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A one-pot synthesis of epoxides from commercially available benzyl alcohols and aldehydes is described. The reaction proceeds

through in situ generation of sulfonium salts from benzyl alcohols and their subsequent deprotonation for use in Corey—Chaykovsky

epoxidation of aldehydes. The generality of the method is exemplified by the synthesis of 34 epoxides that were made from an array

of electronically and sterically varied alcohols and aldehydes.

Introduction

Epoxides have historically served as strategic functional groups
in target-oriented synthesis [1-4]. Common examples of their
utility include stereospecific ring opening [5-7], rearrange-
ments into carbonyls [8-17], and application to cascade or
domino reactions [18,19]. More recently, our group has used
benzyl epoxides for the photoredox generation of carbonyl
ylides which are leveraged in the synthesis of cyclic ethers [20].
This work has led us to search for a general and operationally
simple method to generate benzyl epoxides. One of the most
powerful methods to access epoxides is through the
Corey—Chaykovsky reaction [21] which uses sulfonium ylides
and their subsequent reaction with carbonyl groups. This reac-

tion has seen major advancement since its original disclosure,
particular in the area of asymmetric synthesis [22-24]. Other
notable advancements include the expansion of its scope by
using organic bases and a one-pot oxidation/epoxidation se-
quence of benzyl alcohols with manganese dioxide and an
exogenous sulfonium salt [25,26]. Despite these efforts, the
synthesis of epoxides using this powerful transformation still
often requires multiple steps due to the need to independently
synthesize the sulfonium salt. Typically, the salt is synthesized
from nucleophilic displacement of benzyl halides but the work
by Aggarwal and co-workers [27] has demonstrated that these
can be generated from inexpensive benzyl alcohols in the pres-
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ence of tetrafluoroboric acid and a thio-trapping agent. Unfortu-
nately, isolation of the salt was still required for use in epoxida-

tion of carbonyl groups.

Inspired by these aforementioned precedents, we hypothesized

that a process, using commercially available starting materials,

wherein the sulfonium salt could be generated in situ from
benzyl alcohols and deprotonated would provide an efficient
protocol for the synthesis of epoxides in a single reaction.
Herein, we describe the realization of this methodology and its
use in the synthesis of epoxides that are often unattainable by
standard epoxidation methods.

Results and Discussion

After evaluating numerous approaches toward the proposed
reaction and subsequent optimization, we found that the sulfo-
nium salt 2 (Scheme 1) could be generated in situ from benzyl
alcohol (1) in the presence of slight excess of tetrafluoroboric
acid in diethyl ether (HBF4-Et;O) and tetrahydrothiophene
(THT). Notably, the use of acetonitrile (MeCN) as a solvent
was critical for maintaining a homogeneous reaction and a
successful outcome. We also observed that sodium hydride
(NaH) was the only base that successfully afforded the desired
epoxide 3, typically in excellent and reproducible yields
(other bases screened included KO¢-Bu, LiIHMDS, TBD
[25], and KOH). Furthermore, diluting the reaction after forma-
tion of the sulfonium salt, and cooling it in an ice bath,
proved essential to control the exotherm caused by the depro-

tonation.

Having established a robust method, we then turned our atten-
tion to evaluating the scope of the reaction using three electroni-
cally varied benzyl alcohols 1, 4, and S (Figure 1) on a prepara-
tive scale (3 mmol, 5 mmol, 10 mmol). A range of aryl alde-
hydes worked well including para-nitro (7), ortho-methyl (8),
and para-methoxy groups (9). Other notable examples include
heterocycles, such as basic pyridines, thiophenes, and furans
16-18. Additionally, aliphatic 13 and 20 and alkenyl aldehydes

S
; ; THT (1.2 equiv)

HBF4-Et,0 (1.2 equiv)
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21 performed well providing synthetically useful quantities of
the desired epoxides. Finally, epoxides containing electron-defi-
cient aryl groups are also available with this method, as exem-
plified by the synthesis of compounds 22 and 23, which were
obtained in good yields on a 10 mmol scale. With respect to the
reactivity of the benzyl alcohols, electron-rich alcohol 4 showed
faster reaction rates and yields, presumably due to faster and
more efficient formation of the sulfonium salt through a
para-quinonemethide (p-QM) intermediate. Furthermore, the
lower diastereomeric ratios (dr) observed for benzyl alcohol
4 may be due to competing p-QM formation at the betaine
intermediate prior to epoxide formation through displacement
of THT. This is supported by example 9 which contained
a para-methoxy group at the aldehyde component but was
isolated as a single diastereomer [28]. Functional groups
that are not compatible with this method include phenols, esters,
and ketones (Figure 1). The latter is most likely due to
competing enolization of the ketone leading to undesired reac-
tivity [29].

Many of the epoxides that are of interest to us are highly
oxygenated on the aryl rings and can be used for the synthesis
of numerous bioactive molecules [27,30-34]. Attempts at
synthesizing one of these epoxides with the standard mCPBA
epoxidation (Scheme 2) led exclusively to rearranged aldehyde
24, presumably promoted by the carboxylic acid byproduct of
mCPBA. Unfortunately, attempts to remedy this by using
buffered conditions only led to an mCPBA-epoxide adduct 25
[35].

However, the one-pot reaction was highly successful with three
electron-rich benzyl alcohols 26, 27, and 28 all bearing multiple
oxygenation and with a large panel of electron-rich aldehydes
(Figure 2). The reaction was highly successful even when
both partners were poly-oxygenated (29—-32). Other notable
functionalities include heteroaromatics 34, alkenes 36,
halides 33 and 37, and a benzyl protected alcohol 38.

Furthermore, electron-donating groups were tolerated

|

S
o  MeCN[1M] 23°C BF4 (1.0 equw)
oS
©/\ -H,0 ©/\ Q NaH (4 equiv) ©
, MeCN [0.1 M]
(1.1 equiv) 0t023°C 91%, dr >20:1
1 2 3

Scheme 1: One-pot synthesis of epoxides from benzyl alcohols and aldehydes.
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Figure 1: Scope of the one-pot synthesis of epoxides from benzyl alcohols and aldehydes.

[ x

Ar
24

mCPBA

DCM, 23 °C

Cl

OMe
OMe 0

HQ O

O mCPBA Y—

MeO ” |
O AN OMe 1:1 DCM/sat. NaHC03 Ar Ar
MeO =

OMe 25

Scheme 2: mCPBA epoxidation of electron-rich stilbene derivatives.
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Figure 2: Scope of the reaction with electron-rich alcohols and aldehydes.

in all positions on the aryl groups (41-44). Although the
Corey—Chaykovsky reaction has been well studied, nearly all
the examples shown in Figure 2 represent new compounds and
an extension to this methodology.

Conclusion

In conclusion, we have developed a general and simple method
to access benzylic epoxides through the Corey—Chaykovsky
reaction between benzyl alcohols and aldehydes. This method
provides expedient access to epoxides from commercially avail-
able materials in a step and time economical fashion. In particu-
lar, we have demonstrated its applicability to the synthesis of
epoxides that were generally unattainable using the standard
mCPBA epoxidation.

Supporting Information

Supporting Information File 1

Experimental procedures and characterization for all new
compounds described herein.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-14-205-S1.pdf]
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