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ABSTRACT
Host immune factor plays an important role in the progression of latent tuberculosis infection (LTBI) to active
tuberculosis (TB) disease. However, whether global gene expression measured in blood biomarkers allows the
identification of prospective signatures for TB risk remains unknown. Hence, we aimed to assess the ability of the
transcriptome signatures in the human peripheral blood mononuclear cells (PBMCs) of LTBI subjects to differentiate
future TB progressors from non-progressors. In a randomized clinical trial of TB preventive treatment of 513
participants with silicosis, we randomly collected PBMC samples from 50 LTBI subjects in the observational group,
which was monitored for TB disease progression for 37 months. The prospective signatures of TB risk between the
two participants who developed active TB (progressors) and four matched individuals who remained healthy (non-
progressors) were compared using differential expression analysis, Gene Ontology analysis, Kyoto Encyclopedia of
Genes and Genomes pathway analysis, and Weighted Gene Co-expression Network Analysis. The 20 TB-specific
differentially expressed genes, which were significantly downregulated in TB progressors, were revealed to be
associated with interferon-gamma response-related genes. Therefore, the PBMC transcriptome profiles analyzed in
this study may help identify LTBI individuals who are at risk of progressing to active TB among silicosis patients and
may provide new insights for targeted intervention to prevent disease progression.
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Introduction

Tuberculosis (TB) remains as one of the most impor-
tant infectious diseases worldwide, with an estimated
global burden of∼1.7 billion (23.0%) for latent tubercu-
losis infection (LTBI) [1]. The lifetime risk of develop-
ing active TB for a documented LTBI person is
estimated to be only 5%–10%. Exposure to silica dust
or the development of silicosis predisposes toMycobac-
teria tuberculosis infection, and the TB risk increases
with the severity of silicosis [2]. Currently, diagnosis
of LTBI involves assessment of the reactivity to myco-
bacterial antigens, as determined by a tuberculin skin
test (TST) or an M. tuberculosis (MTB)-specific inter-
feron-gamma (IFN-γ) release assay (IGRA), which
can demonstrate the elicitation of a T cell-mediated
immune response caused by the infection. IGRA is

more reliable and has higher specificity due to low
cross-reactivity with most non-tuberculous mycobac-
teria and in cases with a previous history of vaccination
with the Bacille Calmette-Guérin vaccine [3]. However,
these tests cannot determine whether the infection has
been cleared, whether the infection is controlled in an
individual, whether the patient might have a subclinical
disease, or whether the patient will develop active TB;
therefore, neither IGRA nor TST can accurately predict
the risk of active TB development [4–7]. Furthermore,
these methods cannot completely describe the spec-
trum of infectious states after MTB exposure.

Previous studies have revealed that the heterogen-
eity of latent tuberculosis can be defined by the
blood transcriptome signature, which may provide
information on the temporal changes in host immu-
nity that are associated with active TB disease
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progression. Earlier identification of LTBI patients
with high risk of TB progression has considerable
potential for targeted preventive therapy and may pro-
vide novel strategies to curb the transmission of MTB.
Several sets of blood transcriptomic signatures associ-
ated with TB risk have successfully identified LTBI
subjects who progressed to active disease ≤18 months
before TB diagnosis [8,9]. However, consensus has not
been achieved regarding the optimal reduced gene sets
as potential diagnostic biomarkers for the accurate
identification of people at risk of developing TB before
the onset of symptoms.

In the present study, we used RNA sequencing
(RNA-seq) to assess the transcriptional signature of
peripheral blood mononuclear cells (PBMCs) and to
determine its potential in identification of the sub-
group at a risk of progression to active TB among
the LTBI subjects with silicosis. Better understanding
of the different immune responses to LTBI in people
with controlled infection (non-progressors) and
those who develop the disease (progressors) may
help in the prevention of TB.

Material and methods

Study cohort and design

This is a sub-study of an open-label, randomized clini-
cal trial which evaluated the efficacy and tolerability of
weekly rifapentine and isoniazid medication for three
months to prevent TB in individuals with silicosis
(ClinicalTrials.gov number: NCT02430259) [10]. In
the study, from February to April 2015, 513 patients
aged 18–65 years were randomly assigned between
the preventive treatment (n = 254) and observation
groups (n = 259). Twenty-eight participants were diag-
nosed with active TB, 9 and 19 in the preventive treat-
ment group and observation groups after 37 months
follow-up. Patients with immunosuppression, with a
previous history of TB or treatment for LTBI, and
those with HIV were excluded from the present
study. LTBI was screened using QuantiFERON Gold-
In-Tube (QFT). Fifty participants were randomly
selected according to simple unrestricted randomiz-
ation form 104 participants with LTBI of the obser-
vation group. After obtaining informed consent,

these 50 individuals were prospectively enrolled and
sampled, monitored for 37 months after enrolment,
examined every six months, and screened annually
for active TB. Active TB during longitudinal assess-
ment was diagnosed based on microbiological confir-
mation of MTB by culture or positive Xpert MTB/
RIF (Cepheid, Sunnyvale, CA, USA). Two LTBI sub-
jects who developed active TB (progressors) and four
LTBI subjects who did not develop active TB (non-pro-
gressors) were enrolled after adjusting for sex, age, sili-
cosis stage, and comorbidities (Table 1 and Figure 1).

The study protocol was approved by the ethics
committees of the First People’s Hospital of Wenling,
Zhejiang, China. All participants in the parent trial
agreed to participate in this study and provided writ-
ten informed consent.

PBMC preparation and antigenic stimulation

Human PBMCs were purified, collected, and diluted to
2.5 × 106 mL−1 using AIM-V. The PBMCs (500 μL/
well) were incubated with 10 ng/mL MTB (H37Rv)
cell lysate in culture media at 37°C with 5% CO2 for
20–24 h. The synchronous PBMCs were incubated
without antigen in culture media as un-stimulated
samples. The culture supernatant was discarded, and
the cells at the bottom of the well were resuspended
with 1 mL Trizol. The cells were harvested for sub-
sequent RNA extraction experiments.

Library preparation and RNA-seq

Total RNA was extracted from peripheral blood
samples using the RNA Easy Mini Kit (Qiagen, Hil-
den, Germany) following the manufacturer’s instruc-
tions. The RNA integrity number (RIN) was
measured using the Agilent Bioanalyzer 2100 system
(Agilent Technologies, Santa Clara, CA, USA). Only
samples with RIN values >8 were used to prepare
the RNA-seq library. Ribosomal RNA (rRNA) was
removed using the Ribo-Zero rRNA Removal Kit
(Epicentre, Madison, WI, USA). The strand-specific
sequencing libraries were constructed using the NEB-
Next® Ultra™ II Directional RNA Library Prep Kit for
Illumina® (New England Biolab, Inc., Ipswich, MA,
USA), according to the manufacturer’s instructions.

Table 1. Demographic and clinical features of two TB progressors and four non-progressors.
No.
patient Sex Age

Silicosis
categoriesa BMI

Current
smoker Comorbidities

Long-term drug use
(including steroid) TB diagnosis

Time to TB/follow-up
time (months)

107 Male 65 3 22.95 Yes None None Culture 27
129 Male 55 3 24.69 No None None GeneXpert.TB 36
162 Male 58 3 22.15 No None None – 37
165 Male 54 3 21.93 Yes None None – 37
170 Male 50 3 25.08 Yes None None – 37
173 Male 64 3 24.62 No Gallbladder

stone
None – 26

aSilicosis categories were determined according to the revised edition (2011) of ILO Guidelines for the use of the ILO International Classification of Radio-
graphs of Pneumoconioses.
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The lncRNA-seq libraries were sequenced (paired-
end, PE150) using the Illumina HiSeq X Ten platform
(Illumina, San Diego, CA, USA), with ∼40 million
reads obtained for each sample.

The gene expression patterns in 12 PBMC samples
derived from the 6 participants using RNA-seq. Two
PBMC samples were obtained from each participant,
one as the control (unstimulated) and one stimulated
with the MTB cell lysate.

RNA-seq data pre-processing, differential
expression analysis, and functional enrichment
analysis

The quality of the RNA-seq data obtained was assessed
using FastQC [11]. The raw sequencing reads were
pre-processed by trimming the adapter sequences
and by removing the >20 base pair (bp) long low-qual-
ity reads (Phred quality score <20). The filtered clean
reads were aligned to the human reference genome
(GRCh38) using Tophat2 [12]. Then, uniquely
mapped reads were assigned to each annotated gene
using featureCounts [13]. Differential expression and
statistical analyses were performed using DESeq2
from the R package [14]. Annotated sequences with
absolute log2-transformed fold changes (log2FC) >1
and P-values <0.05 were considered as differentially
expressed genes (DEGs). Principal component analy-
sis was performed on all normalized expression data
using prcomp package with R. The PCA plot demon-
strated top 2 PCs for each sample.

To determine the Gene Ontology (GO) terms [15]
and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [16] associated with the DEGs,

functional enrichment analysis (PCA) was conducted
using the clusterProfiler package [17], with the threshold
set to P-value <0.05. GO terms were used to describe
gene functions and to classify the DEGs into three func-
tional categories, namely biological process (BP), cellular
component (CC), and molecular function (MF).

Weighted correlation network analysis
(WGCNA)

A co-expression network was constructed (β-value =
18), in which genes were clustered into branches of
highly expressed genes and modules were identified
by the tree cut algorithm with the additional PAM
stage. Two binary variables, TB progressor and non-
progressor, were generated and used to calculate the
module trait relationships in both MTB lysate unsti-
mulated and stimulated samples. Additionally, a
between-group Kruskal–Wallis test was applied to
the Module Eigengene (ME) values to detect overall
differential gene expression. The modules were then
functionally annotated using clusterProfiler package.

Protein–protein interaction (PPI) network
construction

The PPI data were obtained from the Search Tool for
the Retrieval of Interacting Genes (STRING) database.
The PPI network was constructed using the TB-
specific DEGs, with a confidence score of >0.9. The
gene networks were subsequently generated using
STRING: functional protein association networks
v11 [18] to further assess the complex associations
among the TB-specific DEGs.

Figure 1. Flow diagram of data collection and analysis. PBMC: peripheral blood cells; GO analysis: Gene Ontology analysis; KEGG
analysis: Kyoto Encyclopedia of Genes and Genomes analysis; WGCNA: Weighted correlation network analysis; GSEA: Gene-set
enrichment analysis.
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Results

Different gene expression patterns between TB
progressors and non-progressors

RNA-seq of the messenger RNAs (mRNAs) and
lncRNAs provided data on a total of 16,015 mRNAs
and 15,787 lncRNAs. The PCA plot based on gene
expression profiles clearly distinguished between the
stimulated and unstimulated samples, as well as the TB
progressors and non-progressors (Figure 2(A)). A total
of 1608 DEGs were identified in the unstimulated
samples, with 487 upregulated and 1121 downregulated
DEGs inTB progressors. On the other hand, 2359DEGs
were identified in the stimulated samples, with 950 upre-
gulated and 1409 downregulated DEGs in TB progres-
sors. Heatmap analysis by hierarchical clustering
illustrated the gene expression profiles between the
stimulated and unstimulated samples and between TB
progressors and non-progressors (Figure 2(B)). The
expression profile of TB progressors was highly distinct
from the non-progressors. The distribution of all DEGs

was plotted on a volcano map using -log10 false discov-
ery rate (-log10FDR) and log2FC values (Figure 2(C)).
Furthermore, the DEGs that were common in TB pro-
gressors and non-progressors and in stimulated and
unstimulated samples were identified (Figure 2(D)),
which revealed that most DEGs were unique to a single
pairwise comparison. In particular, 972 downregulated
and 837 upregulated TB-specific DEGs, which were
differentially expressed in the stimulated samples only,
were also identified in TB progressors.

Functional characterization of DEGs

To characterize the biological functions of the DEGs
between the TB progressors and non-progressors,
GO analysis was performed. The top enriched GO
terms in BP comprised processes predominately
related to the immune response (Figure 3(A) and
(B)). Most DEGs involved in the immune response
were downregulated in TB progressors, thereby indi-
cating the absence of host defense against MTB in

Figure 2. Transcriptional patterns of peripheral blood mononuclear cells defining stimulated and un-stimulated, TB progressors
and non-progressors. (A) Principal component analysis diagram. (B) Unsupervised hierarchical clustering of transcribed genes and
differentially expressed over 1.5-fold for 12 PBMC samples. (C) Volcano plot shows the upregulated and downregulated tran-
scribed genes between TB progressors and non-progressors. (D) Venn diagrams showing overlaps of TB-specific genes changes
between TB progressors and non-progressors. TB progressors: P107 and P129; Non-progressors: P102, P105, P170 and P173. A:
PBMCs stimulated by TB antigen, N: PBMCs incubated without TB antigen.
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these individuals. Interestingly, DEGs related to IFN-γ
were only enriched in the stimulated samples. The five
most enriched GO terms in CC and MF were also
identified (Figure 3(A) and (B)). Additionally, KEGG
pathway analysis revealed that most DEGs in both
unstimulated and stimulated samples were associated
with various pathways, including the pathway for
tuberculosis (Figure 3(C) and 3(D)).

To assess the gene expression profiles associated
with TB progression, WGCNA was performed. The
genes were clustered according to their co-expression,
thereby revealing a network with 10 co-expression
modules (Supplementary Fig S1). The ME value,
which is the first principle component that functions
as a representative of the module, was calculated
from each module. The ME values were correlated
with the variables that represented the TB progressors
and non-progressors. Results showed that the ME
values of the turquoise and pink modules were posi-
tively correlated with the TB progressors in the stimu-
lated samples, while the ME value of the blue module
was negatively correlated with the TB progressors in
the stimulated samples. The top enriched GO terms
associated with the turquoise and pink modules were
“T cell activation” and “leukocytes differentiation,”
while the top GO term associated with the blue mod-
ule was “regulation of innate immune response”
(Figure 4). Overall, these results suggested that T cell

activation genes were more highly expressed than
innate immune response genes in TB progressors.

PPI networks in TB-specific DEGs

Based on the findings of DEGs and their enriched func-
tions, innate immune response in stimulated samples
were heighted in TB-progressors. To narrow down the
related DEGs in TB progression, STRING was used to
construct thePPInetwork and to explore the associations
of genes (at the protein level) involved in TB progression
among LTBI individuals. TheTB-specificDEGs between
TB progressors and non-progressors were only differen-
tially expressed in the stimulated samples, which were
more relevant to the host immune response to MTB. A
total of 972 downregulated and 837 upregulated TB-
specific DEGs comprised two sub-networks. Sub-net-
work1 was larger, with 186 nodes and 726 edges (Sup-
plementary Fig S2), while sub-network2 had 11 nodes
and 78 edges. Among the DEGs identified, we found
that the genes associatedwith the IFN-γpathway, includ-
ing IFNG, EDN1, MT2A, SLC11A1, CD274, IL1B,
PDCD1LG2, LTA, ICAM1, CXCL16, GBP6, TLR2,
CCL3, SOCS3, TNF, GAPDH, PTAFR, HCK, IL10, and
RIPK2, were highly enriched. Interestingly, these genes
were significantly downregulated in TB progressors
(Figure 5), suggesting the absence of IFN-γ response to
MTB after TB-specific antigenic stimulation.

Figure 3. Different gene expression and functional enrichment analysis of TB progressors and non-progressors using un-stimu-
lated (left) and stimulated (right) samples. (A–B) DEGs was applied to GO analysis in BP, CC and MF. (C–D) DEGs was applied to
KEGG analysis.
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Discussion

The heterogeneity of LTBI was suggested in previous
studies, which indicated a heterogeneous risk of devel-
oping TB. In the present study, we confirmed that the
transcriptional signatures of latent TB-infected

participants with different TB risks were significantly
different. We found that there were different gene
expression profiles between TB progressors and non-
progressors in both the stimulated and unstimulated
PBMC samples of participants with LTBI. The DEGs

Figure 4. Modular transcriptional signatures of TB progressors compared to non-progressors. Fold enrichment scores derived
using QuSAGE are depicted, with red and blue indicating modules over- or under-expressed. Colour intensity and size represent
the degree of enrichment.

Figure 5. Normalized expression value of twenty discriminatively expressed TB-specific genes related with type II interferon
between TB progressors (red) and non-progressors (blue). Kruskal–Wallis tests were used to compare the differences among
the two groups. **Significant difference: 0.001 < P < 0.01; ***Significant difference: P < 0.0001. Log2 fold changes and P value
were listed on the right.
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were also found to be functionally associated with
immune, defense, and cellular responses and several
KEGG pathways, including the pathway for TB. PPI
network construction further revealed that TB-specific
DEGs were associated with IFN-γ-related pathways, in
which all 20 TB-specific DEGs were significantly
downregulated in TB progressors. These results
suggest that it is possible to predict the progression
from latent to active TB disease using PBMC baseline
gene expression.

The infection of MTB can result in three different
outcomes – active disease, latent infection, and clear-
ance – depending on both pathogen and host immune
responses. However, the immune response mechan-
ism elicited in the host after MTB exposure is not
fully elucidated, especially since there is limited infor-
mation about host factors that determine infection
control versus progression. Blood transcriptomic
profiling may provide an unbiased analysis and com-
prehensive overview of the host factors that are related
to tuberculosis status after MTB infection. RNA-seq is
a transcriptome-based technology that is quantitative,
sensitive, and unbiased. A longitudinal transcrip-
tomics analysis of cynomolgus macaques infected
with MTB, which represent the spectrum of clinical
outcomes observed in human TB patients, reported
an increased transcriptional activity of genes encoding
molecules involved in innate and adaptive immunity
[19,20]. Hence, it appears that the transcriptional
profiles of immune response might influence the fate
of infection.

In previous studies, the predictive signatures were
usually obtained through the transcriptomic analysis
of peripheral whole blood, which can be sampled
with convenience. In a longitudinal analysis of South
African adolescents with LTBI, Zak et al. [8] identified
a 16-gene expression signature for prediction of the
risk of TB disease progression from whole blood. In
another study, Suliman et al. [9] identified and vali-
dated a four-gene signature, RISK4 (GAS6, SEPT4,
CD1C, and BLK), to predict the risk of progression
to active TB disease in diverse African cohorts recently
exposed to TB (up to 2 years before disease onset). Sin-
ghania et al. [21] found that a whole blood TB-specific
20-gene signature was only minimally enriched in
most IGRA- contacts and transiently enriched in the
IGRA+ group, which did not progress to active TB.
Among the gene signatures previously validated,
only two genes, SEPT4 and SCARF1, were common.
Thus, the transcriptomic profile from whole blood
may not accurately represent the pathogenic events
in the lungs or the specific changes in immune
response during MTB infection. To minimize unre-
lated background noise and to simultaneously maxi-
mize MTB-specific host immune response, we
analyzed the MTB lysate-stimulated and unstimulated
PBMC samples collected from LTBI subjects. RNA-

seq revealed a significant difference in gene expression
patterns between the stimulated and unstimulated
samples, thereby indicating that the stimulation
using MTB lysate was effective. The differential gene
expression pattern in TB progressors was also found
to be distinct from non-progressors, suggesting that
the transcriptomic pattern was different in individuals
with latent infection with different TB risks. As
expected, genes involved in innate and acquired
immune responses were differentially expressed.
Additionally, KEGG pathway analysis revealed that
the pathway for tuberculosis was enriched in both
the stimulated and unstimulated samples.

The IFN-inducible signature is not common to all
inflammatory responses but is preferentially induced
in some diseases, which may potentially reflect host
protection or pathogenesis. In a previous study, a tran-
scriptomic signature dominated by IFN-inducible
genes was identified in the whole blood of patients
with active TB, but not in healthy controls or subjects
with LTBI [22]. This IFN-inducible gene signature
include genes downstream of both type I and type II
interferons. High and sustained levels of type I IFNs
(IFN-αβ) from the macrophage infected with MTB
have a deleterious effect in the control of TB [23].
On the other hand, type II IFNs (IFN-γ) has protective
immune responses to MTB bacilli [24]. After exposure
to MTB-specific antigen, the attenuated host type II
IFN response may result in disease progression.
Among the IFN-γ response-related genes, IFNG
(which encodes IFN-γ) was found to be significantly
downregulated in future TB progressors. When MTB
invades the host, the innate immune response is acti-
vated, which includes the production of IFN-γ by
natural killer (NK) and NK T cells. IFN-γ sub-
sequently activates the macrophages, which act as
the first line of host defense against the pathogen
[25]. Once antigen-specific immunity develops,
IFNG is produced by CD4 and CD8 T cells [26]. Pre-
vious reports have indicated that mice with disrupted
IFNG production are more likely to be infected with
MTB compared with wild-type mice [27]. The critical
role of IFNG in controlling MTB infection was also
previously reported in humans [28]. Thus, LTBI indi-
viduals who suffer from inherited disorders of IFNG-
mediated immunity after TB-specific antigen stimu-
lation are more likely to develop active TB. In this
study, another IFN-γ response-related gene, EDN1,
was also significantly downregulated in TB progres-
sors. EDN1 is a well-known vascular regulator; its
specific role in infectious diseases, including tubercu-
losis, are currently being elucidated. A mice model
showed that the inhibition of EDN1 activity by antag-
onism during MTB infection resulted in an increased
number and a greater severity of lung lesions, as well
as an increased bacterial burden [29]. Furthermore,
EDN1 is one of the macrophage host transcriptional
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enhancers during MTB infection that drives macro-
phage response via transcriptional activation of key
immune genes, such as TNF and CCL3 [30], which
are also significantly downregulated in TB progres-
sors. SLC11A1, a crucial determinant susceptible
gene of TB in mice and the most widely studied can-
didate gene for TB susceptibility in non-HLA genes,
was also revealed to be significantly downregulated
(log2FC = 1.5) [31]. Other genes involved in IFN-γ
response, such as CD274, IL1B, PDCD1LG2, and
ICAM1, were also proven to play a role in innate
immunity against TB [32–34]. Therefore, our results
suggested that LTBI individuals with insufficient
type II IFN response after exposure to MTB were
more likely to develop active TB.

Despite the new insights provided by our study,
there are some limitations that must be addressed.
First, the baseline PBMC samples of LTBI subjects
who further developed active TB are difficult to collect
because of the low incidence rate of active TB among
those subjects. So only two cases TB progressors were
included for transcriptome for analysis, which might
have resulted in reduced statistical power. However,
the two TB progressors and four controls were well
matched after adjustment for age, sex, HIV coinfection,
and previous TB disease. Further, in the process of
screening DEGs, genes with low expression levels in
all sampleswerefiltered out andwe not only considered
the P value, but also the log2FC differences between
sample groups. In addition, the PCA plot, hierarchical
clustering (heatmaps), andVenn diagrams showed that
the transcriptomic signatures were significantly differ-
ent in different groups. Thus, we think that the tran-
scriptome data were reliable for analysis. Second, the
analysis only focused on the subgroup with IGRA-
defined LTBI, despite a proportion of prospective TB
cases developing in subjects with IGRA-negative at
baseline. However, investigation of the spectrum of
LTBI using transcriptome analysis can accurately dis-
cover the underlying host immune mechanisms
involved; it is also practical to further assess the risk
of TB development among individuals with LTBI
under clinical settings. Third, we did not perform
PCR-based validation for an accurate representation
of the transcriptome profiles in TB progressors and
non-progressors. All these enrolled subjects were at
stage 3. Thus, we can speculate that the silicosis status
did not contribute to the observed varied transcription
profiles between the two groups. But more studies are
needed to investigate whether the transcription profiles
are different in patients with different silicosis cat-
egories. The finding of the present study should be
interpreted with caution in on the population. In
future, similar studies are warranted in other TB risk
population besides silicosis patients. Researches on
the mechanism of how impaired IFN-γ-pathway lead
to tuberculosis progression are necessary.

The present study provides new evidence that indi-
viduals with LTBI who progress to active TB (progres-
sors) exhibit an immune response which is different
from individuals with controlled infection (non-pro-
gressors). Understanding the immunological hetero-
geneity by studying the transcriptome profiles in
PBMCs may help elucidate the nature of protective
immunity and may provide new insights for facili-
tation of targeted preventative therapy for people at
a high risk of developing TB.
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