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Abstract

Cancer researchers have long recognized that somatic mutations are not uniformly distrib-

uted within genes. However, most approaches for identifying cancer mutations focus on

either the entire-gene or single amino-acid level. We have bridged these two methodologies

with a multiscale mutation clustering algorithm that identifies variable length mutation clus-

ters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data

in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation

clusters. The resulting mutation clusters cover a wide range of scales and often overlap with

many kinds of protein features including structured domains, phosphorylation sites, and

known single nucleotide variants. We statistically associated these multiscale clusters with

gene expression and drug response data to illuminate the functional and clinical conse-

quences of mutations in our clusters. Interestingly, we find multiple clusters within individual

genes that have differential functional associations: these include PTEN, FUBP1, and

CDH1. This methodology has potential implications in identifying protein regions for drug tar-

gets, understanding the biological underpinnings of cancer, and personalizing cancer treat-

ments. Toward this end, we have made the mutation clusters and the clustering algorithm

available to the public. Clusters and pathway associations can be interactively browsed at

m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://

github.com/IlyaLab/M2C.

Author summary

Identifying driver mutations in cancer has been a major challenge in cancer research, with

the ultimate goal of understanding the detailed molecular origins of cancer and providing

genetically personalized treatments. For decades, the cancer research community has

known that mutations in certain genes—such as tumor suppressors like P53—can drive
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cancer. In some cases it is also clear that mutations within cancer genes are localized in a

single amino—such as the V600E mutation in BRAF. With the existence of large multi-

omic data sets including The Cancer Genome Atlas (TCGA), it is now possible to apply

big data approaches towards both identifying mutation features of interest and under-

standing their functional consequences. We have bridged the gap between single amino

acid mutations and the whole gene view by developing an algorithm that can identify vari-

able length regions within cancer genes that which enriched for mutations. Furthermore,

we have been able to integrate our multiscale mutation clusters with additional molecular

data to gain insight into possible functional consequences of the clusters.

This is a PLOS Computational Biology Methods paper

Introduction

Somatic mutations are amongst the most frequent genomic aberrations associated with cancer.

Moreover, primary human cancer samples usually contain tens to hundreds of somatic muta-

tions, depending on the tissue of origin [1]. The identification of mutations that alter the func-

tion of protein coding genes, and a molecular understanding of the ensuing consequences of

such mutations, remains a significant challenge.

To date, millions of distinct somatic mutations have been observed in human cancers

through genome wide characterization projects such as The Cancer Genome Atlas (TCGA)

and International Cancer Genome Consortium (ICGC). Computational methods are particu-

larly well suited for the assessment of somatic mutations at this scale in order to identify those

with cancer-associated functional consequences. To this end, numerous mutation assessment

methods have been developed based on a variety of underlying approaches and statistical mod-

els. For example, MuSiC [2], MutSig [1], and SomInaClust [3] rank cancer-associated genes

based on somatic mutations observed across a cohort of samples and normalized by factors

including mutation type propensity, gene length, and replication timing. In addition, methods

including PolyPhen [4], SIFT [5], and CADD [6] utilize prior knowledge such as conservation

and machine learning based on disease associated variants to predict functional mutation

impact. Yet other methods including OncodriveCLUST [7] and CLUMPS [8], iPAC [9], and

graphPAC [10] take a parameterized, data-driven approach to predict cancer-associated muta-

tions based on spatial clustering of linear sequence, three-dimensional protein structure, and

graphical representations thereof. Finally, enrichment of somatic mutations based on func-

tional biological consequences such as protein-protein interaction interfaces [11] and deregu-

lation of phosphorylation signaling [12] have been explored.

Importantly, functional mutations that occur within the coding sequence and are known to

be associated with cancer do not occur at random positions. On the contrary, hotspots or clus-

ters are frequently observed as recurrent missense mutations across a significant fraction of

cancer samples. These sets of mutations are typically attributed to alterations in function at

specific sites of the protein that give rise to a variety of cancer phenotypes. Oftentimes, these

mutation clusters can be readily interpreted in the context of their protein structure and func-

tion; for example, mutations in the GTP binding pocket of KRAS that modulates intrinsic

GTPase activity, lead to constitutive activation of KRAS and persistent stimulation of down-

stream signaling pathways [13,14]. Such mutation clusters need not be located within
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structural protein domains; for example, N-terminal mutations of beta-catenin (CTNNB1)

affect protein phosphorylation sites and thereby abrogate ubiquitin-mediated proteasomal

degradation [15–17]. These mutations then result in beta-catenin accumulating in the nucleus

and continuously driving transcription of its target genes [18,19].

While these examples highlight readily identifiable and interpretable focal mutation clusters

that lead to cancer-associated effects on protein function, such mutation consequences need

not be restricted to dense clusters at just a few amino acid positions in the protein sequence.

For example, tumor protein p53 (TP53) contains a combination of mutations that are recur-

rently located at specific amino acids that bind directly to DNA (e.g., R248Q, R273C) as well as

more broadly distributed sets of mutations throughout the core DNA binding domain of TP53

that disrupt the folding and stability of the protein [20,21]. Additionally, sets of mutations do

not only affect individual regions or domains of proteins; rather, functional mutations are

observed in distinct clusters within different regions or domains of individual proteins (e.g.,

PIK3CA), indicating the possibility for differential functional consequences of such mutation

clusters [22,23].

We have therefore developed a multiscale mutation clustering algorithm (M2C) that identi-

fies variable length regions with high mutation density in cancer genes. We have applied our

algorithm on hundreds of frequently mutated genes using the combined mutation data in over

twenty tumor types from TCGA and identified over a thousand multiscale mutation clusters.

We have statistically associated these multiscale clusters with gene expression from TCGA

tumor samples and drug response data from cancer cell lines, illuminating the (differential)

functional and associated therapeutic consequences of somatic mutations in cancer.

Results and discussion

Overview of the approach

We ran M2C on the combined mutation calls from 23 cancers (pan-cancer data set is described

in T1 in S1 Tables) across 549 genes. Briefly, M2C works by smoothing the mutation density at

many different amino acid length scales. Then, a mixture model is fit to each scale. Finally,

these mixture models are merged together using a greedy algorithm that optimizes an informa-

tion criterion. We refer to a cluster as an interval along the linear amino acid chain, e.g. PIK3CA
339–350. After identifying these clusters, we assigned them as binary features to individual

tumor types for each of the 23 cancers. A cluster is assigned as positive (1) to a tumor sample if

that sample contains at least one non-synonymous mutation within the cluster and negative (0)

otherwise. This assignment allowed us to relate cluster features with gene expression data from

2194 genes in the TCGA dataset. We statistically combined these gene expression associations

on the pathway level across 172 pathways linking mutation clusters to pathway-level gene expres-

sion changes. We performed a similar analysis on all non-synonymous mutation features (i.e.

regardless of whether the mutation is or is not in a cluster). Finally, we linked the multiscale

mutation clusters to differential drug response using cancer cell line data. Fig 1 illustrates our

approach on PIK3CA in breast invasive carcinoma, a prototypical example of how our method

identifies multiple mutation clusters with differential associations with gene expression data.

Additional details can be found in the Methods section and Supplemental Information.

Characterizing multiscale clusters

M2C identified a total of 1255 multiscale clusters in 393 of the 549 genes analyzed. These genes

were selected by taking the highest ranked genes in MutSig for each cancer type. The 156

genes without any clusters had all their mutations classified as uniform background noise by

M2C and were omitted from further analysis. The following results indicate that our method

Multiscale mutation clustering in TCGA

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005347 February 7, 2017 3 / 26



Fig 1. Method Illustration on PIK3CA in Breast Cancer: From top to bottom. A) Protein domains in PIK3CA. B) In gray: mutation histogram showing all

mutations across the various cancer types; these data were used to generate the multiscale clusters. In blue: breast cancer mutation histogram showing all

non-synonymous mutations; these data were used to assign mutation features to breast cancer tumor samples. C) Mutation clusters identified by the

multiscale information-based clustering algorithm (M2C). Gray clusters have fewer than 5 mutations in breast cancer and are excluded from subsequent

downstream analysis. Green clusters are assigned to breast cancer. D) LRP8 gene expression levels in breast cancer where the samples are grouped

based on the mutation clusters. From left to right: “wild-type” (i.e., no non-synonymous mutations including tumors with no mutations at all), any non-

synonymous mutation feature, and the seven mutation clusters assigned to breast cancer. E) Pathway association P-value heatmap showing differential

pathway associations between clusters. L1S1 In Neuronal Migration and Development Pathway and Reelin Signaling Pathway do include LRP8.

doi:10.1371/journal.pcbi.1005347.g001

Multiscale mutation clustering in TCGA

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005347 February 7, 2017 4 / 26



finds multiscale regions of proteins which are enriched for mutations and frequently overlap

with annotated protein domains. The multiscale clusters span a wide range of lengths: from 1

to 600 amino acids. Additionally, clusters have a highly variable number of mutations: 15 to

338 mutations. Finally, we note that each cluster is given a score which is the log of the ratio of

its emission probability from its component of the mixture model to the emission probability

under the null hypothesis that mutations are distributed uniformly across the gene. Higher

scores indicate increased robustness as shown by cross-validation analysis (see Methods and

S4 Fig). T2 in S1 Tables details pan-cancer cluster definitions, cluster scores, and overlapping

protein domains.

We assigned clusters to specific tumor samples if there was at least one non-synonymous

mutation in a sample at an amino acid position within a cluster. By combining tumor samples

grouped by tumor tissue of origin, we were able to compare how clusters are assigned to differ-

ent tumor types. T3 in S1 Tables details cluster assignments to tumor types. When clusters are

assigned to specific tumor types, a high variability is seen in the way clusters are distributed

between tumor types. On the high end, lung squamous cell carcinoma and uterine carcinosar-

coma have over 80% of their non-synonymous mutations in clusters. On the low end, acute

myeloid leukemia and thyroid carcinoma have 23% and 34% of their non-synonymous muta-

tions in clusters, respectively. Neither the total number of non-synonymous mutations nor the

total number of synonymous mutations is a good indicator for what percent of mutations are

located within clusters in a specific tumor type. Interestingly, the ratio between the percentage

of non-synonymous mutations in clusters and the percentage of protein sequence covered by

clusters (which contain non-synonymous mutations) is much less variable; for the pan-cancer

data set this ratio is 1.88 and when calculated between cancer types ranges from 0.88 (acute

myeloid leukemia) to 2.23 (thyroid carcinoma). T4 in S1 Tables gives statistics on the distribu-

tion of clusters between different tumor types. Finally, we searched for tumor specific clusters

by using Fisher’s exact test to determine if specific tumor types are enriched for specific clus-

ters. We found 426 mutational clusters enriched for a specific tumor type at a false discovery

rate of 1% and 996 at a false discovery rate of 10%. Cluster tumor type enrichment results are

detailed in T5 in S1 Tables.

We compared the multiscale clusters to a Density Based Spatial Clustering of Applications

with Noise (DBSCAN) based method called OncodriveCLUST and to protein domains from

Pfam [24]. OncodriveCLUST’s approach also uses a kernel smoother to create a mutation den-

sity, albeit using only one predefined scale. Despite finding fewer clusters (OncodriveCLUST

found 5185 clusters in 514 genes), we find that multiscale clusters tend to be larger and have

more mutations. Additionally, multiscale mutation clusters cover (defined as>50% overlap)

48% of the alternative method’s clusters. On the other hand, OncodriveCLUST clusters cover

only 18% of the multiscale clusters. Finally, we note that M2C has 9% more coverage by protein

domains from Pfam compared to OncodriveCLUST (M2C has a total of 31% of multiscale

clusters located within or overlapping with protein domains). These statistics are summarized

in panels A-C of Fig 2.

We validated the M2C robustness by splitting our data set into two equally sized partitions

and running the algorithm separately on each partition. We then compared how clusters from

the different partitions overlap. We also make use the generative capabilities of the mixture

models underlying our algorithm to use each partition’s model to predict the data from the

other partition. In brief, we found that M2C robustness is dependent on mutation density;

clusters with many mutations, regardless of size, tend to be validated across the two different

partitions. Less populated small dense clusters are also well conserved. However, larger sparse

clusters are more poorly replicated between partitions. Despite these differences, the mixture
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models generated by each partition do a very good job predicting the data set in the other par-

tition (Fig 2D). For more details on our cross-validation tests, see the Methods section.

Associating clusters with gene expression data

In order to begin to gain an understanding of the functional consequences of mutations in differ-

ent clusters, we statistically associated gene expression data from TCGA by combining statistics

from all gene expression data (i.e., global associations) and from subsets of gene expression data

representing molecular pathways (i.e., pathway associations). The statistical associations were car-

ried out on binary vectors that indicate whether a sample in a specific tumor type had a mutation

in a specific cluster (1) or not (0). We refer to these binary vectors as cluster features. This associa-

tion pipeline works by combining P-values from Kruskal-Wallis tests between gene expression

data and cluster features with the Empirical Brown’s Method [25]. This methodology was chosen

because, in general, gene expression from a particular pathway is not universally upregulated or

downregulated due to cancer mutations. A summary of the results from these associations at dif-

ferent false discovery rates (FDR) can be seen in Fig 3. Further information on the association

analysis can be found in the methods section.

In order to assess the robustness of our association methodology, we performed a cross-val-

idation analysis. We measured two different robustness scores. “Association robustness” com-

pares the associations between two data partitions using the same underlying set of clusters.

Fig 2. Cluster Statistics Comparing Multiscale Clusters from M2C with the DBSCAN based method OncodriveCLUST

and Pfam domains. A) Cluster length histogram. B) Cluster mutation count histogram using all mutation types. C) Coverage with

competing method histogram and Pfam. Cluster X is said to overlap cluster Y if over 50% of cluster X is covered by cluster Y. D)

Cross-validation of mixture models: each circle shows the log-likelihood of the mixture model trained from partition 1 to generate

the data from partition 2 for a single gene (red circles). The opposite analysis, using partition 2’s mixture model to generate data

from partition 1, is also shown (purple x’s).

doi:10.1371/journal.pcbi.1005347.g002
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“M2C plus association robustness” compares two data partitions each used to generate their

own set of clusters which are subsequently analyzed for gene expression associations sepa-

rately. Our analysis finds association robustness at 80% and M2C plus association robustness

at 60%. This decrease is consistent with the observation that M2C robustness (described previ-

ously) is lower for lower scoring clusters, causing a decrease between partitions. However,

higher scoring clusters tend to have stronger associations, making M2C plus association

robustness higher than might be naively expected simply by combining M2C association

robustness and association robustness. Further information on the cross-validation can be

found in the Methods section.

We found that computing associations with gene expression comprises a complementary

approach towards ranking cancer genes when compared with other methods such as MutSig

[1]. We compiled a list of the top 67 genes from the MutSig rankings from across all cancer

types that represent many of the most important cancer genes (see section B in S1 Text). At a

FDR of 10%, 36% (a total of 24 genes) of the top genes contained at least one mutation cluster

that is associated with global or pathway changes in gene expression in a specific tumor type.

Our results from the gene expression analysis highlight that clusters of many different

length scales are associated with changes in gene expression, see S1 Fig. This corroborates the

fact that functional regions of genes can range in size from single amino acids to multiple pro-

tein domains. As discussed later, these associations are often more specific than associations

with any-non-synonymous mutation in the same gene. These results indicate the importance

Fig 3. Gene Expression Association Statistics. A) The number of cluster features (meaning clusters in the context of a tumor

type) analyzed for gene expression association broken down by tumor type and by clustering method. A single cluster can be

analyzed multiple times if it is present with greater than 4 mutations in multiple tumor types. B) The number of cluster features with

significant global gene expression associations (solid) and pathway gene expression associations (hatched). Two significance levels

(1% is lighter colors and 10% darker colors) are shown for each method. Here a cluster feature with multiple associations is only

counted once. C) The number of significant global gene expression associations found by each method at different significance

levels (1% is lighter colors and 10% darker colors). Hatched bars indicate associations with lower P-values than the corresponding

any non-synonymous feature for the same gene. Here cluster features with multiple associations are counted multiple times. D)

Same as (C) but for pathway gene expression associations.

doi:10.1371/journal.pcbi.1005347.g003
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of being able to dynamically determine multiscale regions of interest within genes in order to

better understand the spectrum of mutations underlying cancer.

Furthermore, we have found a number of cases where the association P-value between

a cluster feature and gene expression data (pathway or global) is lower than the association

P-value between the feature (variable) that encodes the occurrence of any non-synonymous

mutation. These cases are of special interest because cluster features (i.e. variables that encode

the presence or absence of a mutation in a particular cluster) are by definition subsets of the

feature that encodes all non-synonymous mutations. This means that cluster features have

fewer samples and thus less statistical power to detect associations with expression data. One

would statistically expect them to have correspondingly higher P-values. However, in many

instances we find that the opposite is the case. These decreased P-values provide additional evi-

dence that mutation clusters can have specific functional consequences and provide a more

nuanced view than considering an entire gene. A number of specific examples are highlighted

below and a full list of these cases can be found in T6A and T7A in S1 Tables. The pathway

association in T7A in S1 Tables also lists individual genes within a pathway with significantly

differential expression between samples with a cluster feature and without. We have also com-

puted pathway and global associations for samples which contain mutations not in any of our

clusters. At a false discovery rate of 10%, about 90% of clusters are more strongly associated

with a given pathway or global gene expression feature than mutations lying outside of all clus-

ters. In some cases, this is an indication that our clusters are strongly associated with changes

in gene expression. In other cases, the change in P-value can be attributed to the smaller sam-

ple size of mutations lying outside of all clusters. Therefore the comparison to the any non-

synonymous feature, which will always have a larger sample size than the corresponding clus-

ter feature, is more interpretable. A table of associations corresponding to the significant asso-

ciations in T6A and T7A in S1 Tables for samples which do not contain mutations in any

cluster can be found in T6D and T7D in S1 Tables. Note that associations were not computed

if fewer than 5 samples in a given gene and tumor type had non-synonymous mutations out-

side of all clusters.

Finally, we uncovered a few instances where different cluster features in the same gene are

associated at substantially different levels with gene expression data at the pathway or global

level. These may be instances of multifunctional genes where mutations in different regions of

the same gene have different functional consequences. In the following sections, we highlight

specific examples found in our analysis. We note that the following discussion is not exhaus-

tive and many more examples can be found by examining T6A S1 Tables (features associated

with global changes in gene expression) and T7A in S1 Tables (features associated with path-

way changes in gene expression).

As a further comparison to our method, we also analyzed global and pathway gene expres-

sion associations for OncodriveCLUST clusters and PFAM domains. Significant results for

OncodriveCLUST can be found in T6B in S1 Tables (global) and T7B in S1 Tables (pathway).

Significant results for PFAM domains can be found in and T6C in S1 Tables (global) and T7C

in S1 Tables (pathway). Fig 3 compares the number of cluster features with significant gene

expression associations and the total number of associations found by each method. At a false

discovery rate of 1%, M2C finds a slightly higher percent of clusters with lower P-values than

the corresponding any non-synonymous association when compared to OncodriveCLUST

and PFAM domains, at 29%, 28%, and 22%, respectively. As the false discovery rate is

increased, M2C continues to find a higher proportion of more strongly association clusters

than OncodriveCLUST, despite typically finding fewer significant associations in total. Inter-

estingly, at higher false discovery rates PFAM domains are the most likely to have a lower asso-

ciation P-values than the corresponding any non-synonymous association. The strong

Multiscale mutation clustering in TCGA

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005347 February 7, 2017 8 / 26



associations from PFAM domains are likely due to the overall large length and amino acid

counts inside these domains which has the drawback that they contain much less positional

information compared to the clustering methods. T8 in S1 Tables contains a more detailed set

of statistics similar to those shown in Fig 3.

Clusters associated with global changes in gene expression

We identified highly cancer-related clusters in specific tumor types that are significantly asso-

ciated with global changes in gene expression. In the cases of PIK3CA and GATA3, different

clusters have widely different association levels with global changes in gene expression. This

may be a statistical indicator of different mutation clusters within a single gene affecting the

cellular environment in different ways. A full list of global gene expression associations can be

found in T6A in S1 Tables. Here, we highlight several well-known and novel clusters in the

cancer literature recovered by M2C:

Two of PIK3CA’s eleven mutation clusters are associated with global changes of gene

expression in breast invasive carcinoma: amino acid positions 539–547 and 1043–1049. We

note that the first clusters are significantly enriched for mutations in the following tumor

types: breast invasive carcinoma, head and neck squamous cell carcinoma, uterine corpus

endometrial carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma

(FDR< 1%). The second cluster is significantly enriched for mutations in breast invasive car-

cinoma and uterine corpus endometrial carcinoma (FDR< 1%). The 539–547 cluster contains

three previously studied residues in an α-helical region which have been shown to increase the

enzyme’s activity [22]. A hotspot point mutation at 1047 inside the 1043–1049 mutation clus-

ter has been speculated to affect the position and mobility of the activation loop [27]. Interest-

ingly, despite approximately 20% fewer mutations, the 539–547 cluster has a much lower

global gene expression association P-value (about 6 orders of magnitude smaller), signifying

that perhaps mutations in this cluster have different functional consequences. As seen in Fig

4A the 539–547 region of PIK3CA may be directly involved in binding to PIK3R1, providing

another interpretation for the large association with changes in gene expression [28]. As one of

the best studied cancer genes, it is unsurprising that many additional associations and cluster-

tumor enrichments exist for PIK3CA which are detailed in our S1 Tables.

ROBO3 has a cluster from 195–509 which overlaps with 4 lg-like C2 domains [29]. This

cluster is associated with global changes in gene expression in uterine corpus endometrial car-

cinoma. The cluster is also enriched for mutations in lung adenocarcinoma (FDR< 5%), as

well as in uterine corpus endometrial carcinoma (FDR < 1%). Previously, increased levels of

ROBO3 expression have been associated with metastasis in pancreatic cancer [30]. However,

to our knowledge somatic mutations in this region have not been extensively studied. Further-

more, we note that ROBO3 is ranked only 15540 in MutSig for uterine cancer [1]. Thus this

gene might be a candidate for further study of its role in uterine corpus endometrial carcinoma

and possibly the other tumor types mentioned above.

GATA3 has a subset of three clusters in breast invasive carcinoma all containing predomi-

nantly nonsense (i.e. frameshift, indel, or stop) mutations: amino acids 325–334 with 15 muta-

tions, amino acids 390–421 with 22 mutations and amino acids 429–443 with 15 mutations.

We note that the most densely populated of these clusters occurs after the zinc finger binding

domain while the first cluster occurs within the binding domain [29]. Interestingly, the 390–

421 cluster is substantially more associated with global changes in gene expression than either

of the other two clusters with a P-value nearly 2 orders of magnitude lower. Different GATA3
mutations have been associated with Luminal A and B subtypes of breast cancer [31] and

Multiscale mutation clustering in TCGA
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changes in survival prognoses [32]. We note that all three of these clusters are enriched for

mutations in breast invasive carcinoma (FDR<1%).

Clusters associated with pathway level changes in gene expression

We identified significant pathway associations with clusters in specific tumor types. These

pathway associations go beyond simply implicating certain mutation clusters in cancer by

shedding light on possible phenotypic effects of each cluster. At a false discovery rate of 10%,

all of the genes associated with global changes in gene expression were also associated with at

least one pathway (and usually with many pathways).This included 24 of 67 top ranked cancer

genes from MutSig. These results are not surprising because each set of genes in a pathway is a

subset of the global gene expression data. However, we note that by restricting our analysis to

individual pathways, novel clusters associated with gene expression changes were detected

indicating that this analysis is more nuanced. For a complete list of cluster pathway associa-

tions see T7A in S1 Tables. This table also included specific gene expression features in each

pathway which are strongly associated with a mutation cluster. Below we discuss several exam-

ples of specific clusters which are associated with pathways but are not associated with global

changes of gene expression.

Fig 4. Clusters Highlighted in Protein Structures. A) PIK3CA (gray) bound to PIK3R1 (orange). PIK3CA has two clusters (539–547 in green and 1043–

1049 in blue) with very different global gene expression association significance levels in Breast Cancer (BRCA) discussed in the text. B) Residues 30–40 of

CTNNB1 (blue) bound to BTRC (gray). This region of Beta-catenin is inside the 25–45 cluster which contains degradation regulating phosphorylated amino

acids and is strongly associated with global gene expression changes in uterine corpus endometrial carcinoma (UCEC) and liver hepatocellular carcinoma

(LIHC). Bottom bars in both plots show linear protein sequences with additional clusters in dark gray and PFAM protein domains in light gray. Mutation count

histograms are shown for specific tumor types above the sequence with green dots representing synonymous mutations, blue dots representing missense

mutations, and yellow dots nonsense mutations. Protein images created using UCSF Chimera [26].

doi:10.1371/journal.pcbi.1005347.g004
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ZBTB20 has a cluster from 681–714. This cluster is associated with 9 pathways related to

angiogenesis and regulation of the cell cycle in gastric adenocarcinoma. Previously single nucle-

otide mutations in ZBTB20 have been associated with gastric cancer [33]. We hypothesize that a

larger region of the ZBTB20 gene as represented by this mutation cluster may be involved in

gastric oncogenesis. Specifically, the frameshift deletions between the two zinc finger domains

likely disrupt DNA binding and the C-terminal function of the protein. We note that this cluster

is enriched in gastric cancer along with two other clusters in ZBTB20, 190–248 and 345–504

(FDR< 1%). The 190–248 cluster is also enriched for mutations in low grade glioma (FDR<

10%).

PPP2R1A has a cluster from 167–183 that overlaps a HEAT domain motif [34]. This cluster is

associated with pathways related to cell differentiation and MAPK signaling in uterine corpus

endometrial carcinoma. This gene has also been implicated previously in uterine and ovarian

cancer [35]. This cluster is enriched for mutations in uterine corpus endometrial carcinoma and

uterine carcinosarcoma (FDR< 1%). Additionally, the 237–275 in PPP2R1A is enriched for

mutations in lung squamous cell carcinoma and gastric cancer (FDR<10%). The 391–490 clus-

ter is enriched for mutations in uterine corpus endometrial carcinoma (FDR<1%).

CHD4 is a chromatin helicase remodeling protein. It has a cluster from 945–1016. This clus-

ter is associated with two pathways in uterine corpus endometrial carcinoma. One of these

pathways is signaling events mediated by HDCA Class II, which is thought to form a complex

which includes CHD4 [36]. The above selection of examples is by no means exhaustive. Addi-

tional examples can be found and investigated in more depth by examining T7A in S1 Tables.

Clusters can produce stronger pathway and global gene expression

associations

We identified statistically significant clusters in specific tumor types with a lower combined

P-value across all gene expression features than the corresponding any non-synonymous

mutation feature in a specific tumor type. These results are annotated in T6A in S1 Tables. As

examples, this analysis picks up two well-known mutation sites. Our algorithm detected a clus-

ter in BRAF from amino acids 600 to 601 which is more significantly associated with global

changes in gene expression (P<10−13 with 106 non-synonymous mutations) in skin cutaneous

melanoma despite having fewer mutations than the any non-synonymous feature (P<10−10

with 126 total non-synonymous mutations across the entire gene). Similarly, in thyroid carci-

noma the 600–601 mutation cluster has 235 non-synonymous mutations and is more signifi-

cantly associated to global changes in gene expression (P<10−82) than any-non-synonymous

mutation which has 237 total non-synonymous mutations (P<10−80). These are common

mutations previously implicated in cancer [37].

Additionally, the 25–45 amino acid region of Beta-catenin (CTNNB1) is found to be more

significantly associated with global changes in gene expression (P<10−24 with 67 non-synony-

mous mutations in the cluster) than all non-synonymous mutations in the gene (P<10−21 with

80 total non-synonymous mutations in the gene) in uterine corpus endometrial carcinoma. A

similar result is seen in liver hepatocellular carcinoma where the cluster is more significantly

associated with global change in gene expression (P<10−14 with 37 non-synonymous muta-

tions in the cluster) than all non-synonymous mutations in the gene (P<10−12 with 53 non-

synonymous mutations). This cluster is also enriched for mutations Adrenocortical carcinoma

(FDR< 5%), uterine corpus endometrial carcinoma (FDR< 1%) and in liver hepatocellular car-

cinoma (FDR< 1%). Beta-catenin is known to be implicated in numerous types of cancer [38].

This region corresponds closely to a region of phosphorylated peptides along the CTNNB1 chain

which are known to regulate the degradation of CTNNB1 [39,40]. Fig 4B shows the structure of
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the N-terminus region of Beta-catenin located within the 25–45 amino acid cluster bound to the

WD40 domain of β-TrCP1 (BTRC) [41]. Mutations in this cluster are likely to affect this binding

and thereby the regulation of Beta-catenin. The fact that this region is not an annotated protein

domain illustrates the flexible nature of M2C in picking out different kinds of functional regions

of interest.

We also identified cluster pathway associations in specific tumor types with lower pathway-

cluster P-values than the corresponding any non-synonymous mutation feature in the same

tumor type. These results are annotated in T7A in S1 Tables. One example is the 248–254 clus-

ter in FGFR3 in bladder urothelial carcinoma. Point mutations in this region have been previ-

ously implicated in low grade glioma tumors [42]. We note that mutations in this region are

more significantly associated with 10 pathways than the any non-synonymous feature. These

pathways are involved in a large number of molecular processes ranging from cell cycle control

to Reelin signaling. This suggests diversity in the role of FGFR3 as an oncogene in bladder can-

cer. This cluster is also enriched for mutations in both bladder cancer (FDR < 1%) and lung

squamous cell carcinoma (FDR< 10%). Another example is the 88–98 cluster in PGM5 in gas-

tric adenocarcinoma which is more significantly associated with 12 pathways when compared

to any non-synonymous mutation in the same gene. We note that this cluster is enriched for

mutations in gastric cancer (FDR < 1%) and the 456–522 cluster is enriched in lung adenocar-

cinoma (FDR< 5%). Although PGM5 has been ranked as a possible cancer gene according to

MutSig, to the best of our knowledge this particular region has not been studied.

These cases demonstrate how decreasing sample size by considering a specific cluster as

opposed to a specific gene can provide a more nuanced lens for finding statistical associations

and aid in inferring the functional consequences of mutations. This occurs because clusters

can represent functional regions of a gene and thereby limit the analysis to mutations within

that region. This spatial specificity has the effect of excluding background mutations outside

the cluster from the analysis.

Pathway associations reveal differential functions of mutation clusters in

the same gene

PTEN has two clusters that are associated with global changes in gene expression in uterine

corpus endometrial carcinoma. The first of these clusters from 39–52 has 9 mutations, 8 of

which are nonsense mutations. The second cluster from 116–146 has 74 mutations which has

66 missense and 16 nonsense mutations. This cluster encompasses the P-loop of the protein

[43]. Additionally the first cluster is associated with 16 pathways including 5 not associated

with the second cluster. Similarly, the second cluster is associated with 51 pathways including

40 not associated with the first cluster. The differential associations between cluster features

found in PTEN are visualized in Fig 5.

FUBP1 has two clusters each with predominantly nonsense mutations with differential

pathway association in lower grade glioma. The 88–206 cluster overlaps well with a KH-1

domain which is involved in RNA and DNA binding [44]. The second cluster does not overlap

with any known domains [29]. One possible explanation is that nonsense mutations earlier in

the protein sequence result in total loss of function while nonsense mutations later in the

sequence only effect the end of the protein structure. This could result in differential effects

from mutations in these two clusters. See S2 Fig for an association heatmap.

E-Cadherin has 3 clusters with differential pathway associations in breast invasive carci-

noma. All these clusters have predominantly nonsense mutations. Of particular interest are

the second two clusters. The cluster from 144–222 occurs at the beginning of the first cadherin
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domain in the protein and the cluster from 644–733 occurs towards the end of the last (fifth)

cadherin domain in the protein [45]. It is possible that the 144–222 cluster interferes with the

ability of the protein to insert itself into the cellular membrane. On the other hand, the 644–

733 cluster may not interfere with membrane insertion and only affect the cytoplasmic part of

the domain. See S3 Fig for an association heatmap.

Mutation clusters help to explain differential drug response in cancer cell

lines

After having established that the location of a mutation in a gene, i.e. in a cluster identified by

M2C, is associated with differences in gene expression, we aimed to establish whether mutation

clusters could be therapeutically relevant. To this end, we applied the mutation clusters to a

large cancer cell line drug screening effort; the Genomics of Drug Sensitivity in Cancer

Fig 5. Differential Pathway Associations for PTEN clusters in Uterine Corpus Endometrial Carcinoma. Clusters without significant

pathway associations are omitted for clarity. A false discovery rate of 1% was used to filter for significance.

doi:10.1371/journal.pcbi.1005347.g005
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(GDSC) [46,47]. We chose to use drug response measurements in cancer cell lines as an indi-

cation of the functional importance of the mutation clusters.

Data obtained from GDSC included the drug response to 142 anti-cancer drugs across 714

cell lines as well as non-synonymous mutation calls for 77 known cancer genes across these

cell lines. First, we established that the clusters identified using M2C on the TCGA data were

enriched for mutations found in the cell lines. Specifically, for the 17 genes with at least 10

mutations across the cell lines, 14 showed strong enrichment of mutations in the M2C clusters

(p-value� 0.05, FDR� 5%, T12 in S1 Tables). For 12 of these genes, there were at least 5 cell

lines that had a mutation in one of the mutation clusters that we identified using M2C. We per-

formed association tests between the drug response for each of the drugs, as expressed in IC50

values, and the mutation clusters with at least 5 mutations as well as the any non-synonymous

mutation feature for these 12 genes. See Methods section for details.

Using an FDR of 10% we found 176 significant associations between the drug response of a

drug and either a mutation cluster (64) or the any non-synonymous mutation feature (112) of

a gene. Significant associations were found for all 12 genes across 77 of the 142 drugs. There

were 130 gene-drug combinations, where either or both a mutation cluster and the any non-

synonymous mutation feature of the gene were associated with the response to a drug. Inter-

estingly, of these 130 cases, there were 35 (27%) gene-drug combinations where a mutation

cluster in the gene showed a stronger association with drug response than the any non-synony-

mous mutation feature (T13 in S1 Tables).

Amongst these 35 cases, we found many known activating hotspot mutations of genes in

the MAPK pathway. Specifically, there are 10 drug associations with the BRAFmutation cluster

600–601, 6 with NRAS mutation cluster at amino acid 61 and 4 with KRAS mutation cluster

12–13. These well-known examples can be interpreted as a positive control of the importance

of considering mutation clusters compared to the mutations across the whole gene. Addition-

ally, there are 5 drug associations with the various mutation clusters that we found for tumor

suppressor TP53. This is consistent with TP53 being the most prominent tumor suppressor

gene. In Fig 6 we highlight two examples where drug response is more strongly predicted by a

mutation cluster than by any non-synonymous mutation in the same gene. First, we observed

that cell lines with mutations in the cluster 116–146 in PTEN strongly responded to mTOR

inhibitor Temsirolimus, whereas mutations across the entire gene showed only a small indica-

tion of drug sensitivity (Fig 6A). Second, we observed that cell lines with mutations in the clus-

ter 1043–1049 in PIK3CA showed a stronger response to a PI3K beta inhibitor than other

mutation clusters or the any non-synonymous mutation feature (Fig 6B). This corresponds

with our observation that in breast cancer this same mutation cluster is very strongly associ-

ated with global changes in gene expression compared to other clusters in PIK3CA.

These results provide additional support for the idea that it is important to consider muta-

tions in a specific region of a cancer gene, and not merely a single amino acid alteration or a

mutation anywhere in the entire gene.

Conclusion

We have identified multiscale mutation clusters in genes using a pan-cancer data set. Previous

approaches have focused on short (frequently single) amino-acid hotspots [7] as well as identi-

fying globally mutation enriched cancer genes [1]. Our method (M2C) dynamically combines

these two approaches by searching for variable-length regions of interest within individual

genes. We have shown that M2C clusters are indeed multiscale covering a wide range of length

scales and can be detected in genes with variable mutation density. These clusters frequently

overlap with protein domains, but also cover regions where no known domain exists. We
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show that many of the clusters found by M2C are representative of functional regions of pro-

teins where mutations have a larger effect in terms of influencing the hallmarks of cancer [48].

M2C represents a data driven approach towards systematically identifying regions of interest

inside of genes with many areas for further investigation and improvement. Firstly, any statis-

tical algorithm will only improve in accuracy as newer and larger data sets are generated. As

more cancer tumors are sequenced, we expect our method to detect more mutation clusters, in

particular novel clusters in under-studied cancer genes. Secondly, our mutation clustering

methodology is sequence based; we suspect that a three dimensional version of such a multi-

scale algorithm–which implicitly takes protein structure into account–would result in an

improvement in identifying functional mutation clusters. Approaches to detect mutation hot-

spots in 3D structures already exist [49] but they are not based on a multiscale framework. It is

likely that many of our one-dimensional clusters, if mapped onto the 3D structure of a protein,

would merge together. A future direction is to carry out this mapping and determine more

realistic structural mutation clusters. We also suspect that such an approach would further

increase statistical power.

In order to identify important clusters and shed light on their function, we examined cluster

gene-expression associations both globally and on a pathway level. In this analysis, we have

highlighted a number of clusters that we believe are strongly implicated as driver clusters in

diverse tumor types due to global gene expression associations. Additionally our pathway level

of analysis has helped reveal more specific functional associations between mutation clusters

and gene expression. Furthermore, we have shown that certain genes contain multiple clusters

that may have different functional consequences, suggesting that different mutations in these

genes may play different roles in cancer onset and progression based upon the location of the

mutation. Finally, we investigated whether mutation clusters are associated with drug response

data in cancer cell lines and found many mutation clusters which are associated with differen-

tial drug sensitivity. These findings emphasizes the importance of taking a flexible approach in

terms of identifying genomic features–specifically that neither an entire gene approach nor a

single amino acid approach is necessarily sufficient.

Availability

In order to facilitate exploration of our data, including mutation clusters and pathway associa-

tions, we have created an interactive graphical website: m2c.systemsbiology.net. The multiscale

mutation clustering algorithm has also been made publicly available: https://github.com/

IlyaLab/M2C. All significant results from our pipeline (including those from other methods)

can be found as a multi-tabbed excel document S1 Tables. These same tables are also available

as TSV’s from our website. Detailed descriptions of the tables and the data they contain are in

S1 Table Descriptions.

Methods

Identifying multiscale clusters

An initial list of 628 genes was compiled by taking the highest ranked genes from MutSig [1],

i.e. the most significantly frequently mutated genes, using a q-value threshold of 0.1. (The

Fig 6. A) Violin plot of the response of mTOR inhibitor Temsirolimus (IC50s, y-axis) across cancer cell lines. The cell lines are

grouped (x-axis) as wild-type PTEN (WT), depicted with gray markers and gray violin outline, cell lines with any non-synonymous

mutation in PTEN (Any), depicted in black, and cell lines with a mutation in one of the hotspots, depicted in blue. Mutation clusters

and any non-synonymous mutation features that are significantly associated with drug response (FDR<10%) are depicted in red. B)

Violin plot of the response of a PI3Kb inhibitor for mutation clusters in PIK3CA.

doi:10.1371/journal.pcbi.1005347.g006
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MutSig results that we used in this work are based on the October 2014 analysis run of the

Broad Institute TCGA Genome Data Analysis Center Firehose pipeline, available through

http://ezid.cdlib.org/id/doi:10.7908/C1K64H78 and http://gdac.broadinstitute.org/runs/

analyses__2014_10_17/data/). These genes were further filtered to ensure that there are in

total at least 15 mutations in each gene across all 23 cancer types considered. This resulted in a

list of 549 genes on which we ran our multiscale clustering algorithm. The cancer types consid-

ered are: ACC, BLCA, BRCA, CESC, COAD, GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG,

LIHC, LUAD, LUSC, OV, PRAD, READ, SKCM, STAD, THCA, UCEC, and UCS. Full names

can be found in T1 in S1 Tables. The raw mutation data we used for clustering can be found in

T10 in S1 Tables.

Clusters are identified using all mutations combined from the pan-cancer data set to

increase statistical power. These files are created from TCGA mutation annotation format

(MAF) files and annotated with Annovar (section B in S1 Text) [50].

Our multiscale mutation clustering algorithm (M2C) identifies mutation clusters at multi-

ple scales. Each scale represents different sized genetic features. First, M2C converts TCGA

mutation calls in amino acid space from all 23 cancers into multiple continuous probability

density functions (Fig 7A and section C step 1 in S1 Text). This smoothing is done using a ker-

nel density estimate (KDE) with a Gaussian kernel at 28 different bandwidths between 2 and

450 (amino acids units). Each bandwidth represents a different length scale of amino acid fea-

tures ranging from single amino acids to entire protein domains (Fig 7B and section C step 2

in S1 Text). These KDEs are each used to seed a multivariate mixture model consisting of n
Gaussians and 1 uniform distribution, where n is the number of local maxima in a given KDE.

The noise weight is initially estimated by the fraction of synonymous mutations in the gene.

Fig 7. Multiscale Information-Based Clustering Algorithm. A) Pan-cancer mutation data is merged across all 23

tumor types for a single gene (PTEN). B) Gaussian kernel density estimates smooth this data at 28 different bandwidths

or scales (a limited selection is shown for clarity). C) Each kernel density estimate is used to seed a multivariate mixture

model of normal distributions and a single uniform distribution to represent background noise. Initial guesses for the

locations of the normal distributions are determined from the local maxima of the kernel density estimates. Clusters from

the mixture models (blue) are merged together using the greedy algorithm resulting in a final set of multiscale clusters

(red). Green are duplicates of the red clusters and shown to clarify the process. Grey bars are excluded due to too few

mutations. D) A mutation spectrum for PTEN. E) The two annotated protein domains in PTEN from PFAM.

doi:10.1371/journal.pcbi.1005347.g007
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The means of each Gaussian are initialized as the locations of the local maxima of the KDE.

The standard deviation of each Gaussian is set as the distance between the two adjacent local

minima around a given maxima. Finally, the weight of each Gaussian in the mixture model is

estimated by the density at the local maxima minus one-nth of the noise weight (section C step

3 in S1 Text). An expectation maximization (EM) algorithm then optimizes the mixture model

(Fig 7C blue bars). This process results in a set of clusters for each scale.

In order to generate a single set of multiscale clusters, the mixture models from each differ-

ent scale are merged using a greedy algorithm. The clusters resulting from the EM algorithm

for each scale with at least 15 mutations are placed in binary tree using Scipy’s hierarchical

clustering function (section C step 4 in S1 Text). The cutoff of 15 was chosen to ensure that

clusters had sufficient mutations for further statistical analysis. The unsigned area between the

two Gaussian curves is used as the distance metric. The binary tree is flattened using a recur-

sive greedy algorithm to minimize the Akaike Information Criteria with finite size correction

(AICc) [51]. In short, given any two sets of clusters the algorithm finds the set of non-overlap-

ping clusters which minimize the AICc. Although the enumeration of all non-overlapping sets

of clusters is a computationally costly problem, by placing the clusters in a tree and performing

this enumeration recursively the scale of the problem is reduced (section C step 6 in S1 Text).

M2C results in a single set of non-overlapping multi-scale clusters (Fig 7C red bars). We refer

to clusters as a pair of amino acid positions x-y with x being the start of the cluster and y being

the end of the cluster.

Scoring M2C clusters

The score, Sc, of cluster c, is given by the log of the ratio of the emission probability of the

mutations in the cluster with the emission probability of the same mutations based upon the

null hypothesis of a uniform mutation distribution across the cluster,

Sc ¼
XN

i¼1

log
GðMi; mc; scÞ

U
:

M is the set of all N pan-cancer mutations in cluster c. G(x; μc, σc) is the normalized Gauss-

ian distribution with mean μc and standard deviation σc representing the unweighted compo-

nent of the mixture model corresponding to cluster c. Finally U = L-1 is the emission

probability of single mutation by a uniform distribution over the gene containing the clusters

of length L (in amino acids).

Multiscale mutation algorithm cross-validation analysis

In order to test the robustness of the M2C algorithm (referred to as M2C plus robustness), we

split the entire underlying mutation data into two partitions and used each partition to gener-

ate a new mixture model for each gene. We then compared the resulting clusters from each

partition. First, we compared the log-likelihoods of the mixture model on the training data (i.e.

data from the partition which generated the model) to the log-likelihood of the mixture model

on the validation data (the other partition). The log-likelihoods of the two models are highly cor-

related; Spearman correlation = .99, P�0. These results are plotted in Fig 2 and indicate that the

statistical model underlying M2C is robust. We also calculated the percent of clusters conserved

between the two partitions. We define ‘conserved’ to mean that for two clusters in the same gene

from different partitions, one of the clusters overlaps the other by at least 50%. Our cross-valida-

tion analysis shows that on average M2C robustness is about 40%, meaning about 40% of clusters

are conserved. However, we further note that smaller denser clusters are more highly conserved
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and overlap by a greater percentage between partitions than large sparse clusters. The cluster

score provides a good indication of how robust a cluster is likely to be, as shown in S4 Fig.

Characterizing clusters

We compared M2C to a different greedy clustering algorithm that had already been applied to

TCGA data [7]. We ran the alternate method on the same data using default parameters and

compared the resulting clusters to the multiscale clusters by looking at length, mutation

counts, and how the different clusters overlap with each other and annotated protein domains

from PFAM [34].

Cluster cancer type enrichment analysis

To determine whether specific cancer types are enriched for specific mutation clusters, we

used Fisher’s exact test to calculate an enrichment P-value. A contingency table for each cluster

cancer type pair was created across the pan-cancer set of samples based upon the two Boolean

variables: 1) Is the sample inside the cluster and 2) Does the sample belong to the cancer type

being analyzed. These results were then tested for significance together using the Benjamini–

Hochberg method [52] with results at false discovery rates of 1%, 5%, 10% and 25% reported

in T5 in S1 Tables.

Integrating clusters with gene expression data

We created 23 binary feature matrices, one for each cancer type. A binary feature matrix repre-

sents which tumor samples contain mutations in which clusters. A tumor sample is said to be

positive (1) for a given cluster if it contains a non-synonymous or nonsense mutation within

the cluster (see boxes B and C of Fig 7 for an illustration). Additionally we defined an ‘any

non-synonymous mutation feature’ for each gene. A gene is said to have any non-synonymous

mutation if it contains a non-synonymous mutation inside or outside of a cluster.

We used the binary feature matrices to compare cluster assignments within tumor samples

to gene expression data from the TCGA. This analysis was carried out separately for each can-

cer type. We used a Kruskal-Wallis test between features in the binary feature matrix and 2194

gene expression features. These features were chosen based upon the genes in the NCI pathway

interaction database (PID) [53]. In each test, we used data from all tumors in each cancer type.

Cluster features and any non-synonymous features with fewer than 5 positive tumor samples

were excluded from this analysis. This analysis resulted in a set of P-values representing associ-

ations between cluster features and gene expression levels.

Gene expression pathway analysis

In order to improve statistical power and gain more detailed understanding of how clusters

affect molecular pathways, we combined P-values from the gene expression cluster associa-

tions. To combine P-values we made use of the Empirical Brown’s Method for combining

dependent P-values by taking into account the mutual correlation between genes in a pathway

[25]. First we combined all 2194 gene expression associations for each cluster. We call these

combined P-values global gene expression P-values. We then combined gene expression asso-

ciation P-values from each pathway in the PID. This resulted in a set of cluster pathway associ-

ation P-values. We carried out significance testing on the global and pathway associations

separately using the Benjamini–Hochberg method [52]. Fig 8 shows a schematic for the com-

plete data processing pipeline.
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Gene expression pathway association cross-validation

In order to ensure that our gene expression association pipeline is robust, we performed a

cross-validation analysis. We used this analysis to calculate to robustness metrics. Association

robustness measures the robustness of the gene expression association pipeline independently

of the clustering pipeline. M2C plus association robustness measures the gene expression asso-

ciation pipeline combined with the M2C algorithm. First, we selected a subset of our data cor-

responding to all gene-tumor type pairs with significant global or pathway associations. This

subset is made up of 369 significant pairs from 226 genes across 22 tumor types. For each of

these gene-tumor type pairs, we independently partitioned the entire data set into two parti-

tions each corresponding to an equal number of samples across all 23 cancers. This partition-

ing was done ensuring that the number of non-synonymous and synonymous mutations was

about equal between partitions. We then re-ran M2C on each partition, resulting in two sets of

clusters. For each set of clusters, we projected data from the training partition and the validat-

ing partition (only considering one specific tumor type) to generate binary cluster features.

We ran these features through our gene expression association pipeline and carried out signifi-

cance testing at a false discovery rate of 10%. To calculate association robustness, we compared

significant associations from the two partitions projected onto the same set of clusters and

found that 85% of significant associations were conserved between partitions. In addition, we

found a high correlation between the association log P-values between conserved significant

associations between partitions: spearman correlation = 0.76, P<10−73. To calculate M2C plus

association robustness, we further compared associations between different sets of clusters

(each generated by a different partition). For this comparison, we projected the data from a

given partition onto the corresponding clusters to generate feature vectors which were used

for the gene expression association analysis. An association is said to be conserved if that asso-

ciation is significant (at FDR = 10%) for two clusters in the same gene where either cluster cov-

ers the other cluster by at least 50%. Between separate sets of clusters, we found that 63% of

associations were conserved. The conserved associations also showed a high degree of correla-

tion in their log P-values: spearman correlation = .87, P<10−56. Cross-validation data is

included graphically in S5 Fig.

Calculating significant single gene expression features

In the pathway association table (T7A in S1 Tables), we have included lists of significantly dif-

ferentially expressed gene expression features within a pathway that are strongly associated to

a cluster (or any non-synonymous mutation). To determine if a gene expression feature is

upregulated or downregulated, we compared the mean gene expression for samples which

contained a non-synonymous mutation in that cluster (or any non-synonymous mutation) to

the mean gene expression for samples which do not contain such a mutation. We used the

Kruskal Wallis test P-values we had already computed in our analysis pipeline to determine

Fig 8. Statistical Methods Pipeline. A) 549 genes with a total of 33507 pan-cancer mutations are run through our multiscale

clustering algorithm resulting in 1295 clusters. B) Clusters are assigned to 4471 tumors samples across 23 tumor types

creating a binary feature matrix. A tumor sample is said to be positive for a cluster if there is any non-synonymous mutation in

the tumor and the cluster. C) The binary feature matrices are statistically compared to 2194 gene expression features

separately for each cancer type using the Kruskal-Wallis Test. D) The pairwise P-values from the Kruskal-Wallis tests are

combined globally and on the pathway level using the Empirical Brown’s Method across 172 Pathways. E) This resulted in

546810 association P-values.

doi:10.1371/journal.pcbi.1005347.g008
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significance, correcting for multiple testing separately for every pathway using the Benjamini–

Hochberg method at a false discovery rate of 1% [52].

Drug response analysis of cancer cell lines

We used a slightly expanded version of a previously published cancer cell line dataset [46,47].

Specifically, the dataset contained 714 cell lines and 142 anti-cancer drugs. The half-maximal

inhibitory concentrations at 72 hours (IC50s) obtained in this dataset were used to represent

the drug response. In this work, IC50s were recorded as the natural logarithm of the half-maxi-

mal inhibitory μM concentration. The drug screening dataset is incomplete, i.e. not all 142

drugs have been screened across all 714 cell lines. In total 81,700 IC50s were measured and

19,688 (19%) were missing values. The statistical tests were applied to each drug separately;

cell lines that lack an IC50 were not used. We did not impute missing IC50s. This cell line data-

set contains non-synonymous mutation calls for 77 known cancer genes across these cell lines

based on capillary sequencing. Additional information on these data is found in [46,47] and

on the Genomics of Drugs Sensitivity in Cancer webpages (http://www.cancerrxgene.org/).

The data as used in this manuscript can be found in T11 in S1 Tables.

For each of the genes, we created a binary ‘any non-synonymous mutation’ feature, which

was 1 for all cell lines with a non-synonymous mutation in the gene and 0 otherwise. Also, for

each of genes we created binary mutation cluster features using the clusters identified by M2C

on the TCGA data. Specifically, the binary mutation cluster feature is 1 when the cell line has a

non-synonymous mutation in the cluster and 0 otherwise. We discarded all features that had

less than 5 1’s. Then, for each combination of a binary mutation feature and a drug we applied

a simple Kruskal-Wallis test to test whether the group of cases (1’s in the binary mutation fea-

ture) had an equal median IC50 compared to the control group (0’s in the binary mutation fea-

ture). Low P-value indicates a significant difference in the median IC50s between the two

groups. P-values for all combinations are given in T13 in S1 Tables. Results were considered

significant at a FDR of 10%.

Supporting information

S1 Fig. Percentage of clusters with at least one significant gene expression association.

Pathway and global associations are both shown binned by cluster size. Under the cluster size,

n signifies the total number of clusters in each bin. Four different false discovery rates are

shown (1%: Red, 5%: Cyan, 10%: Green, 25% Blue).

(TIF)

S2 Fig. Differential Cluster Pathway Associations in FUBP1 in Brain Lower Grade Glioma.

Clusters without significant pathway associations are omitted for clarity. A FDR of 1% was

used to filter for significance.

(TIF)

S3 Fig. Differential Cluster Pathway Association in CDH1 in breast invasive carcinoma.

Clusters without significant pathway associations are omitted for clarity. A FDR of 1% was

used to filter for significance.

(TIF)

S4 Fig. Multiscale Mutation Clustering Cross-validation Heatmaps. Left) Average overlap

percentage for clusters from two partitions (binned by length and mutation count). Gray

boxes contain no items. Number of clusters in each bin is indicated by n. Right) Average clus-

ter score for the same binned clusters showing that this score is a reasonable proxy for
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robustness.

(TIF)

S5 Fig. Gene Expression Pathway Association Cross-validation Scatter Plots. Left) This

plot shows association robustness. Data was separated into two partitions A and B. Data from

A was used to generate the clusters (“training partition”). Data from B (the validation parti-

tion) is compared to A by projecting each partition separately onto the same set of clusters and

comparing the pathway associations. This process was then repeated with using B as the train-

ing partition and A as the validation partition on a different set of clusters. Right) This plot

shows M2C plus association robustness. Here, partition A and partition B were both used to

generate separate sets of clusters and the downstream association analysis was performed inde-

pendently. Cluster associations are matched if the one of the two clusters (from partition A

and B respectively) overlap the other by at least 50%.

(TIF)

S1 Tables. All Supplemental Tables. This document includes all the supplemental tables ref-

erenced in the manuscript as separate excel tabs. Detailed descriptions of these tables can be

found in S1 Table Descriptions document. The tables are also downloadable as individual

TSV’s from the M2C website, http://m2c.systemsbiology.net/.

(XLSX)

S1 Table Descriptions. Descriptions of all supplemental tables. This document contains

descriptions of the supplemental tables, including specific break downs of what information is

in each table and how it is formatted. The actual data can be found in S1 Tables as a single

excel spreadsheet or as individual TSV’s from http://m2c.systemsbiology.net/.

(DOCX)

S1 Text. Data, Methods, and Algorithm Details. This document contains detailed informa-

tion on where the data used in this work comes from, data processing steps, and an in-depth

description of the M2C algorithm.

(DOCX)
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