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The ability to simultaneously process and integrate multiple sensory stimuli

is paramount to e�ective daily function and essential for normal cognition.

Multisensory management depends critically on the interplay between

bottom-up and top-down processing of sensory information, with white

matter (WM) tracts acting as the conduit between cortical and subcortical

gray matter (GM) regions. White matter tracts and GM structures operate in

concert to manage both multisensory signals and cognition. Altered sensory

processing leads to di�culties in reweighting and modulating multisensory

input during various routine environmental challenges, and thus contributes

to cognitive dysfunction. To examine the specific role of WM in altered

sensory processing and cognitive dysfunction, this review focuses on two

neurologic disorders with di�use WM pathology, multiple sclerosis and mild

traumatic brain injury, in which persistently altered sensory processing and

cognitive impairment are common. In these disorders, cognitive dysfunction

in association with altered sensory processing may develop initially from

slowed signaling in WM tracts and, in some cases, GM pathology secondary

to WM disruption, but also because of interference with cognitive function

by the added burden of managing concurrent multimodal primary sensory

signals. These insights promise to inform research in the neuroimaging,

clinical assessment, and treatment of WM disorders, and the investigation of

WM-behavior relationships.

KEYWORDS

sensory integration, sensory processing, white matter, cognition, multiple sclerosis,

mild traumatic brain injury

Introduction

In the investigation and conceptualization of human cognition, much attention has

been focused on graymatter (GM) structures as the primary regions of interest. Key areas

include the neocortices and the hippocampus, and subcortical GM structures including

limbic nuclei, the thalamus, and the cerebellar GM (1–9). Gray matter structures

important for memory, for example, include the hippocampus, thalamus, and prefrontal
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cortex [PFC; (10)], and the cerebellum is engaged in the

mediation of attention, language, visuospatial processing, and

executive function (8). These GM regions, however, do not act

independently of each other, and instead, white matter (WM)

tracts and GM structures operate in concert.

One of the critical functions of WM in the operations of

cognition is the management of multisensory signaling (11).

To effectively process sensory signals from the periphery and

modulate cognitive behavior, structural interactions between

GM regions are vital. White matter tracts comprise the

anatomical basis for these interactions (10, 12), serving as a

crucial foundation for bottom-up and top-down behavioral

integration of multimodal sensory stimuli.

Humans constantly process sensory data from various

independent sources, particularly from the visual, auditory, and

vestibular end organs. Participation in daily life activities, which

requires a continually adapting cognitive repertoire, typically

occurs in ever-changing environments, where it is rare that a

single sensory stimulus requires processing. Sensory input is

thus typically multimodal and requires a complex network of

cerebral regions that integrate sensory and cognitive systems.

The thalamus, and the thalamo-cortical radiations by which

it is connected to the sensory cortices, play key roles in

both bottom-up processing that provides central integration of

sensory signals from the periphery, and top-down processing

that enables higher level behavioral regulation. However, other

GM and WM structures are also involved in responses to

multimodal sensory stimuli that require centralized weighting

and re-weighting of sensory information. For example, when

visual and vestibular stimuli are concurrently processed, the

middle and inferior frontal gyri (13), the visual and vestibular

cortices, the thalamus (14), and the posterior cerebellar vermis

(15) are collectively activated and synchronized. The ability

to simultaneously process and integrate multiple sensory

stimuli is critical for normal cognition and effective daily

function across the lifespan (16). The development and lifelong

maintenance of cognition is dependent on unalteredmultimodal

sensory management and processing of convergent signals from

several sensory systems, most notably vision, audition, and

vestibular (17).

This review delves into the relationship between primary

sensory processing and cognitive dysfunction in relation

to WM and its pathology, in areas such as impaired

attention, an integral function between bottom-up sensory-

mediated selection and top-down control of sensory processing.

Such relationships are an important focus in behavioral

neurology, where much work has recently been done to

interrelate attention, sensory integration, and white matter

pathology (18, 19). The focus here will be on conceptualizing

sensory integration-mediated cognition in terms of WM

tract integrity, with an emphasis on three primary sensory

modalities: visual, auditory, and vestibular. The contributions

of WM pathology and related sensory processing deficits to

cognitive impairment will be highlighted using a detailed

consideration of these concepts in two common disorders

with substantial WM pathology, multiple sclerosis (MS) and

mild traumatic brain injury (mTBI). In these disorders,

cognitive dysfunction in association with altered sensory

processing may develop directly from slowed signaling in WM

tracts and, in some cases, GM pathology secondary to WM

disruption, or because of sensory overload from managing

multisensory stimuli that results in added interference with

normal cognitive processing.

Sensory modality processing,
networks, fiber tracts, and cognition

Supported by the underpinnings of postsynaptic potentials

and synaptic integration models (20), conceptualizations of the

interplay between sensory processing and cognitive function

rooted in thalamo-cortical circuitry are evolving (11, 21–

24). To begin, visual and auditory stimuli are processed

within the thalamic lateral and medial geniculate bodies.

These sensory nuclei are first-order structures that act as

preliminary processers of sensory signals. This initial encoding

serves as bottom-up conveyance of ascending sensory input

to the primary sensory cortices for higher cortical processing

and preliminary behavioral response (25). Concurrently, the

thalamic reticular nucleus serves as the coupling mediator

between the thalamus and primary sensory cortices through

branched connections within bidirectional thalamo-cortical

tracts. This arrangement serves to filter out redundant,

superfluous stimuli, a process referred to as sensory gating,

which leads to greater efficiency of brain response and

behavioral modulation (11). Similarly, the pulvinar shares in

this process of sensory gating by specifically modulating visual

attention (26). Sensory data are further processed through

transthalamic signaling streams that involve thalamo-cortical

signal transference (27). These thalamo-cortical pathways serve

to augment cortical function, forming the basis of top-down

processing necessary for the development and modulation of

cognitive domains such as attention and memory (22). This

processing is necessary because visual and auditory stimuli are

pragmatically conflicting, and unresolved competitive visual and

auditory signaling leads to a greater load on higher-level top-

down processing, which in turn increases demands on selective

attention (28).

Multimodal sensory events result in the recruitment and

activation of multiple brain regions beyond those required to

process unimodal stimuli, leading to the added complexity

of simultaneously processing and managing more than one

mode of sensory stimulus. For example, when a person

performs a visual function task, the addition of auditory
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signals during task performance requires the activation of

thalamo-cortical and transthalamic pathways for completion

of the visual task (29). Wolff and colleagues describe how

temporal and spatial summation act to integrate separate

unimodal inputs (e.g., visual, auditory) into a coalescent

modulatory postsynaptic signal in the primary sensory

cortices (11). This multimodal signal stacking enhances

integration by collectively aggregating the different sensory

modal signals to levels that reach the excitatory postsynaptic

threshold necessary for cortical activity in structures such

as the PFC, thus enhancing cognitive function (11). White

matter tracts are the integral connections that tether GM

structures together to form cognitive networks (30). Concurrent

processing of auditory and visual signals has been linked

to activity of the cingulo-opercular region [including the

anterior insula, operculum, dorsal anterior cingulate, and

thalamus; (31)], an important network for attention, processing

speed, memory, sensory perception, speech, and language

(32–36). Overlapping with the cingulo-opercular network, the

cerebello-frontal network, consisting of other subnetworks

including a cerebello-thalamic pathway, is related to cognitive

processing speed (37). The cerebello-cortical network is also

related to visual attention and working memory (38), and along

with cerebello-thalamic and cerebello-pons subnetworks, is

instrumental in auditory-mediated attention and memory (39).

The fronto-parietal network is also important in that it helps

mediate executive function, attention, memory, processing

speed, and cognitive flexibility (34, 35, 40–43). In all of these

networks, WM provides structural connectivity between

GM regions.

In the central integration of multiple sensory stimuli,

networks, and cognition, two prominent association tracts, the

cingulum and the uncinate fasciculus, merit special attention.

The cingulum lies on the medial aspect of the cerebral

hemispheres and connects frontal, temporal, parietal, and

occipital regions (44). Considered a component of the limbic

system (45), the cingulum connects a variety of cortical

and subcortical GM regions and forms the matrix of a

major exchange route linking sensory processing and cognitive

function. Cingulum projections, including thalamo-cingulate

and thalamo-cortical fibers and the hippocampal cingulum,

serve to augment bottom-up and top-down connections that

process sensory stimuli and manage executive function, working

memory, and attention (44, 46). Visuospatial function has also

been mapped to the cingulum (47), and cingulum disintegrity is

correlated with age-related decline in visuospatial performance

(48). Abnormal fiber metrics in the cingulum have been found

in persons with mild cognitive impairment who have memory,

language, and visuospatial dysfunction (49).

The uncinate fasciculus, also a component of the limbic

system (45), is a large association tract with a protracted

maturation until 30 years of age or greater. The uncinate

connects the PFC and the anterior temporal lobe, and

thus plays a major role in emotional regulation (50, 51).

This fasciculus enables cortico-limbic integration by way of

PFC and amygdala connectivity (52), and, together with the

cingulum and the thalamo-hippocampal-PFC circuit (53), is

instrumental in linking cognition and sensory processing. A

recent report from Shiotsu et al. showed that healthy young

adults who are more sensitive to auditory stimuli have greater

integrity of the uncinate fasciculus (54). This fasciculus is

also associated with executive function and memory (55–60),

creativity (61), and emotional intelligence (62). Age-related

cognitive decline is related to reduced integrity of the uncinate

fasciculus (63), and this phenomenon, coupled with altered

sensory processing in aging (16), further supports the link

between impaired multisensory processing, WM pathology,

and cognition.

Although less thoroughly studied than the visual and

auditory systems, the vestibular system is also critical for

cognition. The physiology of the vestibular end organ is

unique in that it delivers multiple distinct sensory inputs

(e.g., angular acceleration, linear acceleration), rendering the

central processing of vestibular signaling much less linear

and more complex to process. Moreover, multiple classes

of second-order vestibular neurons of the vestibular nuclei

also receive input from visual and somatosensory systems

and the cerebellum (64–68). There is no single vestibular-

specific thalamic nucleus; instead, vestibular signals are

processed by multiple thalamic nuclei, and vestibular-mediated

potentials also project to other areas of the brainstem, and

cerebellar and cortical regions (69, 70). Compared to visual

and auditory modalities, relatively little is known about the

central processing of vestibular signaling, including its WM

connections and its impact on cognition (71). Nevertheless, with

the diversified spread of vestibular signaling throughout the

brain comes a variety of neuronal networking and processing

demands, and behavioral responses that directly implicate

cognitive function. It has been reported, for example, that

vestibular signaling leads to responses in WM tracts relevant

to cognition (e.g. cingulum) and GM [e.g., frontal cortex,

hippocampus; (72)], and processing of vestibular signaling

has been associated with multiple cognitive domains such

as visuospatial function (e.g., spatial memory, navigation),

attention, processing speed, memory, and executive function

(73). Animal model and human research provide empirical

results that link vestibulopathy and cognitive impairment,

showing that advanced levels of vestibulopathy (e.g, bilateral

involvement, severe hypofunction, extended duration) are

associated with hippocampal atrophy and related cognitive

impairment (74, 75). These findings have prompted the

hypothesis that vestibulopathy may be a risk factor for the

development of dementia including Alzheimer’s Disease (75,

76). Moreover, age-related vestibulo-limbic-cortical pathway

degeneration (75), may implicate WM pathology as a potential

contributor to dementia pathogenesis.
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Altered sensory processing, white
matter pathology, and cognitive
dysfunction

Multiple sclerosis

White matter tract demyelination is the signature

neuropathology of MS and is thought to result from

autoimmune-mediated inflammation that produces classic

demyelinative plaques in the brain and spinal cord (77). When

inflammation is more severe, axons are damaged in addition

to myelin. Focal MS lesions can also occur in GM, although

the primary pathology is demyelination and neuronal injury

only develops later. This multifocal lesional pathology produces

a wide range of clinical manifestations, including abnormal

sensory processing in multiple modalities (78–80) and cognitive

impairment (81).

Recent reports abundantly support deficient multisensory

processing in MS. Giurgola et al. report that persons in the early

stages of MS (e.g., relapsing-remitting disease) demonstrate

abnormal multimodal processing involving concurrent

visual and auditory signals, which may lead to cognitive

impairment (82). Altered unimodal sensory processing and

related cognitive impairment is also described in MS. For

example, vestibular signal processing is impaired in patients

with MS, and is associated with cognitive dysfunction, including

slowed processing speed, impaired memory, and visuospatial

dysfunction (83). Moreover, cognitive impairment related

to modified visual signal processing is detectable early in the

disease, and becomesmore evident in later stages when impaired

visual processing correlates with other deficits including slowed

processing speed and poor memory (84).

In recent years, pathologic involvement of the thalamus has

been linked with cognitive impairment in MS (85). Thalamic

volume loss, for example, has been shown to predict cognitive

impairment in the domains of attention, memory, and executive

function (86). White matter connections of the thalamus are

also damaged, and diffusion tensor imaging (DTI) has disclosed

altered thalamic connectivity in association with cognitive loss;

one study showed disruption of the thalamo-hippocampal-PFC

network in early MS with cognitive impairment (86). Lower

integrity of the cingulum and uncinate fasciculus has also

been associated with cognitive impairment (87), and conversely,

higher integrity of the uncinate has been shown to predict

processing speed in MS (86). Recently, Fritz et al. found that

lower diffusivity of the superior cerebellar peduncle and reduced

volume of the superior and middle cerebellar peduncles related

to slower processing speed in persons with MS (88).

The correlations between thalamic and cerebellar volume

loss and cognitive impairment in MS raise the question of how a

WMdisease can so prominently affect GM.Many factors may be

involved, but one answer may be that WM tract demyelination

appears to precede GM atrophy. An important connection has

recently been made between WM and GM pathology in MS by

Lie et al., who found that GM degeneration occurs secondarily

to WM damage (89). This phenomenon is most prominent

in the early stages of the disease, whereas in later stages

GM demyelination also contributes to atrophy (89). Lie et al.

propose that both retrograde degeneration (backward from the

damaged site toward the cell body) and anterograde orWallerian

degeneration (forward from the damaged site toward the axon

terminal) contribute to GM atrophy (89). The thalamus appears

to be susceptible to this phenomenon (89, 90), helping explain

the link between thalamic damage and cognitive impairment.

In the context of this review, observations of thalamic atrophy

in MS (89) further elaborate the notion of altered sensory

processing affecting cognition viaWM pathology.

Mild traumatic brain injury

Diffuse axonal injury (DAI), a result of shearing forces that

damage multiple WM tracts, is the most important pathology

of moderate-to-severe non-penetrating TBI (91), and is likely

to be present in mTBI as well (92, 93). Mild TBI-related DAI

often leads to widespread and disabling clinical manifestations,

and whereas traditional thinking has maintained that post-mTBI

symptoms typically resolve within 2–3 months, more recent

reports suggest that symptoms can persist far longer in some

individuals (94–96).

In particular, post-mTBI cognitive symptoms are more

persistent than previously recognized (97). The reasons for this

persistence are multifactorial, but a growing body of evidence is

implicating DAI, and potentially chronic inflammation and later

degenerative pathology, as important determinants of lasting

symptomatology (98). Among many WM tracts vulnerable to

mTBI, the cingulum and the uncinate fasciculus have both been

shown to be damaged by DAI, and this form of injury predicts

cognitive impairment (99, 100).

With respect to sensory function, DAI of prominent WM

tracts is likely to further exacerbate post-traumatic cognitive

sequelae by decoupling the interplay between sensory processing

and cognitive function (101). Dysfunctional unimodal sensory

processing of visual (102, 103), auditory (104, 105), and

vestibular (106) stimuli are found in persons with prior mTBI.

In addition, altered central sensory processing of vestibular

(107, 108), visual, (101, 107, 108), and auditory (109) signals

has been proposed as underlying persistent mTBI-related

symptoms, including those indicating cognitive dysfunction.

Moreover, multimodal sensory management requirements incur

a greater processing demand for persons with prior mTBI

(110–112). Compromised multimodal sensory management

of visual-vestibular stimuli is commonly found in persons

with mTBI (110–113). The added processing challenges of
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multimodal signals often leads to impaired cognition well past

the onset of mTBI. For example, dual visual-auditory processing

deficits have been reported more than 2 years after mTBI,

and results in greater deficits in cognition including executive

dysfunction (114).

As in MS, thalamic pathology occurs in mTBI, and

further exacerbates impaired sensory processing and cognitive

dysfunction. Reductions in thalamic and hippocampal volume

have been reported in mTBI 1 month after injury, and at

6 months post-injury, volume loss persists in the thalamus

only (115). Moreover, it was found that the 6-month

thalamic volume loss correlated with persistent vestibular and

cognitive symptoms (115). Reduced processing speed and

working memory were found in persons with mTBI who

had symptoms lasting 32 days post-injury, and impaired

working memory correlated with decreased thalamic functional

connectivity (116).

Also similar to the pathology of MS, damage to WM

connections of the thalamus is important in mTBI. Bai et al.

recently showed that impaired processing speed and working

memory are persistent problems up to 6–12 months post-injury,

and relate to WM disruption most notable in the thalamo-

cortical radiations and the anterior corpus callosum (117).

Consistent with recent findings in MS (89), it has been proposed

in mTBI that WM tract damage may lead to progressive GM

degeneration in the thalamus, further perpetuating chronic post-

mTBI cognitive impairment (118, 119).

Taken together, a growing body of evidence from

studies of MS and mTBI underscores the burgeoning link

between disrupted primary sensory processing and cognitive

dysfunction. White matter damage plays a central role in this

relationship, either through overt injury or more subtle loss

of WM integrity. In these disorders, cognitive dysfunction

may initially be related to slowed signaling in relevant WM

tracts, and, in some cases, GM pathology secondary to WM

disruption in networks responsible for sensory processing

and cognition. Added to this problem is the challenge of

concurrently managing multimodal sensory stimuli, which

can lead to processing demand overload and interference

with normal cognitive processing. This sensory overload, or

sensory processing flooding effect, can be found in cognitively

unimpaired persons (120) and in diseases such as schizophrenia

(121), but is magnified in disorders such as MS and mTBI

that feature pathological sensory processing and cognitive

impairment resulting from damaged WM.

Discussion

By virtue of living in the natural world, humans are

constantly exposed to environments with various levels of

concurrent external stimuli. Sensory input from the visual,

auditory, and vestibular systems is required for the brain to

process critical information, which then enables a variety of

psychological and behavioral responses. Successful processing of

multimodal primary sensory signals thus serves as a necessary

condition for normal cognitive function. These signals provide

a foundation for human behavior, which then manifests as a

complex amalgam of cognitive and emotional domains that

requires bi-directional data exchange within distributed neural

networks for long-term development and modulation.

This review highlights the role of primary sensory input

in cognition by considering the visual, auditory, and vestibular

modalities. Although the thalamus is a key sensory data hub

in these processes, numerous WM tracts such as the thalamic

radiations, cingulum, and uncinate fasciculus are crucial for the

relay of initially processed sensory signals to cortical regions

for higher-level coding that enables both bottom-up and top-

down processing. In addition, the WM tracts of the middle

and superior cerebellar peduncles play critical roles in sensory

signal processing and the facilitation of cognitive function.

White matter tracts make up the mediating circuitry between

GM structures throughout the brain, and the distributed neural

networks that include GM and WM comprise the infrastructure

for multimodal sensory processing and cognition.

As is observable in disorders such as MS and mTBI,

pathology of the thalamus and its associated WM tracts results

in cognitive impairment that furthermore can be associated

with altered unimodal and multimodal sensory processing.

These observations suggest that further research is warranted

to better define the causative relationship between disrupted

sensory processing and cognitive impairment in these and other

disorders, with a special focus on WM pathology. Studies are

also needed that investigate differentiating the impact of the

initial effects of slowed signaling in tracts and, in some cases,

GM pathology secondary toWM disruption, as compared to the

flooding effect of sensory processing on cognition. Critical to

investigations of this kind will be the application of advanced

neuroimaging that will allow for the detailed depiction and

analysis of healthy and pathologic WM tracts. To help elucidate

subtle findings inWM tracts implicated in the sensory-cognitive

connection, more precise imaging of WM microstructure will

be necessary. Therefore, in addition to conventional MRI and

DTI, future studies will benefit from the deployment of emerging

WM imaging techniques and approaches, such as neurite

orientation dispersion and density imaging (NODDI) to provide

a more detailed and accurate assessment of microstructure

than standard metrics such as fractional anisotropy [FA; (122,

123)], and from the application of multiple MR modalities

that are sensitive to different neurobiological features such as

magnetization transfer saturation, and R1 and R2∗ metrics that

add triangular compliments to routine tractography metrics

such as FA to enhance WM specificity (124).

In the clinical setting, standardized neuropsychological

assessment of cognition is important and useful, but it has

some limitations when multisensory dysfunction is considered.
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Current cognitive assessment measures are effective for

detecting common and overt cognitive impairments; however,

they are less useful for identifying covert dysfunction, and

determining functional, contextual factors that implicate real-

life, ecological considerations such as sensory processing

demands that contribute to cognitive impairment (125). This

point is illustrated by the directive that, for diseases such as MS

and mTBI, the standard administration of cognitive assessments

is to be conducted in “quiet”, “sterile” environments “without

distractions” (126, 127).

Recent reviews of neuropsychological testing have suggested

a transition from a reductionistic approach (e.g., focusing

on strict association between localized brain pathology

and cognition, and assessing within a decontextualized

environments) to a more inclusive, real-world approach

(128, 129) that accounts for naturalistic multimodal sensory

processing (130, 131). Such strategies would enhance the early

detection of both the initial pathological alternations in sensory

processing, and the additional multimodal sensory flooding

effect on cognition, and are likely to disclose more subtle

cognitive loss, especially in early disease stages when prompt

treatment may lead to better outcomes (132).

Evidence gathered from studies discussed above will better

inform researchers and clinicians so that more precise therapies

can be investigated for their effectiveness. Attention should be

devoted to interdisciplinary care or integrated practice units,

where cognition can be considered a shared outcome so that

therapies informed by the WM contributions to cognitive

impairment discussed in this review can be implemented.

Among the various disciplines offering care (e.g., rehabilitation,

psychology), the use of experiential therapy approaches, that

require managing enriched environments and novel multimodal

sensory signals, can aid in providing the appropriate stimuli

required for augmenting experience-dependent brain activity,

neuromodulation, plasticity, and ultimately cognitive function

(133–135). The application of such therapies would be intended

to exploit the potential for dual targeting of cognitive loss inWM

disorders, from pathology in WM tracts subserving cognition,

and from sensory overload resulting from altered multimodal

processing that further interferes with cognition.

Conclusion

The contributions to cognitive impairment made by altered

multimodal processing of primary sensory stimuli represents

an important perspective in behavioral neurology. Whereas,

agnosias and related syndromes have long been appreciated

in association with pathology in higher sensory regions of the

brain (25), primary sensory dysfunction and its relationship

to cognitive impairment has been more recently recognized

and investigated. In this review, two disorders with prominent

WM pathology have been discussed to point out that impaired

cognition can occur not only because of involvement of

cognitively relevant regions, but also because of simultaneous

processing of primary visual, auditory, and vestibular stimuli

that can overwhelm the capacity for normal engagement of

those regions. The interference with normal cognition that

can result from the burden of multimodal sensory processing

illustrates how altered WM connectivity of primary sensory

systems plays a key role in cognitive dysfunction. This insight

adds more nuanced detail to the behavioral neurology of

WM (136, 137), and suggests that a deeper understanding

of the concept of WM dementia (138) may be achieved by

considering tracts not typically considered relevant to cognition.

Supporting this approach, innovative spatially unbiased region

and network-based methods such as the Network Modification

(NeMo) Tool developed by Kuceyeski et al., a novel topology

software pipeline, should be considered to augment the ability

to predict GM connectivity outcomes based on changes in

WM in diseases such as MS (139). The cognitive impact of

abnormal multimodal sensory integration from WM pathology

offers a host of intriguing opportunities for further research

to investigate fundamental WM-behavior relationships, develop

more sensitive clinical testing instruments, and seek improved

treatments for a wide range of WM disorders.
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