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Inflammation in the tumor bed can either promote or inhibit tumor growth. Peroxisome proliferator-activated receptor
(PPAR)a is a central transcriptional suppressor of inflammation, and may therefore modulate tumor growth. Here we show that
PPARa deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of the
endogenous angiogenesis inhibitor thrombospondin-1 and prevents tumor growth. Bone marrow transplantation and
granulocyte depletion show that PPARa expressing granulocytes are necessary for tumor growth. Neutralization of
thrombospondin-1 restores tumor growth in PPARa-deficient mice. These findings suggest that the absence of PPARa activity
renders inflammatory infiltrates tumor suppressive and, thus, may provide a target for inhibiting tumor growth by modulating
stromal processes, such as angiogenesis.
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INTRODUCTION
Non-neoplastic ‘‘host’’ cells, such as endothelial, stromal and

inflammatory cells, play a critical role in tumor growth; and genes

prognostic for cancer outcome may be expressed in the non-

neoplastic tissue compartment [1]. While tumor angiogenesis has

been intensely studied for more than two decades and has become

an accepted target in cancer therapy, it is only in the last few years

that inflammation has entered center stage of investigations into

non-cell autonomous processes in cancer.

Chronic inflammation in the tumor stroma has long been

known to contribute to tumor progression. Increased infiltration of

innate immune cells to the tumor, such as macrophages, mast cells

and neutrophils, correlates with increased angiogenesis and poor

prognosis [2,3]. In contrast, lymphocytic/monocytic inflammatory

infiltrates are sometimes associated with tumor inhibition and

a more favorable prognosis [3–5]. Recently, NF-kB, a central

positive regulator of inflammation, has emerged as a molecular

link between inflammation and cancer growth. NF-kB promotes

tumor growth not only in a cancer cell-autonomous manner by

transactivating anti-apoptotic genes, but it also stimulates in-

flammatory processes in the microenvironment that lead to the

production of tumor-promoting cytokines [6].

Conversely, PPARa, a ligand-activated nuclear receptor/

transcription factor, is a key negative regulator of inflammation.

Activation of PPARa by ligands inhibits inflammation [7] whereas

PPARa deficient mice exhibit enhanced inflammation [8]. Despite

PPARa’s role in suppressing inflammation, it appears to be

necessary and sufficient for rodent tumorigenesis [9]. In fact,

prolonged PPARa activation by peroxisome proliferators induces

hepatocarcinogenesis in rodents; conversely PPARa KO mice are

resistant to tumorigenesis induced by PPARa agonists [10,11].

This may be due in part to cell-autonomous effect of PPARa,

because it is expressed in many tumor cell lines [12,13]. Another

possibility is that in PPARa deficient mice, stromal processes, such

as inflammation, inhibit tumor growth, which results in micro-

scopic-sized tumors that remain dormant. The role of PPARa in

inflammation has been extensively studied in normal physiological

processes (wound healing) and cardiovascular diseases (atheroscle-

rosis) [14,15]; but the effect of PPARa mediated suppression of

inflammation on tumors has not been characterized. Here we

show that overt inflammation in the absence of PPARa in the host

tissue prevents tumor growth. This indicates that in contrast to the

emerging notion that inflammatory infiltrates promote tumors, the

specific nature of the inflammatory process must be considered

when linking inflammation to tumorigenesis.

RESULTS

Deletion of PPARa in Host Tissue inhibits Tumor

Growth and Metastasis
We used several murine models to determine how the increased

inflammatory response observed in the absence of PPARa affects

tumor growth and metastasis. Fi rst, we stably transformed mouse

embryonic fibroblasts (MEF) with SV40 large T antigen and H-ras

[16] to obtain isogeneic tumorigenic cell lines that were either wild

type (PPARa(+/+)MEF/RS) or lacked PPARa (PPARa(2/2)

MEF/RS). These two tumorigenic cell lines allowed us to

distinguish between the tumor cell- autonomous role and the host

tissue role of PPARa. We found that the growth of these isogeneic

tumors derived from both cell lines was almost completely

suppressed in KO host mice that lacked PPARa, but not in WT
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animals, p,0.0001 (Figures 1A and 1B). Although tumors derived

from MEFs deficient of PPARa were partially suppressed in WT

animals (by 41%), indicating a cell-autonomous role of PPAR in

tumor growth, a drastic effect in tumor suppression was observed

when the host was PPARa deficient both in the case of PPARa(+/

+) tumors (87% suppression) as well as PPARa(2/2) tumors (97%

suppression) (Figure 1C). These results suggest that the presence of

PPARa gene in the host animals is essential for tumor growth.

To examine the role of established tumor murine models we

first used WT and KO mice derived from WT (S1)6KO (S4)

crossmating. The growth of B16-BL6 tumor was almost com-

pletely inhibited in the PPARa KO (S1/S4) host, but was not

affected in PPARa WT (S1/S4) animals, p,0.0001 (Figure 1D).

This result suggests that presence of the PPARa gene in the host

tissue is essential to support tumor growth.

Given that the above results clearly suggest that the status of the

PPARa locus in the host affects tumor growth, we next evaluated

the growth of three PPARa-positive murine tumor models in

PPARa KO (S4) animals, including Lewis lung carcinoma (LLC),

metastatic B16-F10/GFP melanoma, and B16-BL6 melanoma,

p,0.001 (Figure 1E–G). LLC tumors have been reported to grow

aggressively at similar rates in the Sv129, C57BL/6 and Sv129/

C57BL/6 strains without evidence of transplantation immunity.

This suggests that disparity in either minor or major immuno-

histocompatibility genes does not affect tumor growth in these

models [17] (Figure S1). Macroscopic growth of LLC and B16-

F10/GFP tumors was completely suppressed in PPARa KO mice,

even when mice were monitored for more than 100 days post

implantation (Figure 1E–G). Similarly, tumor metastasis was also

suppressed in PPARa KO mice. When B16-F10/GFP melanoma

Figure 1. Tumor growth and metastasis are inhibited in PPARa knockout (KO) mice. PPARa wild type (WT) and PPARa KO mice were injected
subcutaneously or intravenously with various tumor cell lines; (n) = number of mice/group. (A–C) The growth of engineered PPARa(+/+) MEF/RS and
PPARa(2/2) MEF/RS tumors in PPARa WT and KO mice. (A) PPARa(+/+)MEF/RS tumor growth in PPARa WT ( gray) and KO ( brown) mice. (B) The
growth curves of PPARa(2/2)MEF/RS in PPARa WT ( gray) and KO ( brown) mice.(C) Columns summarize the inhibitory effect of PPARa (2/2)
tumor and host cells at day 30 post implantation (average6standard error of the mean). (D–F) The growth of different murine tumors in different
mouse strains. (D) The growth of B16-BL6 melanoma was compared in WTS1 ( gray), WTS1/S4 ( gray), KOS4 ( brown) and KO S1/S4 ( pink)
strains. WT S1/S4, PPARa WT second generation littermates from PPARa WT 129/S1 and KO 129/S4; KO S1/S4, PPARa KO second generation
littermates from PPARa KO 129/S4. (E) Lewis lung carcinoma growth in PPARa WT ( gray), PPARa KO ( brown) and C57BL/6 ( blue) mice. (F) B16-
F10/GFP tumor growth in PPARa WT, PPARa KO and C57BL/6 mice, blue insets demonstrate representative B16-F10/GFP tumors in PPARa WT and KO
mice on day 30 post implantation. Scale bar, 1 cm. (G) B16-BL6 melanoma was implanted in mice of indicated genetic backgrounds. Representative
B16-BL6 tumors in PPARa WT ( gray) and PPARa KO ( brown) mice on day 30 post implantation are shown (blue insets). Scale bar, 1 cm. (H–I)
Metastasis in PPARa WT and KO mice. H: Metastatic areas of B16-F10/GFP and PPARa(2/2)MEF/RS tumor cells at day 21 post-injection in lung and
liver of PPARa WT ( gray) and KO mice ( brown). I: Number of liver metastases in PPARa WT ( gray) and KO ( brown) mice injected with B16-
F10/GFP tumor cells (average6standard deviation).
doi:10.1371/journal.pone.0000260.g001
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cells and engineered PPARa deficient tumor cells, PPARa (2/2)

MEF/RS (see below) were injected via tail vein, 21 out of 21

PPARa wild-type (WT) mice died of lung and/or liver metastasis

by day 21. In contrast, the PPARa KO hosts suppressed metastatic

growth in lung and liver, reducing the infiltration of the tumor cells

from 50–70% of normal organ tissue area in the WT hosts to less

than 10% tissue area in PPARa KO animals (Figure 1H).

Furthermore, the incidence of metastasis, as measured by the

number of histologically identified metastatic foci, was strongly

suppressed in PPARa KO mice. The majority of microscopic

fields of liver sections in PPARa KO mice revealed only one or two

metastases compared to 4–5 foci in livers of WT hosts (Figure 1I).

Together these findings support the importance of PPARa expres-

sion in host cells for tumor development.

The non-growing PPARa(2/2)MEF/RS tumors in PPARa
KO mice prompted us to investigate whether these tumors were

just a mass of connective tissue or viable dormant microtumors,

a state in which tumor cell proliferation is balanced by cell death

[18,19]. Analysis of the small (,2 mm), non-growing lesions at the

injection site identified viable PPARa(2/2) MEF/RS large T

antigen expressing and proliferating tumor cells (Figure 2A). When

re-transplanted to PPARa WT mice, these tumors grew rapidly to

over 10,000 mm3 (Figure 2A) indicating that PPARa in the host

can rescue PPARa 2/2 tumor cells. Although these findings

suggest that the presence of PPARa both in the tumor cells as well

as in the host is necessary for unabated tumor growth, they also

demonstrate that PPARa in tumor cells is not necessary for tumor

cell viability. Conversely, the results underscore the importance of

PPARa in the host tissue to sustain tumor growth.

Histological examination revealed a pronounced leukocyte

infiltration (based on CD45-positive staining) in the non-necrotic

stroma of all tumors grown in PPARa KO mice (Figure 2B). In

contrast, PPARa WT animals exhibited the usual leukocytic

infiltrate that was limited to necrotic areas (Figure 2B). Moreover,

PECAM-1 staining performed to visualize blood capillaries

revealed a decreased microvessel density in tumors from PPARa
KO hosts when compared to tumors from WT hosts of the same

size at day 7 (data not shown), as well as at day 30 post

Figure 2. Immunohistological analysis of dormant tumors in PPARa KO mice. The dormant tumors contain viable and proliferating cells, and show
decreased microvessel (PECAM1) and increased leukocyte (CD45) staining. (A) Dormant PPARa(2/2)MEF/RS tumors in PPARa KO mice from day 60
post-tumor implantation revealed abundant SV40 large T-antigen staining and proliferation (Ki-67). Dormant PPARa(2/2)MEF/RS tumors on day 60
were implanted as pieces (1 mm3) into PPARa WT and KO mice (3 mice in each group). (B) Immunohistochemical analysis of subcutaneous B16-F10/
GFP tumors (H&E, CD45/brown color, PECAM-1/brown color) from day 30 post-implantation in PPARa WT mice and KO mice. Scale bars, 100 mm.
doi:10.1371/journal.pone.0000260.g002
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implantation (Figure 2B). Therefore, the absence of PPARa in the

stromal tissue of the host appears to have two major consequences:

an increase in inflammation and a decrease in tumor angiogenesis.

Loss of Host PPARa Inhibits Corneal

Neovascularization and Permeability
Decreased microvessel density may reflect direct or indirect

antiangiogenic effects caused by the lack of PPARa activity.

Because all tumors used here are known to produce the angiogenic

cytokine VEGF, we first investigated whether PPARa plays a role

in VEGF signaling in the host cells. We employed two different in

vivo VEGF-activity assays: VEGF-mediated, FGF2-induced cor-

neal neovascularization, and VEGF-induced vascular permeabil-

ity. Implantation of pellets containing 20 ng of FGF2 into the

corneas of mice promotes the extravasation of leukocytes and

stimulates VEGF-dependent corneal neovascularization [20,21].

PPARa KO mice exhibited .50% inhibition of vessel length

when compared to WT animals, while the initial sprouting

(reflected in clock hours of the neovascularized area) was not

affected (Figure 3A). Complete abrogation of angiogenesis in the

WT mice in the presence of soluble VEGF-receptor-1 (VEGFR1)

confirmed that angiogenesis in these WT animals was mediated by

VEGF (Figure 3A), consistent with previous studies [20]. In our

second approach, we evaluated whether host PPARa affected

VEGF-induced vascular permeability, a standard test of in vivo

VEGF activity [22,23]. In response to VEGF, WT mice displayed

Evans blue extravasation into the subcutaneous skin and ears

(Figure 3B) that was 300–400% greater than that of PPARa KO

mice (Figure 3B). Together, these results indicate that host PPARa
is indispensable for VEGF-dependent signaling.

PPARa Deficiency in Bone Marrow Cells Inhibits

Tumor Growth
Given the observation that the tumor bed of PPARa KO mice

exhibited an increased inflammatory response, we performed

reciprocal bone marrow transplantations between WT and KO

mice to determine whether the hematopoietic compartment of

PPARa deficient mice plays a role in the inhibition of tumor

growth. Bone marrow cells from WT mice were capable of

restoring the ‘‘wild-type’’ tumor growth pattern of B16-BL6

tumors in PPARa deficient hosts (Figure 4A). Conversely, PPARa-

deficient bone marrow cells, when transplanted into WT hosts,

conferred the tumor-suppressing phenotype of PPARa KO mice,

p,0.0001 (Figure 4A). It is important to note that in the bone

marrow transplantation protocol used, .90% of the hematopoi-

etic system of the recipient was derived from the donor marrow

(Figure S2A); this argues against the possibility that PPARa KO

bone marrow cells have a direct, ‘‘dominant-negative’’ effect that

overrides a tumor promoting effect of WT bone marrow cells.

Instead, the result strongly suggests that the influence of host

PPARa on tumor growth is conveyed solely by PPARa activity in

bone marrow derived cells, because in these reciprocal trans-

Figure 3. FGF2-induced corneal neovascularization and VEGF-induced vascular permeability are inhibited in PPARa KO mice. (A) FGF-2 (20 ng)
stimulates corneal neovascularization in WT 129S4/SvJae strain, WT 129S1/SvIMJ strain and obese WT (129S1/SvJae) mice. Soluble murine VEGFR1
completely inhibits FGF2-induced angiogenesis in WT mouse (sVEGFR1). FGF2-induced corneal neovascularization is potently suppressed in PPARa
KO mouse (KOS4). Vessel length, clock hours, and area of neovascularization in PPARa WT and KO mice are represented in bar graphs
(average6standard deviation). (B) Evans blue dye leakage in dorsal skin and ears after injection with VEGF or saline in PPARa WT and KO mice (n = 6
mice/group). Spectrophotometric analysis of extravasated Evans blue of skin and ear is represented in bar graph (average6standard deviation).
doi:10.1371/journal.pone.0000260.g003
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plantation experiments the PPARa status of the transplanted bone

marrow cells recapitulates the tumor phenotype of the host.

However, it cannot be excluded that the suppressor activity carried

by PPARa-deficient bone marrow cells overrides a potential tumor

stimulatory contribution of PPARa in other, non-bone marrow

derived host cells, such as from the local stroma.

Depletion of Granulocytes in the PPARa KO Mice

Restores Tumor Growth
Immunohistological analysis of B16-BL6 tumors in WT mice

transplanted with PPARa-deficient bone marrow cells showed an

intense increase in leukocyte staining, mimicking the intratumoral

leukocyte profile of tumors grown in PPARa KO mice (Figure 4B).

This pronounced leukocyte infiltration in WT mice transplanted

with PPARa-deficient bone marrow cells suggests that the

presence of PPARa within the inflammatory cells prevents an

overt inflammatory response to tumors. Histological and immu-

nohistological analysis of the dormant tumors in PPARa knockout

mice revealed that the leukocyte population was predominantly

composed of granulocytes, mainly neutrophils (Figure S2B). To

corroborate an active role of these PPARa-deficient granulo-

cytes in tumor suppression, we depleted them in the host animals.

Flow cytometry analysis confirmed that the granulocyte-specific

neutralizing antibody GR1 completely depleted neutrophils

(Figure S2C). The anti-granulocyte antibody GR1 restored tumor

growth rate in the PPARa KO mice almost completely by day 26

(Figure 4C). In PPARa KO mice that received the control

antibody (IgG2b), tumor growth remained inhibited. Conversely,

in WT mice the GR1 antibody suppressed tumor growth

(Figure 4C vs. 4A), confirming the previous reports that

neutrophils are necessary for tumor growth [2,3]. However,

tumor inhibition was even stronger in WT animals whose bone

marrow had been replaced with that of PPARa KO mice

(Figure 4A) as well as in PPARa deficient hosts (Figure 4A and

4C), again suggesting that not only is PPARa necessary for tumor

growth, but that its absence confers a tumor suppressor activity on

neutrophils.

Figure 4. The inhibitory effect of PPARa resides in the hematopoietic compartment. (A) B16-BL6 melanoma growth in WT mice receiving KO bone
marrow (KO BM RWT mice) compared to PPARa KO mice receiving WT bone marrow (WT BM RKO mice). WT bone marrow ‘‘rescues’’ tumor growth
in PPARa KO mice. (B) Subcutaneous B16-BL6 tumors on day 28 post-implantation show abundant CD45 staining in PPARa WT mice receiving KO
bone marrow (KO RWT). In B16-BL6 tumors in KO mice receiving WT bone marrow (WTRKO) CD45 staining (shown in green) was markedly reduced.
Hoechst staining of nuclei is blue. Scale bar, 100 mM. (C) Effect of granulocyte depletion using Gr-1 antibody or control antibody (Ctr Ab, IgG2b) on
B16-BL6 melanoma growth rate in PPARa KO and WT mice.
doi:10.1371/journal.pone.0000260.g004
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The Inhibitory Role of TSP-1 on Tumor Growth
We next asked why are tumor growth and angiogenesis inhibited

by PPARa-deficient leukocytes? Activated inflammatory cells

promote angiogenesis, tumor cell proliferation and metastasis

through the production of angiogenic mediators, growth factors,

chemokines and proteases [2,24–26]. A connection between the

positive and negative mediators of the inflammatory response, NF-

kB and PPARa, has recently been suggested, because PPARa has

been shown to repress NF-kB activity/expression [27]. However,

this model disagrees with our result that PPARa-mediated

suppression of inflammation is permissive for tumor growth rather

than inhibitory. Therefore, our finding suggests that PPARa
regulates an aspect of inflammation that is different from that

controlled by NF-kB and hence, PPARa modulation of inflam-

mation affects tumor growth independently of NF-kB. While

NF-kB exerts its tumor-promoting effect by induction of cytokines,

we investigated whether PPARa deficiency suppresses tumor

growth by increasing the expression of the matrix protein throm-

bospondin-1 (TSP-1) which inhibits angiogenesis and stimulates

granulocyte migration [28].

In fact, TSP-1 was elevated in the plasma and tumor tissue of

PPARa KO mice (Figure 5A and Figure S2D). Because TSP-1 can

be expressed in several cell types, including tumor cells, endo-

thelial cells and fibroblasts, we next determined the cellular origin

for TSP-1 in the tumors of PPARa deficient mice. B16-BL6 and

B16-F10/GFP melanomas in PPARa KO mice contained high

levels of TSP-1 protein (Figure 5A), despite that these tumor cells

do not express TSP-1 [29]. TSP-1 was found in tumors in PPARa
WT mice only when the mice received bone marrow from PPARa
KO animals. In contrast, little or no TSP-1 was detected in the

tumors in PPARa KO mice whose bone marrow cells had been

replaced by those from PPARa WT animals (Figure 5B).

Moreover, in B16-BL6 tumors from PPARa KO mice treated

with GR1 antibody, little or no TSP-1 was detected (Figure 5C).

Purified peripheral blood leukocytes from tumor- bearing PPARa
deficient mice expressed high levels of TSP-1 while WT leukocytes

express very little if any TSP-1 (Figure 5D). Taken together, these

findings suggest that in this model system, TSP-1 was produced

predominantly by the inflammatory cells, and not by resident

stromal cells.

To corroborate the role of TSP-1 in angiogenesis in PPARa
deficient animals, we performed the corneal neovascularization

assay in the presence of neutralizing anti-TSP-1 antibody.

Suppression of vessel length (endothelial cell migration and

invasion) in PPARa KO mice was partially reversed by

inactivation of TSP-1 function (Figure 5E). There was no effect

on the contiguous circumferential zone of the limbal vessel

sprouting as measured by clock hours (Figure 5E). In contrast, in

the WT mice, corneal neovascularization was not affected by the

TSP-1 antibody (Figure 5E).

Provided that neovascularization is a valid marker for tumor

angiogenesis, these results are in agreement with the established

role of TSP-1 in tumor inhibition [30]. However, we found that

the neutralizing TSP-1 antibody did not completely restore tumor

growth in PPARa KO mice to the level of that in WT mice,

p,0.02 (Figure 5F). This may be either due to the limited access

of TSP-1 antibody to the tumor bed or suggests that other

endogenous inhibitors of angiogenesis may be involved. In fact,

endostatin and IL-12 levels were significantly higher in PPARa
KO mice (data not shown). Unexpectedly, we found that in WT

animals neutralization of TSP-1 also had an inhibitory (rather

than promoting) effect on the tumor, suppressing tumor growth by

approximately 71% when compared to control antibody-treated

mice, p,0.02 (Figure 5F). This suggests a complex, dualistic role

of TSP-1 as a regulator of tumor growth.

DISCUSSION
In this study we identified the cellular basis for the tumor

suppressing phenotype of PPARa deficient mice. Thus, PPARa
pathway represents a new link between inflammation, angiogen-

esis, and tumorigenesis. Absence of PPARa in host granulocytes

leads to inhibition of tumor growth, as demonstrated by: (1)

transplantation of bone marrow cells from PPARa KO mice to

PPARa WT mice and (2) by depletion of granulocytes by the

neutralizing antibody, Gr1. Interestingly, PPARa deficient gran-

ulocytes carried TSP-1, a protein that inhibits angiogenesis,

leukocyte migration and tumor growth. When TSP-1 was depleted

by neutralizing antibody in PPARa KO mice, tumor growth was

partially reversed.

PPARa is best known as a critical regulator of lipid metabolism

and inflammation [31], and is expressed in tissues that catabolize

fatty acids such as the liver, as well as in various cell types

including smooth muscle cells, monocyte/macrophages, lympho-

cytes, and endothelial cells [31]. PPARa is the molecular target of

the fibrate class of lipid-lowering drugs, which have been widely

used for decades in the treatment of dyslipidaemia. Upon activa-

tion by PPARa ligands, PPARa heterodimerizes with retinoic acid

receptor (RXR) regulating target gene expressions. PPARa ligands

act as PPARa agonists. In addition to controlling lipid levels, they

also function as potent anti-inflammatory agents in diseases such

as atherosclerosis, colitis, and dermatitis [32–35]. Accordingly,

PPARa KO mice exhibit significant reduction of atherosclerotic

lesions, delayed wound healing, and delayed liver regeneration

[14,15,36], due to overt inflammatory processes. PPARa de-

ficiency also results in a prolonged inflammatory response to lipid

mediators [8]. These findings collectively suggest that PPARa has

a physiological role in suppressing inflammation [7].

PPARa agonists have been reported to induce liver tumors in

rodents, but not in humans [10,37,38]. The mechanism for this

species difference is still unclear. Accordingly, PPARa KO mice

are totally resistant to liver tumors induced by PPARa ligands

such as WY-14643 and clofibrate. This indicates that PPARa is

required for ligand-induced peroxisome proliferation and hepato-

carcinogenesis in rodents in a cell-autonomous manner [9]. It is

unclear to what extent this requirement of PPARa for tumor

growth is due to tumor cell-autonomous effects or its role in the

host compartment of tumors, as shown by our current findings. In

our experimental model the suppression of tumor growth in

PPARa KO mice is mediated by leukocytes, mainly neutrophils.

PPARa deletion is a second example for suppression of tumor

growth by ablation of a gene in inflammatory cells; deletion of

IKKb in myeloid cells inhibits epithelial cell tumor growth [26].

However, our model does not exclude a contribution by cell-

autonomous tumor promoting effects of PPARa. In fact, we found

that deletion of PPARa in the tumor cell itself potentiated the

tumor suppressing effect of PPARa-deficiency in the host tissue

(Figure 1G and H), in agreement with the earlier reports of the

requirement for PPARa in PPARa agonist induced liver tumors

[9]. Therefore, PPARa, in addition to NF-kB, may represent

another example of an oncogenic protein with a dual role in

cancer by controlling essential functions both in cancer cell-

autonomous processes as well as processes in the tumor bed, such

as inflammation and angiogenesis. Oncogenes and NF-kB have

been shown to stimulate tumor cell proliferation and angiogenesis

by modifying cytokine expression profiles [25]. Therefore, PPARa
does not simply suppress inflammation, acting in opposition to

NF-kB, but it does so in a qualitatively different manner in that

PPARa Deficiency
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cellular infiltrates that do not express PPARa, actively suppress

rather than stimulate tumor growth.

PPARa-deficient leukocytes produce TSP-1, a potent inducer of

leukocyte migration and inhibitor of angiogenesis. Thrombospon-

din-1 (TSP-1) is a trimeric glycoprotein (450kD) that has several

functional domains with different binding affinities. It binds to

several cell surface receptors (CD36, integrins aVb3, a3b1, a4b1,

a5b1, heparan sulfate proteoglycans) and also binds calcium and

extracellular proteins, such as plasminogen, fibrinogen, fibronectin

and urokinase [30,39]. This multitude of binding partners may

explain the diversity of TSP-1 functions: TSP-1 modulates cell

adhesion, migration, proliferation and differentiation regulating

Figure 5. Effects of thrombospondin-1 (TSP-1) on angiogenesis and tumor growth in the PPARa-deficient state. (A) First panel demonstrates TSP-1
levels in plasma of PPARa KO and WT mice (ELISA); second panel shows TSP-1 levels in B16-BL6 and B16-F10/GFP tumor lysates at day 30 grown in
PPARa WT and KO mice (western blotting); positive CTR for TSP-1, proliferating HUVECs. (B) Western blot analysis of TSP-1 protein in B16-BL6 tumor
lysates from PPARa KO mice receiving WT bone marrow (WT BMRKO), and PPARa WT mice receiving KO bone marrow (KO BMRWT); positive CTR for
TSP-1, proliferating HUVECs. (C) TSP-1 protein expression is lost in B16-BL6 tumor lysates from PPARa KO mice depleted of granulocytes (GR-1
antibody); positive CTR for TSP-1, proliferating HUVECs. (D) Western blot analysis of TSP-1 expression from isolated leukocytes from tumor-bearing
PPARa KO mice; positive CTR, proliferating HUVECs. Levels of b-actin demonstrate protein loading. (E) Effect of TSP-1 neutralizing antibody and
control antibody (IgM) on vessel length (n = 6–9 eyes), clock hours (n = 5–9 eyes) and vessel area (n = 5–9 eyes) in the corneal neovascularization
assay. (F) B16-BL6 melanoma growth in KO and WT mice treated with TSP-1 neutralizing or control antibody (IgM).
doi:10.1371/journal.pone.0000260.g005
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processes such as inhibition of angiogenesis (through CD36 and

b1- integrin) and stimulation of neutrophil migration [28,40,41].

TSP-1 is expressed in several cell types in the host: platelets,

neutrophils, monocytes, fibroblasts, pericytes, endothelial cells,

and tumor cells [42]. Through its role as an activator of TGF-b, it

also modulates inflammatory reactions which may contribute to

the lethality of TSP-1 KO mice [43]. TSP-1 inhibits tumor growth

in mice when overexpressed, putatively via suppression of angio-

genesis [40,44,45]. However, TSP-1 may also act as a promoter of

tumor growth, because anti-TSP-1 receptor antibody inhibited

breast tumor growth [46]. Moreover, in vitro TSP-1 has been

shown to promote tumor cell invasion and chemotaxis [47–49]. In

addition, further complicating the picture, in human plasma and

tumor stroma the levels of TSP-1 have been correlated with both

good and poor cancer prognosis [50–56]. This conflicting

influence of TSP-1 is recapitulated in our animal model: TSP-1

delivered by leukocytes inhibited tumor growth. However, in the

WT animals neutralization of TSP-1 also strongly inhibited tumor

growth (Figure 5C). A possible explanation for this apparent

paradox is that TSP-1 may have a biphasic effect on angiogenesis

and leukocyte migration so that low doses (as found physiologically

in WT animals) stimulate and high doses (present in PPARa KO

mice) inhibit these processes [57]. Such a ‘‘U-shape’’ dose-effect

curve has been reported for many cytokines and bioactive mole-

cules, such as interferon-a, PPARc ligands and endostatin which

all exhibit a biphasic effect on angiogenesis [58–62]. Therefore, in

WT mice, TSP-1 may operate in the dose-effective window of

promoting inflammation which in turn stimulates angiogenesis

and tumor growth. In contrast, in PPARa KO mice where TSP-1

is constitutively high, it would act as an inhibitor of tumor growth,

perhaps through its antiangiogenic effects. Another possibility,

technical rather than biological, is that the activity of TSP-1 is

always inhibitory under the conditions studied, but the TSP-1

antibody itself generates the biphasic effect. High levels of TSP-1

in KO mice in the presence of TSP-1 antibodies may promote

formation of large antigen - antibody complexes that facilitate

TSP-1 clearance, while at low levels, as in WT mice, TSP-1 may

be stabilized by the antibody [63].

Given the accumulating findings pointing to the importance for

tumor growth of processes in non-cancer host tissues, such as

angiogenesis, inflammation and other functions mediated by

residual stroma and infiltrating bone marrow cells, our results add

a new element to the emerging paradigm that tumor formation is

not only a cell-autonomous process. Hence, the action of genes

involved in tumor formation must be seen in the broader context

of host and tumor [64]. While several pro-inflammatory factors

stimulate tumor growth, we report a new molecular link between

inflammation and cancer, in that abnormal inflammatory pro-

cesses can inhibit tumor growth and angiogenesis - thus broaden-

ing the spectrum for anticancer therapies that aim at interfering

with stromal processes.

MATERIALS AND METHODS

Tumor Xenograft Studies
All the animal studies were reviewed and approved by the animal

care and use committee of Children’s Hospital Boston. Three to

six-month old male PPARa knockout mice (129S4/SvJae),

corresponding age-matched WT mice (129S1/SvIMJ, C57BL/

6), obese WT mice (129S1/SvIMJ-retired breeders), C3H/HeJ

and Balb/cJ mice were obtained from Jackson laboratories (Bar

Harbor, ME). Retired WT breeders (35–40 gram) were used to

control for weight as PPARa KO mice become obese with age

[65]. WT mice (129S4/SvJae) were provided by Dr. John

Heymach, Children’s Hospital, Boston. PPARa WT and KO

littermates were F2 generation. For tumor studies, PPARa
negative (2/2) and PPARa positive (+/+) tumors were developed

by transforming mouse embryonic fibroblasts (embryonic day 11)

isolated from PPARa KO and WT mice, respectively, with SV40

large T-antigen and H-ras (generous gift from Dr. William Hahn).

Tumor cells were injected subcutaneously (16106 cells in 0.1 ml

PBS). B16-BL6 melanoma cells were implanted directly from

tissue culture; the growth of LLC and B16-F10/GFP tumors was

achieved in 129 strains as follows: LLC and B16-F10/GFP cells

were first grown in C57BL/6 mice and transplanted as pieces

(1 mm3) subcutaneously into PPARa WT mice. When tumors

were 1000–2000 mm3, they were serially passaged from mouse to

mouse as 1 mm3 pieces and then grown in culture [59]. For

experiments, LLC and B16-F10/GFP tumor cells were injected

subcutaneously into the 129S PPARa WT and PPARa KO mice

either from culture or from mouse to mouse as a cell suspension as

described [59]. Tumors were measured every 3–5 days, and the

volume was calculated as width26length60.52. For metastasis

studies, 500,000 cells in 0.1 ml PBS were injected via tail vein

(n = 15 mice/group). On day 21, when the PPARa WT mice died,

all remaining mice were euthanized. Histological sections of livers

were quantified for liver metastasis (n = 34–53 fields). For corneal

tumor studies, tumor pieces (1 mm3) were implanted into the

cornea, and the angiogenic response was recorded; photos were

taken weekly using a slit-lamp microscope. For granulocyte

depletion studies, GR-1 or control antibody (IgG2b) at 300 mg/

mouse (Biolegend, San Diego, CA) was administered intraperito-

neally two days prior to B16-BL6 melanoma implantation in

PPARa WT and PPARa KO mice, and every 3 days post-

implantation. Granulocyte depletion was confirmed by flow

cytometry using phycoerythrin conjugated Ly-6G (GR-1) antibody

(Biolegend, San Diego, CA).

For neutralizing antibody experiments the A4.1 anti-TSP-1

monoclonal antibody (Lab Vision, Fremont, CA) (CSVTCG/

CD36) or control antibody (IgM) at 50 mg/mouse were admin-

istered intraperitoneally daily to PPARa WT and KO mice in the

corneal neovascularization and B16-BL6 melanoma experiments.

Immunohistochemistry
Tumor samples were processed and immunohistochemical stain-

ings were performed according to standard protocols [59]. For rat

anti-mouse PECAM1 (BD Biosciences, San Jose, CA) staining,

sections were treated with 40 mg/ml proteinase K (Roche

Diagnostics Corp.) for 25 minutes at 37uC. Detection of PECAM1

staining was completed using the tyramide amplification system

according to the manufacturer’s instructions (PerkinElmer, Boston,

MA). For mouse monoclonal thrombospondin-1 (clone A6.1, Lab

Vision, Fremont, CA) staining, sections were pretreated with

pepsin for 15 minutes at 37uC (Biomeda, Foster City, CA ). For rat

anti-mouse CD45 (BD Biosciences, San Jose, CA), and mouse

monoclonal NP57 neutrophil elastase (Lab Vision, Fremont, CA)

stainings no pretreatments were needed, and stainings were

performed using Innogenex IHC kit (San Ramon, CA).

Angiogenesis Assays
Corneal neovascularization assays were performed. Vessel length

was the length of the vessels from the limbal vessel to the pellet.

Vessel sprouting was measured as clock hours, the contiguous

circumferential zone of the neovascularization, using a 360u
reticule (where 30u of arc equals one clock hour). Vessel area was

determined using the formula 0.2p6vessel length6clock hours of

vessels [66].
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For in vivo Miles permeability assay, PPARa WT and KO mice

received an intravenous injection with 0.5% Evans blue dye

(100 ml) retro-orbitally. After ten minutes, the mice were given

intradermal injections (50 ml) into the dorsal skin or ear at 2

different sites, consisting of vehicle control or VEGF (50 ng; R&D

Systems Inc., Minneapolis, MN). Twenty minutes later the dorsal

skin and/or ears were harvested for densitometric analysis to

quantify dye leakage. Columns represent mean6standard de-

viation (n = 6 mice per group; experiments were performed three

times).

Transplantation of Bone Marrow Stem Cells
PPARa WT and KO recipient mice were lethally irradiated with

14 Gy (in a split dose, 4 hours apart) 24 hours before bone

marrow transplantation (BMT). Bone marrow cells (16106) were

injected retro-orbitally into recipient mice under isoflurane

anesthesia. Neomycin sulfate antibiotic (2 mg/ml) was adminis-

tered for two weeks post BMT in the drinking water. Mice

recovered for a minimum of 2–3 months prior to tumor

implantation.

Western Blot Analysis
For preparation of tumor lysates from PPARa WT and KO mice,

B16BL6 tumors were homogenized with protease inhibitor

(Roche, Germany). Total protein extracts (50 mg) were analyzed

on blots incubated with primary mouse monoclonal TSP-1 (Ab-

11, Lab Vision, Fremont, CA) and HRP-conjugated secondary

antibodies (Amersham Biosciences Corp. Piscataway, NJ). A

positive control for TSP-1 was obtained from exponentially

growing HUVECs. For isolation of leukocytes, peripheral blood

of PPARa WT and KO mice was obtained by retro-orbital

bleeding under isoflurane anesthesia, red cells were cleared by

incubating samples for 30 minutes on ice in red blood cell lysis

buffer (Sigma-Aldrich, St. Louis, MO). Leukocytes were lysed in

100 ml of a solution consisting of 20 mmol/L imidazole hydro-

chloride, 100 mmol/L KCl, 1 mmol/L MgCl, 1 mmol/L EGTA,

1% Triton X-100, 10 mmol/L NaF, 1 mmol/L sodium molybde-

nate, 1 mmol/L EDTA and protease inhibitor cocktail [67].

TSP-1 ELISA
TSP-1 was measured by ELISA (Cytimmune, Rockville, MD) in

blood plasma collected from non-tumor bearing PPARa WT and

KO mice. Blood was collected via retro-orbital puncture.

Statistical Analyses
Statistical ananlyses were performed by Student’s t test. The results

were considered statistically significant for p,0.05.

SUPPORTING INFORMATION

Figure S1 Tumor angiogenesis is inhibited in the cornea of

PPARa KO mice. PPARa WT and KO host mice were implanted

with tumor pieces (1 mm3) as indicated. (A) Comparison of

PPARa(+/+)MEF/RS and PPARa(2/2)MEF/RS in WT mice

day 9 and day 16. (B) PPARa(+/+)MEF/RS and PPARa(2/

2)MEF/RS in PPARa KO day 9 and day 16. The angiogenic

response of PPARa(2/2)MEF/RS in PPARa KO mice regressed

by day 16. (C) Lewis Lung Carcinoma (LLC) in PPARa WT and

KO, C3H/HeJ and Balb/cJ on day 12. LLC tumors induced

tumor angiogenesis independent of host haplotype. Therefore,

major histo-incompatibility (MHC) does not prevent tumor-

induced neovascularization and tumor growth. In contrast, LLC

tumors failed to trigger any angiogenic response in PPARa KO

host. (D) B16-BL6 melanoma in PPARa WT and KO on day 16.

(E) Histology of B16-BL6 melanoma in the cornea of PPARa WT

and KO mice. Scale bars, 500 mm (left) and 100 mm (right) (F)

Leukocyte (CD45, brown) staining of LLC tumors in the cornea of

PPARa WT and KO mice. Scale bar, 100 mm.

Found at: doi:10.1371/journal.pone.0000260.s001 (8.59 MB AI)

Figure S2 (A) FACS analysis demonstrates % of CD45.1 host

cells. In our bone marrow transplantation protocol, .90% of the

hematopoietic system of the host was derived from the donor

marrow (as proved by using CD45.1 mice as recipients and

PPARa KO mice that are CD45.2 as donors). (B) Panleukocyte

(CD45, brown) and neutrophil elastase (red) staining in

PPARa(2/2)MEF/RS tumors in PPARa WT (day 25) and

PPARa KO mice (day 55). Scale bar, 500 mm. (C) FACS analysis

demonstrates granulocyte depletion in PPARa KO mice. (D) TSP-

1 expression (brown) in B16-F10 (day 30) and PPARa(2/2)MEF/

RS (day 60) tumors in PPARa KO and WT mice as determined

by immunohistochemical staining. Scale bars, 100mm and

500 mm, respectively.

Found at: doi:10.1371/journal.pone.0000260.s002 (5.12 MB TIF)

Text S1 Genetic Background and Transplantation Immunity.

Found at: doi:10.1371/journal.pone.0000260.s003 (0.05 MB

DOC)
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