followed by infection with IBV for 12 h.

Cell lysates were analyzed by western blot using indicated

antibodies. (C) The pathways for IBV infection in A549

cells. The relative expression values are indicated by the

color gradient. The full lines represent direct interactions,

and the dashed lines represent indirect interactions. The

uncolored ellipses represent genes that are not DEGs.

ISGs are marked with an asterisk.
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displayed that the pegylated IFN-λ can reduce the level of
HCV and HBV in patients infected with chronic HCV and
HBV, respectively (Zeuzem et al., 2011; Phillips et al., 2017).
IFN-λs are also highly expressed in gastrointestinal tracts,
and can cure chronic murine norovirus infection without the
presence of adaptive immunity (Nice et al., 2015).

Most recently, several important breakthroughs have
increased the brightness of IFN-λs as a new spotlight in

innate immunity. One of them is the determination of the
crystal structure of an engineered high-affinity IFN-λ3 (H11)
in complex with its two receptors, IFN-λR1 and IL-10R. In
this structure, the IFN-λ3 helical bundle binds to the gorge
formed by the two domains at the distal ends of its two
receptors to the cellular membrane. In contrast, the two
receptors bind to the opposite sides of the helical bundles of
type I IFNs (Mendoza et al., 2017).
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Figure 2. Different gene expression pattern triggered by type I and type III IFNs. Type III IFNs (IFN-λ3, PDB ID: 5T5W) binding

to their heterodimeric receptor composed of IFNλR1 and IL-10Rβ triggers the formation of heterdimeric complex of STAT1 and STAT2

which translocates to the nucleus where it forms ternary complex with IRF9 and form IFN-stimulated gene factor 3 (IGF3). IGF3 binds

to IFN-stimulated response elements (ISREs) and induces the expression of antiviral ISGs. Engagement of type I IFNs (IFN-α2, PDB

ID: 3SE3) with their receptor, the heterodimer composed of IFNAR1 and IFNAR2, can also activate the STAT1 homodimer which

binds to gamma-activated sequence (GAS) and induces the expression of pro-inflammatory cytokines and chemokines.
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Another breakthrough is the definition of the differential
roles of IFN-λs in contrast to type I IFNs in IAV infection using
Ifnlr1−/−, Ifnαr1−/− and Ifnlr1−/− Ifnαr1−/− mice (Galani et al.,
2017). This study shows that in mice infected with IAV, IFN-
λs emerge earlier than type I IFNs and show potent protec-
tive function during the early phase of the infection, when
type I IFNs are still scarce. Furthermore, IFN-λs treatment
induces expression of antiviral genes but not pro-inflamma-
tory cytokines in neutrophils, while type I IFNs induce the
expression of both types of genes and are involved in
causing inflammation and immunopathology.

The different functions between IFN-λs and type I IFNs
can be explained by the different STAT complex they acti-
vated. When engaged with their receptor complexes, both
IFN-λs and type I IFNs activate JAK-family kinases, which
phosphorylate STAT1 and STAT2. The phosphorylated
STAT1 and STAT2 dimerize and translocate to the nucleus
where they associate with IRF9 to form IFN-stimulated gene
factor 3 (ISGF3), bind to IFN-stimulated response elements
(ISREs) and induces the expression of antiviral ISGs.
However, engagement of type I IFNs with their receptor can
also activate the STAT1 homodimer which binds to gamma-
activated sequence (GAS) and induces the expression of
pro-inflammatory cytokines and chemokines (Ivashkiv and
Donlin, 2014). Thus, type I IFNs have the potential of
inducing inflammation in addition to antiviral function, while
IFN-λs promote the production of antiviral ISGs without the
function of inducing inflammation (Fig. 2).

In summary, IFN-λs are more advantageous than type I
IFNs in defending against influenza virus for several rea-
sons: (1) IFN-λs are produced earlier and in larger amount
during influenza virus infection; (2) unlike type I IFNs, IFN-λs
are produced and act specifically in respiratory tract, so they
do not induce systematic side effects; (3) type III IFNs have
potent antiviral activity without mediating inflammation.
Therefore, IFN-λs share the therapeutic benefits but
eschews many side effects associated with the clinical use
of IFN-α/β (Lazear et al., 2015). In the future, scientists
should explore the possibility that whether IFN-λs are more
ideal therapeutic reagents for dealing with respiratory tract
infection by viruses like IBV or not.
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