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Abstract: Psammosilene tunicoides is a unique perennial medicinal plant species native to the South-
western regions of China. Its wild population is rare and endangered due to over-excessive collection
and extended growth (4–5 years). This research shows that H+-ATPase activity was a key factor for
oxalate-inducing programmed cell death (PCD) of P. tunicoides suspension cells. Oxalic acid (OA) is
an effective abiotic elicitor that enhances a plant cell’s resistance to environmental stress. However,
the role of OA in this process remains to be mechanistically unveiled. The present study evaluated
the role of OA-induced cell death using an inverted fluorescence microscope after staining with
Evans blue, FDA, PI, and Rd123. OA-stimulated changes in K+ and Ca2+ trans-membrane flows
using a patch-clamp method, together with OA modulation of H+-ATPase activity, were further
examined. OA treatment increased cell death rate in a dosage-and duration-dependent manner. OA
significantly decreased the mitochondria activity and damaged its electron transport chain. The OA
treatment also decreased intracellular pH, while the FC increased the pH value. Simultaneously,
NH4Cl caused intracellular acidification. The OA treatment independently resulted in 90% and the
FC led to 25% cell death rates. Consistently, the combined treatments caused a 31% cell death rate.
Furthermore, treatment with EGTA caused a similar change in intracellular pH value to the La3+

and OA application. Combined results suggest that OA-caused cell death could be attributed to
intracellular acidification and the involvement of OA in the influx of extracellular Ca2+, thereby
leading to membrane depolarization. Here we explore the resistance mechanism of P. tunicoides cells
against various stresses endowed by OA treatment.

Keywords: Psammosilene tunicoides; oxalic acid; H+-ATPase; programmed cell death

1. Introduction

Oxalic acid (OA) is a simple dicarboxylic acid that widely exists in biological sys-
tems and plays functional role in plants. OA’s chemical nature as a potent metal chelator
has received more attention for its physiological functions in metabolism and signalling
pathways in plant cells [1]. Moreover, OA has been recorded as an effective elicitor, im-
proving plants’ resistance against adverse effects of phytopathogens. For instance, OA
induced systemic resistance of tomatoes against Botrytis cinerea and Sclerotinia sclerotiorum
(S. sclerotiorum) in sunflower [2,3]. In addition, after plants are challenged to biotic stress,
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several oxidative and hydrolases activities in plant tissues occur [4–6], for example, chiti-
nase, phenylalaninelyase, peroxidase, catalase, and β-1,3-glucanase [7–9]. Previous studies
have shown that the exogenous application of OA on fungal culture filtrates containing
secreted OA mimicked fungal disease prevalence in rice [10]. The secretion of OA was
essential to affect pathogenicity in plants by S. sclerotiorum fungal pathogen infection [11].
Multiple observations further demonstrated that S. sclerotiorum mutants, deficient in OA
synthesizing, were nonpathogenic [12]. The expression of genes encoding OA in wheat
could enhance the host resistance against fungal invasion [13]. OA is one of the earliest
and most universal plant defense responses related to oxidative response in the plant
cell [12,14]. OA appears to function during plant-microbe interaction by triggering the
pathways responsible for programmed cell death (PCD) in plants and may act as a sig-
nalling molecule [15]. The transduction of signals leading to the death of Arabidopsis cells
in response to OA treatment was associated with the activity of the anion channel [16].
This death displayed characteristic hallmarks of PCD, such as cell shrinkage, de novo
protein synthesis, cleavage of nuclear DNA, activation of anion channel-dependent, and
gene expression [16].

OA could play critical role in regulating cellular Ca2+ concentration during physi-
ological or pathological processes. Calcium oxalate, commonly representing more than
10% whole plant Ca, acts as a physiological, osmotic inactive product and often exists in
large amounts in soybean plants [17]. At the same time, Ca2+ has been documented as a
critical second messenger by which cells perceive and transmit extra- or intracellular stim-
ulation. The previous study showed that the application of exogenous OA could modulate
the distribution of Ca2+ in compartments of mesophyll cells and enhance plant resistance
to heat and cold stresses [18,19]. Moreover, it has been observed that the dynamic changes
in Ca2+ spatial and temporary distribution might correlate closely with its distinct roles
played during PCD of plants or other plant physiology processes [20]. Mazen et al. [21]
reported that Ca-oxalate in plant cells increased extracellular Ca2+ and not excess OA [21].
Further studies have demonstrated that calcium channels were involved in calcium oxalate
crystal formation in specialized cells of porang corms at harvest time [22]. The above
studies suggested the role of OA in plant physiological responses through the regulation of
cellular Ca2+ concentration by formation of Ca-OA.

The electrochemical H+ gradient across the plasma membrane generated by the H+-
ATPase is an essential feature of all plant cells. Both hormonal signals such as auxin and
environmental factors can affect cell growth by inducing the cell to alter its wall pH through
changes in the activity of H+-ATPases located in the plasma membrane [23]. Functions of
transient alteration in [H+]i or [H+]o in the early response of plant cells to environmental
stimuli, such as turgor, gravity, pathogen attack and chemicals exposure, have been well
explored [24]. In addition, many physiological events of plant cells, such as nutrient
transport across the plasma membrane, cell elongation, and organ development, are highly
dependent on the ability of individual cells to control pH both in cytosol and apoplast [25].
Similar findings on function of intracellular pH alteration in the processes of animal
cell growth, development, and survival have been presented from many aspects [26,27].
Generally, the modulation of intracellular pH (pHi) or extracellular pH (pHo) in plant or
animal cells could lead to depolarization or hyperpolarization in the plasma membrane [28].
They were subsequently followed by triggering or inhibiting a series of physiological events
at the plasma membrane, such as control of ion channels activities, signalling and nutrient
uptake, and cell growth [29].

From the above studies, it is conceivable that OA is correlated to ion channels located
at the plasma membrane in triggering responses of plant cells to various environmental
perturbations. However, detailed experimental evidence has been insufficient. In this study,
we confirmed that OA induced PCD in P. tunicoides cells. The cytoplasmic pH (pHcyt)
oscillations are essential in the process independent of the extracellular Ca2+. The study
also suggested that OA may influence inward K+ channels and Ca2+ channels by mediating
the activation of H+-ATPase.
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2. Results
2.1. Effects of OA on Suspension Cell Viability of P. tunicoides

Previous studies have reported that differential expression of genes contributing to
PCD triggered by exogenous OA in tomatoes [30]. The current study analyzed the effects
of OA on suspension-cultured cells of P. tunicoides using live/dead staining methods with
Evans blue and FDA (Figure 1). The percentage of cell death was measured every hour
between 0–8 hours (h). It was found that 1 mM OA treatment had significant influence on
plant cells death. The death rate of 90% ± 10 was observed after the 8 h of OA treatment.
Compared with 100 µM OA treatment, the rate of cell death was about 54% ± 4 within
8 h, as shown in (Figure 1). Identical results were recorded even after 24 h of treatment.
However, with decline of OA concentration to 10 µM, during the entire course of 8 h of
treatment, no visible alteration in cell death rate could be observed. The evidence related
to PCD, such as vacuole shrinkage, plasma membrane invagination and the formation of
cysts, was clear and in agreement with published results [31,32]. These dose-dependent
data supported published hypothesis that OA may influence the viability of cells to a
measurable extent, and in some cases, even lead to PCD in Panax ginseng cells [33].
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Figure 1. Effects of oxalic acid on P. tunicoides suspension cell viability. Cells were treated with
0.1 mM OA for 8 h, stained with FDA (A). and with 1 mM OA for 8 h, stained with Evans blue (B),
Effect of different concentrations of OA on cell viability from 0 to 8 treatment (C). Bar = 10 µm. Values
are expressed as means ± SEM.

2.2. Effects of OA on Respiratory Electron Transporter Chains

It is common knowledge that mitochondria is the power-generating organelles of a cell.
The respiratory electron transport chains provide the driving forces for metabolism and
generate redox signals, regulating every aspect of plant biology by controlling enzyme gene
expression [34,35]. Kinetic data indicate that mitochondrion undergoes significant changes
in membrane integrity before classical signs of apoptosis manifest. These changes concern
both inner and outer mitochondrial membranes, disrupting inner transmembrane potential
and releasing inter-membrane proteins through the outer membrane [36]. This study
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examined the mitochondrial membrane potential (∆Ψm) after treatment with 1 mM OA
using the mitochondrial marker, rhodamine (Rd) 123. The decrease in green fluorescence
intensity was observed in OA-treated cells after 15 min, becoming even more evident until
75 min, due to the collapse of ∆Ψm and loss of mitochondrial membrane integrity, as seen
in (Figure 2). The diffuse, high level of cytoplasmic fluorescence was likely due to the loss
of mitochondrial membrane integrity, and an inability to specifically accumulate Rd123
occurred in mitochondria under these conditions. The ratio of fluorescence intensities
began to increase significantly in the cytoplasm. However, it could not reach the nadir as in
its beginning. The images revealed that the mitochondrial self-repairing mechanism might
work in the process, but the mitochondrial membrane integrity had already been lost and
could not resume completely.

Molecules 2021, 26, x FOR PEER REVIEW 4 of 15 
 

 

2.2. Effects of OA on Respiratory Electron Transporter Chains 
It is common knowledge that mitochondria is the power-generating organelles of a 

cell. The respiratory electron transport chains provide the driving forces for metabolism 
and generate redox signals, regulating every aspect of plant biology by controlling en-
zyme gene expression [34,35]. Kinetic data indicate that mitochondrion undergoes signif-
icant changes in membrane integrity before classical signs of apoptosis manifest. These 
changes concern both inner and outer mitochondrial membranes, disrupting inner trans-
membrane potential and releasing inter-membrane proteins through the outer membrane 
[36]. This study examined the mitochondrial membrane potential (∆Ψm) after treatment 
with 1 mM OA using the mitochondrial marker, rhodamine (Rh) 123. The decrease in 
green fluorescence intensity was observed in OA-treated cells after 15 min, becoming even 
more evident until 75 min, due to the collapse of ∆Ψm and loss of mitochondrial membrane 
integrity, as seen in (Figure 2). The diffuse, high level of cytoplasmic fluorescence was 
likely due to the loss of mitochondrial membrane integrity, and an inability to specifically 
accumulate Rh123 occurred in mitochondria under these conditions. The ratio of fluores-
cence intensities began to increase significantly in the cytoplasm. However, it could not 
reach the nadir as in its beginning. The images revealed that the mitochondrial self-repair-
ing mechanism might work in the process, but the mitochondrial membrane integrity had 
already been lost and could not resume completely. 

 
Figure 2. A series of images of cells were undergoing disruption of respiratory electron transport chains after treating 1 
mmol/L of OA. Rd123 stained the cells. The green fluorescence of Rd123 in the mitochondria was evident (A). After the 
treatment of 1 mM OA, the fluorescence intensity began to decrease after 15 min (B). The boundary became obscure, and 
the fluorescence intensity continued to drop after 30 min (C). After 60 min the fluorescence intensity in the mitochondria 
decreased markedly (D). The fluorescence intensity disappeared almost entirely after 75 min (E). The bright-field photo 
of (E) picture (F). 

2.3. Effects of OA on Nuclear Membrane Integrity 
In the early stage, cell membrane permeability is an essential index for distinguishing 

apoptosis-like PCD from necrosis. However, it will gradually further become leaky with 
the time-lapse of cells undergoing programmed death. Propidium iodide (PI), which only 
stains the nucleus of a late stage of PCD but is capable of degrading the nucleus of necrotic 

Figure 2. A series of images of cells were undergoing disruption of respiratory electron transport chains after treating
1 mmol/L of OA. Rd123 stained the cells. The green fluorescence of Rd123 in the mitochondria was evident (A). After the
treatment of 1 mM OA, the fluorescence intensity began to decrease after 15 min (B). The boundary became obscure, and
the fluorescence intensity continued to drop after 30 min (C). After 60 min the fluorescence intensity in the mitochondria
decreased markedly (D). The fluorescence intensity disappeared almost entirely after 75 min (E). The bright-field photo
of (E) picture (F).

2.3. Effects of OA on Nuclear Membrane Integrity

In the early stage, cell membrane permeability is an essential index for distinguishing
apoptosis-like PCD from necrosis. However, it will gradually further become leaky with
the time-lapse of cells undergoing programmed death. Propidium iodide (PI), which only
stains the nucleus of a late stage of PCD but is capable of degrading the nucleus of necrotic
cells quickly, was employed and added to the media containing suspension cells treated by
OA. As indicated in (Figure 3), the fluorescence intensity of the PI-staining nucleus began to
appear only in the cells after 1 hour of OA stress and then increased and dispersed around
the nucleus gradually (Figure 3B–E). Here, the staining of the nucleus represented the PI
diffusion across the plasma membrane. However, its physical rupture did not occur after
the loss of membrane integrity (Figure 3F). The result of PI staining demonstrated again
the hallmark of PCD caused by OA, just as indicated by Rd123 staining of mitochondria.
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Figure 3. Serial fluorescence images loss of nuclear membrane integrity after the treatment of 1 mmol/L OA stained by
PI. The nuclear membrane maintained integration, and weak red fluorescence could be observed (A). After the treatment
of 1 mM OA, the fluorescence began to appear (after 1 h) (B). The fluorescence intensity increased because the nuclear
membrane integrity was lost (after 3 h) (C). The fluorescence intensity in cytoplasm, especially the location of nucleus,
continued to increase (after 5 h) (D). A large amount of PI stained the nucleus, and the fluorescence intensity was evident
(after 7 h) (E). Microscopic was photographed under the white light field from E cells, and the cells were relatively intact (F).

2.4. Effects of OA on Cytoplasmic pH of P. tunicoides

To enhance normal cell function, pHcyt oscillations are usually maintained within
a narrow range. Several cellular processes, such as cytoskeletal organization, vesicle
fusion, and enzyme activities, are sensitive to pH and might be regulated by differences
in pHcyt [37]. Cytosol acidification and the corresponding medium alkalinization are
early events occurring in cells [38,39]. The pH values in rape oilseed decreased rapidly
and were markedly lower than 5.63 measured before OA treatment [13]. Therefore, to
characterize OA-induced events within plant cells, the question of whether the pHcyt
oscillations could be stimulated by OA or not was further sophisticated. A fluorescent
indicator of pHcyt, BCECF-AM, which can release BCECF within the cells after hydrolysis
by intracellular esterase, was used to detect the changes in pHcyt. The fluorescent intensity
and emission from BCECF accumulated in the cytoplasm may change in a pH-dependent
manner, and hence, pHcyt can be mapped by analyzing fluorescence ratio imaging. OA-
induced alterations in the fluorescence intensity and pHcyt are shown in Figure 4. Once OA
was added to the cell suspension (final concentration 1 mM and 100 µM), the fluorescence
intensity began to decrease rapidly (from 0.132 ± 0.0086 to 0.07 ± 0.004 for 1 mM, and
0.131 ± 0.0062 to 0.097 ± 0.0058 for 100 µM, respectively) within 30 min, which meant
pHcyt began to drop drastically over a short time.
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1 mmol/L oxalic acid marked by BCECF-AM (A). Effect of different concentrations of OA on the pHcyt (B). Values are
expressed as means ± SEM.

The results indicated that the treatment of OA led to acidification within the cytoplasm,
which was dependent on its concentration. Furthermore, it was clear that 1 mM OA that
influenced cytoplasmic acidification was more significant than 100 µM OA did. At the
same time, pHcyt had no significant difference in the presence of 10 µM OA.

2.5. Effects of NH4Cl and Fusicoccinon on Cytoplasmic pH and Cell Viability of P. tunicoides

Previous studies have demonstrated that intracellular alkalization is probably as-
sociated with PCD or abscission of plant cells [40,41]. Two experimental models were
established to explore further the physiological roles of cytoplasmic acidification in the
progress of cell death following OA treatment. The first could decrease pHcyt, causing the
temporary intracellular acidification without altering extracellular pH. The second could
increase the pHcyt to relieve intracellular acidification. (Figure 5) illustrates pHcyt changes
in 5 min application followed by removal of NH4Cl, compared with continuous application
of NH4Cl. The present dose-dependent mode detected in the pHcyt was similar to that of
the OA-induced cell death rate. After removal of NH4Cl, cytoplasmic acidification was
indicated by the decrease of fluorescence intensity. Compared with the standard condition,
the cell death rate was much higher under the cytoplasmic acidification treatment (data
not shown). Fusicoccin (FC), a strong activator of the H+-ATPase, enhanced H+ export
from the intracellular. FC may cause cytoplasmic alkalinization, and could weaken the
pHcyt alteration by OA as seen in (Figure 5A). Moreover, the addition of FC reduced the
percentage of dead cells from 90.5 ± 5.7% to 31.61 ± 9.35% after being treated by OA. The
results showed that cytoplasmic acidification was an inevitable precondition to the PCD
induced by OA.
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2.6. Effects of EGTA and La3+ on Cytoplasmic pH of OA-Treated Cells

Elicitor-induced Ca2+ spiking is one of the earliest events that act as a master mes-
senger for almost all downstream response reactions. Medium alkalinization is thought
to result from elicitor-induced depolarization of the plasma membrane and is associated
with Ca2+ influx/Cl−efflux [39]. In Chara coralline, a lowered pHcyt increased cytosolic free
Ca2+ ([Ca2+]cyt) affinity, activating Cl− efflux. OA could chelate Ca2+ to form Ca oxalate
crystals. The formation is regarded as a highly controlled cellular process rather than a
simple precipitation phenomenon. Specialized mechanisms must be present in crystal
idioblasts to deal with the enormous fluxes of Ca2+ [42]. In order to investigate the role of
extracellular Ca2+ in the process of acidification induced by OA, the cells were treated with
ethylene glycol tetraacetic acid (EGTA) (a Ca2+ chelator) and La3+ (a Ca2+ channel blocker)
before the addition of OA, respectively. From the results of fluorescent intensity, both
EGTA and La3+ have a minor effect on the decrease of pHcyt (Figure 6), which suggested
extracellular Ca2+ may neither participate in the modification of the pHcyt nor position
downstream of acidification induced by OA.

Molecules 2021, 26, x FOR PEER REVIEW 7 of 15 
 

 

could weaken the pHcyt alteration by OA as seen in (Figure 5A). Moreover, the addition of 
FC reduced the percentage of dead cells from 90.5 ± 5.7% to 31.61 ± 9.35% after being 
treated by OA. The results showed that cytoplasmic acidification was an inevitable pre-
condition to the PCD induced by OA. 

 
Figure 5. Effects of different agents on pHcyt and related changes in cell viability. Effects of FC and NH4Cl on the pHcyt (A). 
Effects of FC on the 1 mM OA-treated cell viability (B). Values are expressed as means ± SEM; p < 0.05. 

2.6. Effects of EGTA and La3+ on Cytoplasmic pH of OA-Treated Cells 
Elicitor-induced Ca2+ spiking is one of the earliest events that act as a master messen-

ger for almost all downstream response reactions. Medium alkalinization is thought to 
result from elicitor-induced depolarization of the plasma membrane and is associated 
with Ca2+ influx/Cl-efflux [39]. In Chara coralline, a lowered pHcyt increased cytosolic free 
Ca2+ ([Ca2+]cyt) affinity, activating Cl− efflux. OA could chelate Ca2+ to form Ca oxalate crys-
tals. The formation is regarded as a highly controlled cellular process rather than a simple 
precipitation phenomenon. Specialized mechanisms must be present in crystal idioblasts 
to deal with the enormous fluxes of Ca2+ [42]. In order to investigate the role of extracellu-
lar Ca2+ in the process of acidification induced by OA, the cells were treated with ethylene 
glycol tetraacetic acid (EGTA) (a Ca2+ chelator) and La3+ (a Ca2+ channel blocker) before the 
addition of OA, respectively. From the results of fluorescent intensity, both EGTA and 
La3+ have a minor effect on the decrease of pHcyt (Figure 6), which suggested extracellular 
Ca2+ may neither participate in the modification of the pHcyt nor position downstream of 
acidification induced by OA. 

 
Figure 6. Effects of EGTA and La3+ on 1 mM OA-treated cell pHcyt. Figure 6. Effects of EGTA and La3+ on 1 mM OA-treated cell pHcyt.

2.7. The Changes Induced by OA in K+ and Ca2+ Inward

Exogenous molecules can modulate transporters located at the plasma membrane, and
these elicitor-induced ion fluxes are immediate responses of plant cells. The cytoplasmic
acidification and related medium alkalinization are thought to be due to elicitor-induced
depolarization of the plasma membrane and subsequent K+/H+ exchanger, with Ca2+
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influx, which is generally observed in the earliest responses of plant cells to avirulent
pathogens [39]. In addition, the induction of this altered biochemical balance depends on an
H+-pumping ATPase activity, and the stimulation of its activity and growth by FC and the
inhibition by vanadate also support the idea that plasma membrane H+-ATPases play a role
in the maintenance of pHcyt [43,44]. The experiment used the electrophysiological approach
to determine the position of OA in the alterations of K+, Ca2+ channel and H+-ATPases.
The K+ channel and Ca2+ channel holding potential on P. unicoides cells are −50 mV and
+20 mV, respectively, similar to Arabidopsis results in patch-clamp experiments. High
dose OA, which caused evident PCD, induced a decrease of inward K+ current from
350 pA to 150 pA and increased inward Ca2+ wind from 50 pA to 300 pA after 10 min.
To investigate the relationship between OA and H+-ATPase, the effects of H+-ATPases
activator FC on the channel currents were also tested. The addition of FC, which effectively
weakens the altered current process, caused inward K+ current to rise to 280 pA and
inward Ca2+ current to fall to 150 pA, respectively. However, both channels’ current was
altered significantly compared with that of the normal condition. These results suggested
that the OA may regulate the inward K+ channel and inward Ca2+ channel by mediating
H+-ATPases activity.

3. Discussion

Previous results demonstrated the accumulation of OA, which is essential for the
pathogenicity of fungi. OA can acidify the infected plant tissues to activate many fungal
enzymes and protein kinase of host plant cells at low pH and degrade the plant cell wall via
acidity or chelation of the cell wall Ca2+ [37–39]. The research revealed that OA maintained
its toxicity even the pH decline by OA treatment, and suggested that acidification was
not the only mode of OA action bringing about deleterious effects during PCD in A.
thaliana [16]. Likewise, we demonstrated that OA, even when its pH was adjusted equally
to the suspension cells media, could induce PCD in P. tunicoides. These results suggested
that OA itself functioned as an inducer of PCD; its acidity may accelerate the PCD process.

Recently, plant mitochondria as cellular stress sensors and central organelles in PCD
have attracted increasing interest [45]. The outer organelle membrane disrupted and
released proteins, such as cytochrome C (cytc), into the cytosol, triggering caspase acti-
vation or performing other functions relevant to PCD activation of catabolic proteases
and nucleases [46,47]. These changed cytosol circumstances and activated proteases and
nucleases may influence the energy metabolism, disrupt the nuclear membrane, then break
down the inside nuclear DNA. Mitochondria also generate ROS through electron-transfer
intermediates intimately involved in cell death signalling pathways [4,48]. In the process
of OA-induced PCD, the disruption of respiratory electron transport chains and loss of
nuclear membrane integrity were detected by specific fluorescent indicators Rd123 and
PI. Mitochondria undergo significant changes before classic characteristics of the nuclear
membrane appear. The main cellular organelle structure was damaged, and related possi-
ble signalling pathways induced by high-dose OA caused the entire PDC. We confirmed
the OA toxicity to the cells.

It was observed that cytosolic pH regulation of anion channels plays a specific role in
the cytosolic pH regulation in plant cells by providing an anion shunt conductance [48].
Anion channels/transporters seem to act as key players in signalling pathways leading
to the adaptation of plant cells to abiotic and biotic stresses in control of metabolism and
the maintenance of electrochemical gradients. Previous research suggested that increase
of anion current was a required upstream event in the signalling pathway leading to
oxalate-induced cell death [16]. (2’,7’-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-
acetoxymethyl (BCECF-AM) was employed to detect the possible cytoplasmic pH (pHcyt)
oscillations in the exposure of the suspension-cultured cell to OA. The decrease in time and
dose-dependent florescent density decrease indicated the intracellular acidification in the
process. It mimicked pHcy drops using the ammonium chloride (NH4Cl) method leading
to more cell death than the usual condition, suggesting that the cytosolic acidification



Molecules 2021, 26, 6957 9 of 15

induced by OA may be critical for initiation PCD. The pretreatment of FC (as an activator
of H+-ATPase, cytosolic alkalinization) could efficiently inhibit the cell death induced by
OA with a drop of the cell death percentage by 70%; the evidence could further confirm
the pHcyt drop role played in the OA-induced cell death. In mammals, many experiments
have demonstrated that cytoplasmic acidification is a feature of apoptosis. Several agents
leading to cytoplasmic alkalinization through activation of ion channels and pumps could
prevent apoptosis stimulated by intra- or extracellular elements [49].

Interestingly, some similar results were obtained in the field of plant science. The hy-
pothesis predicts that biotic and abiotic stresses-induced cytoplasmic acidification triggers
the synthesis of phytoalexins and other secondary metabolites. Cytoplasmic acidifica-
tion, which caused DNA breakdown, active caspase-like enzymes, and ROS, might act as
messages involved in triggering defense responses and related PCD [50].

Intracellular acidification, combined with K+ and Ca2+ flux, was regarded as an early
marker of an elicitation process leading to PCD. Several studies suggested that changes
in pHcyt resulting from ion fluxes and H+-ATPase play a role [51]. Recently, members of
2ligand-gated ion channel families, glutamate receptor-like channels (GLRs) and cyclic
nucleotide-gated channels (CNGCs) were implicated in immune responses. Nevertheless,
more precise data are necessary to understand their direct involvement in creating Ca2+

signals during immune responses [52]. These results supported the view that the ion fluxes
are related to the early signalling for PCD. Inward and outward rectifying K+ channels
carrying K+ ions across the membrane played a critical role in regulating biochemical
balance. The triggering of the HR in tobacco cells by specific bacterial pathogens required
the activation of a plasma membrane K+/H+ exchanger, which needs H+-ATPase func-
tion [53]. Combined with these results, it might suggest that the addition of OA functioned
on the K+/H+ exchanger, which decreased the K+ influx (Figure 7) and showed OA played
a prominent inhibition role on the inward K+ current paralleled by the drop of efflux
of H+. The accumulated H+ in the cytoplasm may contribute to the pHcyt reduction. In
the process, OA may also influence the phosphorylation of the H+-ATPase, which not
only altered the activity of the K+/H+ exchanger but mediated the H+ extrusion from the
vacuolar proton pool. The results of FC as the activator of the H+-ATPase, which is bound
to the 14-3-3 family regulatory protein associated with the phosphorylation-dependent
C-terminal end, played a role in OA-induced cytoplasmic acidification, and related PCD
could further support our hypothesis [54]. Elicitor-induced Ca2+ spiking was one of the
earliest events that acted as a master messenger for most downstream response reactions.
Some studies reported that [Ca2+]cyt elevation down-regulates inward-rectifying K+ chan-
nels and proton pumps in the plasma membrane of guard cells [55,56]. Results also showed
that OA could activate the inward Ca2+ channel effectively by mediating the activity of
H+-ATPase. The induced [Ca2+]cyt elevation may originate from the extracellular Ca2+

influx or efflux of some organelles such as endoplasmic reticulum, mitochondria, which
could regulate [Ca2+]cyt through Ca2+-ATPase and Ca2+/H+ exchanger [57]. EGTA (a Ca2+

chelator with at least 104 fold greater affinity than OA) and La3+ (a Ca2+ channel blocker)
were used to pre-incubate the OA-treated cells, which could remove the possible role of
extracellular Ca2+. The slight effect on the decrease of pHcyt suggested that extracellular
Ca2+ might not be the primary mechanism participating in the regulation of pHcyt, and the
chelation of OA might not be the primary function in the process of PCD. The Ca2+ store
deletion is possible as the primary source of the [Ca2+]cyt elevation. More related genic
and proteinic studies are needed to illustrate these points and the oxalic acid-induced cell
signal significance.
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Figure 7. OA-induced changes in K+ and Ca2+ inward currents. The value of the resting membrane potential (Vm) of
control cells in their culture medium was −52 mV (A). The inward K+ current is in normal condition (B). The inward K+

current decreased obviously (from 350 pA to 150 pA) after 1 mM OA (C) treatment. The inward K+ current recovered to
280 pA after adding FC on 1 mM OA-treated cell (D). Corresponding K+ current-voltage relationships (E). The inward
Ca2+ current is in normal condition (F). The inward Ca2+ current increased to 300 pA after the treatment of 1 mM OA (G).
The inward Ca2+ current dropped to 150 pA after the addition of FC on 1 mM OA-treated cell (H). Corresponding Ca2+

current-voltage relationships (I). Values are expressed as percentages of the control (means ± SEM).

4. Materials and Methods
4.1. Chemical Materials

Cellulase RS was provided by Yakult Honsha (Tokyo, Japan). Pectolyase Y-23 was pro-
vided by Seishin Pharmaceutical (Tokyo, Japan). Fluorescein diacetate (FDA), propidium
iodide (PI) and BCECF-AM were acquired from Abcam Co. Ltd. (Cambridge, MA, USA).
Ascorbic acid (Vc), Mes, Hepes, Mg-ATP, BSA, EGTA, K-glutamate, Rhodamine 123 (Rd123),
FC were acquired from Sigma-Aldrich (St. Louis, MI, USA). Other chemicals of analytic
grade were sourced from Chinese companies. Chemicals used in this study were dissolved
in water or dimethyl sulphoxide (DMSO).

4.2. Plant Materials

Under aseptic conditions, selected loose, light yellow or milky P. tunicoides callus
established MS liquid culture system according to callus quality and culture medium
volume 1:10 (g/mL). Cultures were incubated at 25 ± 1 ◦C in the dark on a rotary shaker
at 110 ± 5 rpm overnight, and the suspension cells of P. tunicoides were harvested.

The suspension cells of P. tunicoides were cultured in 250 mL Erlenmeyer flasks con-
taining 100 mL of Murashige and Skoog [58] salt solution, supplemented with 6-BA 0.5
mg/L, 2,4-D 0.5mg/L, the pH adjusted 5.8 by NaOH or HCl. Cultures were incubated at
22 ± 2 ◦C in the dark on a rotary shaker at 110 ± 5 rpm overnight. Cell suspensions were
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transferred into a new medium after 14 days using 1:5 dilutions. All experiments were
performed at 22 ± 2 ◦C using log-phase cells (6 days after subculture).

4.3. Determination of Cell Viability and Death

For FDA staining, cells were incubated in an aqueous FDA solution (0.01% w/v) for
15 min at room temperature, and followed the Evans blue staining method procedure. Cells
were observed under a fluorescence microscope (Motic AE31); only live cells appeared
green. The cell viability was indicated as the ratio of live cells to total cells.

Evans blue staining was employed to determine cell death. The suspension cells were
incubated in a 0.1% (w/v) aqueous solution of Evans blue for 10 min at room temperature.
The cells were then washed with fresh MS media twice to remove unbound dye cells before
observation by centrifugation at 600× g rpm for 5 min. Subsequently, cells were observed
and counted with a bright field microscope (Motic AE31); only dead cells appeared blue.
The cell death was indicated as the ratio of dead cells to total cells.

All experiments were independently replicated at least 3 times, and 500 cells were
examined and analyzed statistically. Data are presented as means ± SD.

4.4. Rd 123 and PI Staining Procedures

Rd123 staining is plasma membrane-permeable and aggregates within mitochondria.
The excited fluorescence intensity Rd123 is proportionate to the potential of electron
transport chains, reflecting the functional integrity of mitochondria. We added 100 mL of
Rd123 stock solution (10 mg/L) to 1 mL of cells suspension to a final concentration of 1
g/mL, and incubated at 25 ◦C for 15 min in a dark environment. The suspension cells were
rinsed 3 times with new MS media to remove excess Rd123.

For PI staining to examine the integrity of the plasma membrane, 20 L of PI stock
solution (20 g/L), which is a membrane-impermeable DNA/RNA stain, was added to 1
mL of cells suspension, and the cells were gently centrifuged and incubated in controlled
darkness at 27 ◦C for 15 min. Subsequently, the suspension cells were rinsed 3 times with
new MS media to remove excess PI. PI-negative staining cells are live cells, and PI-positive
staining cells are primary cells in the late stages of PCD. All experiments were repeated
3 times.

4.5. Intracellular pH (pHi) Measurement

We dissolved 50 µg of BCECF-AM in 8.4 µL DMSO to a final concentration of
10 mmol/L and stored it at −20 ◦C in a controlled dark environment as stock. Further, the
working solution was prepared by adding 2 µL of stock solution to 1 mL of suspension
cells to a final concentration of 20 µmol/L; after incubating in the working solution for
15 min at 25 ± 1 ◦C, the suspension cells were rinsed 3 times in a new MS medium to
remove excess BCECE-AM. These cells fluorescence emission images were acquired using
a cooled charged-coupled device (CCD) camera on an inverted microscope (Motic AE31).
The fluorescence intensity was calculated using software IPP 6.0 through the analysis of
fluorescence images. The CCD camera was also used for bright-field images collection.

All experiments were repeated 3 times with different samples, and representative
images were presented.

4.6. Patch Clamp and Data Acquisition

Protoplasts of P. tunicoides were isolated as described [59]. In the whole-cell voltage-
clamp, the K+ and Ca2+ currents of P. tunicoides cells were recorded with an EPC-9 amplifier
(Heka Instrument) described [60]. Pipettes were pulled with a vertical puller (Narishige)
modified for two-stage pulls. Data were analyzed using PULSEFIT 8.7, IGOR 3.0, and
ORIGIN 7.0 software. The standard solution for potassium current measurements con-
tained 10 mM K-glutamate, 1 mM CaCl2, 2 mM MgCl2, 10 mM Mes, pH 5.5, in the bath
and 80 mM K-glutamate, 1.1 mM EGTA, 5 mM Mg-ATP, 20 mM KCl, 10 mM Hepes, pH 7.2,
in the pipette. The standard solution for calcium current measurements contained 100 mM
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CaCl2, 0.1 mM DTT, and 10 mM MES-Tris, pH 5.6, in the bath and 10 mM BaCl2, 0.1 mM
DTT, 4 mM EGTA, and 10 mM HEPES-Tris, pH 7.1, in the pipette. D-sorbitol was used to
adjust the osmolality of pipette and bath solutions to 400 and 500 mmol/kg, respectively.

5. Conclusions

The regulation and execution processes of PCD, particularly the processes induced by
abiotic factors, remain unknown. PCD is a crucial process in plant development, senescence
or immunity and plays an important role in the plant stress response. The processes and
biochemical and molecular pathways of plant PCD induced by abiotic stress are very
important for understanding the tolerance/resistance of plants to abiotic stress, enabling
plant tolerance to be increased in the future by manipulating the inhibition of PCD. In
a global environment with climate changes, susceptible and tolerant genotypes/species
are highly desirable. Although some of the biochemical, molecular, and morphological
mechanisms are known, in this paper, we focused on the PCD process, mechanisms,
and induced by OA in P. tunicoides, which is a unique perennial medicinal plant species,
including the cytoplasmic pH oscillations that are essential in the process independent
of the extracellular Ca2+. It is conceivable that OA is correlated to ion channels located
at the plasma membrane in triggering responses of plant cells to various environmental
perturbations. Our study suggests that OA may influence inward K+ channels and Ca2+

channels by mediating the activation of H+-ATPase.
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