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Objective: To observe the characteristics of brain fMRI during olfactory stimulation in
patients with neuromyelitis optica spectrum disease (NMOSD) and multiple sclerosis
(MS), compare the differences of brain functional activation areas between patients with
NMOSD and MS, and explore the characteristics of olfactory-related brain networks of
NMOSD and MS.

Methods: Nineteen patients with NMOSD and 16 patients with MS who met the
diagnostic criteria were recruited, and 19 healthy controls matched by sex and age
were recruited. The olfactory function of all participants was assessed using the visual
analog scale (VAS). Olfactory stimulation was alternately performed using a volatile body
(lavender and rose solution) and the difference in brain activation was evaluated by
task-taste fMRI scanning simultaneously.

Results: Activation intensity was weaker in the NMOSD group than in the healthy
controls, including the left rectus, right superior temporal gyrus, and left cuneus. The
activation intensity was stronger for the NMOSD than the controls in the left insula and
left middle frontal gyrus (P < 0.05). Activation intensity was weaker in the MS group than
the healthy controls in the bilateral hippocampus, right parahippocampal gyrus, right
insula, left rectus gyrus, and right precentral gyrus, and stronger in the left paracentral
lobule among the MS than the controls (P < 0.05). Compared with the MS group,
activation intensity in the NMOSD group was weaker in the right superior temporal
gyrus and left paracentral lobule, while it was stronger among the NMOSD group in
the bilateral insula, bilateral hippocampus, bilateral parahippocampal gyrus, left inferior
orbital gyrus, left superior temporal gyrus, left putamen, and left middle frontal gyrus
(P < 0.05).

Conclusion: Olfactory-related brain networks are altered in both patients, and there
are differences between their olfactory-related brain networks. It may provide a new
reference index for the clinical differentiation and disease evaluation of NMOSD and MS.
Moreover, further studies are needed.

Keywords: neuromyelitis optica spectrum disease, multiple sclerosis, olfactory, functional magnetic resonance
imaging, brain
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INTRODUCTION

Neuromyelitis optica (NMO) is an idiopathic inflammatory
demyelinating disease of the central nervous system; it mainly
affects the optic nerve and spinal cord and usually does not
affect the brain (Wingerchuk et al., 2007). Multiple sclerosis
(MS) is an autoimmune disease of the central nervous system,
most commonly involving the paracortex, periventricular, optic
nerve, spinal cord, brainstem, and cerebellum (Brownlee
et al., 2017). NMO was previously considered to be a
subtype of MS. After Wingerchuk et al. (1999) proposed
the diagnostic criteria of NMO, Lennon et al. (2004) first
described an autoantibody with high specificity for NMO
named NMO-IgG. NMO-IgG was identified as an aquaporin-4
antibody (AQP4-Ab) that selectively binds to the aquaporin-
4 (AQP4) (Lennon et al., 2005). AQP4-IgG provides a means
to distinguish NMO from MS (Wingerchuk et al., 2006)
and helps define neuromyelitis optica spectrum disorders
(NMOSD). Optic neuritis, acute myelitis, and area postrema
syndrome are the most common clinical symptoms of NMOSD.
In addition, there are three groups of clinical symptoms:
acute encephalic syndrome, acute diencephalic syndrome, and
encephalic syndrome (Wingerchuk et al., 2015; Fujihara, 2019).
Previous research indicates that patients with NMOSD and
MS may experience cognitive impairment (Oertel et al., 2019)
and olfactory dysfunction (Zhang et al., 2015), in addition
to manifestations of the optic nerve, spinal cord, and brain
involvement. Olfactory disorders have been described in a variety
of neurodegenerative diseases (Chen et al., 2014; Das, 2021),
such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and
multiple system atrophy. MS olfactory disorder has attracted
wide attention from scholars worldwide, but there are few
studies on NMOSD olfactory disorders (Schmidt et al., 2013;
Joseph and DeLuca, 2016).

The mechanism of olfactory disorders remains unclear.
Demyelination is a common pathological feature of both diseases
(DeLuca et al., 2015). Some studies indicate that demyelination
changes occur in the olfactory bulb/olfactory tract in both
patients with NMO and with MS, but there are still differences
between the two diseases (DeLuca et al., 2015). AQP4 is strongly
expressed in the synaptic units of the olfactory bulb. Schmidt et al.
(2013) observed that AQP4-IgG tightly binds to the olfactory
bulb of rats and mice. DeLuca et al. (2015) demonstrated a
selective loss of AQP4 in the olfactory bulb/olfactory tract
injury in patients with NMO. The above studies suggest that
AQP4-IgG could cause tissue damage in the olfactory structures
expressing AQP4, causing olfactory disorders. In NMOSD, the
olfactory detection threshold is positively correlated with AQP4-
IgG levels (Zhang et al., 2015). Olfactory-related brain damage
in MS may be caused by systemic immune T cells infiltrating
the submembranous space through fluid circulation and then
migrating to the brain parenchyma through the periductal space
(Shin et al., 2019).

Olfactory dysfunction is present in both patients with
NMOSD and with MS, with incidence rates of 11–50% (Joseph
and DeLuca, 2016) and 50–53%, respectively (Schmidt et al.,
2013; Zhang et al., 2015). Schmidt et al. (2013) observed

olfactory recognition and discrimination disorders in 50% of
patients with NMO using the Sniffin’ sticks olfactory test.
Olfactory detection threshold and recognition threshold in
patients with NMOSD are negatively correlated with olfactory
bulb volume (Zhang et al., 2015). Dysosmia appears in the
early stage of MS (Rolet et al., 2013), and the threshold of
olfactory detection increases significantly during the active stage
of MS inflammation (Lutterotti et al., 2011), which is related
to the peripheral olfactory system, and the impairment of
olfactory discrimination is more obvious in MS patients with a
chronic disease course. Olfactory recognition and identification
functions are considered to be related to the brain regions
involved in olfactory processing. Olfactory processing involves
different regions of the brain, including the piriform layer,
amygdala, insula, orbitofrontal cortex, cingulate, and thalamus
(Ciorba et al., 2020). Doty et al. (1999) observed a negative
correlation between UPSIT scores and the number of plaques
in the inferior frontal and temporal lobes in patients with
MS. Olfactory-related imaging studies have found that olfactory
dysfunction is associated with olfactory bulb volume loss in
patients with MS (Goektas et al., 2011). Recent evidence indicates
that olfactory bulb volume reduction also exists in patients
with NMOSD olfactory disorders (Zhang et al., 2015). Li
et al. (2018) compared NMO and MS patients with olfactory
disorders and demonstrated that olfactory bulb volume and
right orbitofrontal lobe volume in patients with NMO were
significantly lower than those in patients with MS. Olfactory
disorders in patients with NMOSD and with MS are associated
with olfactory damage, but the mechanism of olfactory disorders
remains unclear for both. Improved understanding of olfactory-
related structure and function will assist better in distinguishing
NMOSD from MS.

Functional magnetic resonance imaging (fMRI) is an oxygen-
dependent technique that can objectively detect the activity of
olfactory brain regions through the localization of flow changes
and metabolic changes in the brain during neuronal activity
and adult brain function images. In this study, we used fMRI
combined with an olfactory event-related design to observe
the characteristics of olfactory-related brain networks and the
differences between NMOSD and MS patients and to provide
a new reference index for clinical differentiation and disease
evaluation of NMOSD and MS.

MATERIALS AND METHODS

Participants
Nineteen patients with NMOSD were recruited from the
Department of Neurology of the Affiliated Hospital of North
Sichuan Medical College from July 2019 to December 2020.
Two patients were excluded due to head movement during
fMRI acquisition; thus, 17 patients were enrolled in the study.
Sixteen patients with MS were enrolled in the same period,
and 19 healthy adults matched by sex, age, and education
were recruited as the control group. Inclusion criteria entailed:
(1) clinical manifestations of NMOSD according to 2015
international NMOSD diagnostic criteria, clinical manifestations
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of MS according to 2010 version of McDonald diagnostic criteria;
(2) no severe medical diseases and able to cooperate to complete
the study; (3) routine MRI scan did not reveal other intracranial
organic lesions, such as stroke or brain tumors; and (4) signed
informed consent.

We excluded patients according to the following criteria:
(1) recently had an acute upper respiratory tract infection,
antrum, or sinus diseases; (2) combined with other diseases
affecting olfactory function including AD, PD, anxiety,
depression, or schizophrenia; (3) had a history of smoking
or alcohol abuse; or recent using of drugs that may lead to
olfactory disorders, such as glucocorticoids, atriptyline, or
D-clozymide.

This study followed the ethical principles of the Declaration of
Helsinki. It is approved by the Ethics Committee of the Affiliated
Hospital of North Sichuan Medical College (approval no.
2021ER004-1). Informed consent was signed by all participants.

Clinical Data Collection
Clinical information, course of disease, and EDSS score were
collected, and the olfactory function of all participants was
evaluated using the VAS scale (Gupta et al., 2014) (0 for
complete loss of sense of smell and 5 for a completely normal
sense of smell).

Olfactory Stimulation Method
Emerging Tech Trans (ETT) olfactory stimulator (Hershey
Company, United States) was selected. The preset olfactory
stimulation paradigm was used. The volatile body (0.5%
fumigation grass, 0.5% rose solution) was selected to alternately
enter olfactory stimulation to avoid olfactory adaptation. The
ETT olfactory stimulator can accurately control the flow and
concentration of the smell source and release it at fixed time
intervals so that olfactory stimulation can be accurately repeated
in a short time.

Functional Magnetic Resonance Imaging
Data Acquisition
The MRI data of all participants were collected with a 3.0 T
superconducting MR (DISCOVERYMR750, GE, United States).
We used a 32-channel phased-array head coil. During the data
collection, participants were asked to relax their entire body, rest
quietly, and remain awake. If unbearable discomfort occurred
during the examination, scanning was stopped.

Advanced conventional MRI scanning, including T1WI and
T2WI, then started the ETT olfactory stimulator. According
to the preset stimulation paradigm, the participants were
stimulated by olfactory stimulation, and the task-state fMRI
scanning was synchronized. fMRI scanning parameters were as
follows: echoplanar imaging (EPI) technology, TR = 2,000 ms,
TE = 30 ms, flip angle = 90◦, slice thickness = 4 mm, scanning
slices = 33, matrix = 64 × 64, and field of view = 24 × 24.
Olfactory stimulation paradigm: First, 42 s of clean air (3 L/min)
was given as the stimulation interval, then 6 s of stimulation
(3 L/min, alternating rose and fumigation) was provided and
repeated 12 times.

Data Processing and Analysis
Statistical analyses were performed using SPSS 23.0. Normally
distributed data are expressed as “mean ± standard deviation.”
Age, years of education, and VAS scores were analyzed by one-
way Analysis of variance (ANOVA); sex was analyzed by card test.
EDSS scores and disease course were analyzed using a two-sample
t-test.

SPM8 and Metlab2013a were used to preprocess the
fMRI images of each participant, including time correction,
head movement correction, spatial standardization, and spatial
smoothing. The images of the first five time points were removed
to ensure the stability of longitudinal magnetization at the
beginning of the scanning. The activation of brain regions in
the intra-group among three groups was analyzed using a single-
sample t-test. The difference in activated brain regions between
the three groups was analyzed by one-way ANOVA, then Post Hoc
pairwise comparisons were performed with the Tukey-Kramer
test to analyze the difference between each two groups; All
fMRI data analysis are corrected using AlphaSim, and P < 0.05,
indicating that the difference was statistically significant. Brain
regions with activated cluster values of > 10 voxels indicated
meaningfully activated brain regions.

RESULTS

Demographic and Clinical
Characteristics
Seventeen patients (14 females, 3 males) with NMOSD were
enrolled, with an average age of 46.65 (± 13.29) (range 22–
66) years, disease duration of 4.05 (± 1.86) years, including
15 AQP4-IgG positive cases and 2 AQP4-IgG negative cases.
There were 16 patients (12 females, 4 males) with MS, with an
average age of 44.38 (± 14.59) (range 25–69) years, and disease
duration of 5.20 (± 5.21) years. There were 19 healthy controls
(13 females, 6 males), with an average age of 40.47 (± 9.35) (range
28–60) years. There were no significant differences in age, sex,
or years of education among the three groups (P > 0.05). There
was no significant difference in the disease duration between
the NMOSD and MS groups (P > 0.05). There were significant
differences in VAS scores between the NMOSD and control
groups or between the MS and control groups (P < 0.001). There
was no significant difference in the olfactory VAS scores between
the NMOSD and MS groups (P > 0.001) (Table 1).

Whole-Brain Activation Distribution
Intra-Group Analysis of Whole-Brain Activation
The areas activated by olfactory stimulation in the control group
included the bilateral insula, bilateral superior parietal gyrus,
bilateral supplementary motor area, bilateral superior temporal
gyrus, bilateral cuneus, bilateral paracentral lobule, bilateral
medial cingulate gyrus, right precentral gyrus, left inferior
temporal gyrus, right rolandic operculum, right supramarginal
gyrus, left fusiform gyrus, right putamen, right middle frontal
gyrus, right superior occipital gyrus, and left cerebellum
(P < 0.05; Figure 1).
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TABLE 1 | Comparison of statistical and clinical data.

Items NMOSD group MS group Control group P-values

Sex (male/female) 17 (3/14) 16 (4/12) 19 (6/13) 0.614

age (years) 46.65 ± 13.29 44.38 ± 14.59 40.47 ± 9.35 0.329

Years of
education (years)

8.53 ± 3.79 8.75 ± 4.69 9.53 ± 3.53 0.735

Disease course
(years)

4.05 ± 1.86 5.20 ± 5.21 0.417

VAS score 2.79 ± 0.47* 2.84 ± 0.50* 4.47 ± 0.46 0.000

EDSS score
(points)

3.47 ± 1.69 3.12 ± 2.65 0.657

AQP4-IgG (±) 17 (15/2)

NMOSD, neuromyelitis optica spectrum disease; MS, multiple sclerosis; VAS,
Visual Analog Scale; EDSS, Extended Disability Status Scale; AQP4-IgG,
aquaporin-4 waterchannel–IgG; *, no statistically significant between-group
difference.

The activated brain areas in the MS group included the
bilateral precentral gyrus, bilateral dorsolateral superior frontal
gyrus, bilateral supplementary motor area, left paracentral lobule,
and left lingual gyrus (P < 0.05; Figure 1).

The activated brain areas in the NMOSD group included
the bilateral insula, bilateral amygdala, bilateral hippocampus,
bilateral rolandic operculum, bilateral parahippocampal gyrus,
bilateral precentral gyrus, bilateral posterior central gyrus,
bilateral putamen, bilateral superior temporal gyrus, bilateral
cerebellum, bilateral Heschl’s gyrus, left orbital inferior frontal
gyrus, left triangle inferior frontal gyrus, left opercular part of

FIGURE 2 | Differences in activated brain regions between NMOSD group,
MS group, and control group. Yellow to red indicates strong to weak
activation. NMOSD, neuromyelitis optica spectrum disease; MS, multiple
sclerosis; HC, healthy controls.

inferior frontal gyrus, left caudate nucleus, left middle frontal
gyrus, left inferior temporal gyrus, left pallidum, right lingual
gyrus, left fusiform gyrus, left inferior occipital gyrus, left
dorsolateral superior frontal gyrus, left medial superior frontal
gyrus, right superior occipital gyrus, right precuneus, right
cuneus, left superior parietal cortex, left parietal inferior lobe
angular gyrus, right medial cingulate cortex, left supplementary
motor area (P < 0.05; Figure 1).

Between-Group Differences in Whole-Brain
Activation
The differentially activated brain regions in the NMOSD,
MS, and control groups included the bilateral insula, bilateral
parahippocampal gyrus, bilateral hippocampus, bilateral superior
temporal gyrus, left rectus, left middle frontal gyrus, right
precentral gyrus, left orbital inferior frontal gyrus, left putamen,

FIGURE 1 | Distribution map of activated brain regions in NMOSD group, MS group, and control group. Yellow to red indicates strong to weak activation. NMOSD,
neuromyelitis optica spectrum disease; MS, multiple sclerosis; HC, healthy controls.
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TABLE 2 | Results of difference analysis of activation in brain regions among groups.

Activated brain region Brodmann MNI coordinates F-values Clusters (voxel)

X Y Z

Left parahippocampal gyrus 39 −12 −6 −18 5.606 43

Right hippocampus 38 15 −9 −15 6.036 15

left rectus 27 −3 45 −21 7.727 11

Right parahippocampal gyrus 40 17 −33 −6 11.79 16

Left insula 29 −38 14 −6 6.510 162

Left orbital inferior frontal gyrus 15 −38 24 −3 4.085 65

Left inferior frontal gyrus 13 −37 31 6 3.418 34

Left superior temporal gyrus 81 −48 6 −4 4.052 26

Left putamen 73 −22 20 −2 5.081 24

Right hippocampus 37 −18 −24 −9 7.421 19

Right insula 30 39 6 −6 4.980 38

Right superior temporal gyrus 82 69 −12 −6 8.369 63

Left rolandic operculum 17 −42 −9 6 5.203 34

Left middle frontal gyrus 7 −18 42 27 5.786 20

Left cuneus 45 0 −90 27 4.086 17

Right precentral gyrus 2 36 −15 45 4.342 13

Left paracentral lobule 69 −15 −9 66 4.511 35

MNI, Montreal Neurological Institute.

left inferior frontal gyrus, left cuneus, left rolandic operculum,
and left paracentral lobule (P < 0.05, Figure 2 and Table 2,
AlphaSim corrected).

Activation intensity in the NMOSD group was weaker than
the control group in the left rectus, right superior temporal gyrus,
and left cuneus. Activation intensity was stronger in the NMOSD
than in the control group in the left insula and left middle frontal
gyrus (P < 0.05, Figure 3).

Activation intensity of the bilateral hippocampus, right
parahippocampal gyrus, right insula, left rectus gyrus, and

FIGURE 3 | Differences in activated brain regions between NMOSD and MS,
NMOSD and HC, MS and HC. Yellow to red indicates strong to weak
activation. Blue to green indicates strong to weak activation. NMOSD,
neuromyelitis optica spectrum disease; MS, multiple sclerosis; HC, healthy
controls.

right precentral gyrus in the MS group was weaker than in
the controls, while the left paracentral lobule had a stronger
activation intensity in the MS group (P < 0.05, Figure 3).

Brain regions with weaker activation intensity in the NMOSD
group than in the MS group included the left paracentral lobule
and right superior temporal gyrus, while those with stronger
activation intensity in the NMOSD group included the bilateral
insula, bilateral hippocampus, bilateral parahippocampal gyrus,
left superior temporal gyrus, left putamen, left inferior orbital
gyrus, and left middle frontal gyrus (P < 0.05, Figure 3).

DISCUSSION

Olfactory disorders can be caused by damage in different parts
of the olfactory pathway, and the damage in the lumen, superior
olfactory, and olfactory nerves is the main cause of damage to
the peripheral olfactory pathway. They may also result from
damage to the olfactory bulb, olfactory layer, and olfactory system
processing areas (Schmidt et al., 2013). Olfactory dysfunction is
an early sign of neurodegenerative diseases (Dan et al., 2021).
Prospective studies reveal that olfactory dysfunction can predict
the occurrence of amnestic mild cognitive impairment and
its progression to Alzheimer’s disease (Roberts et al., 2016).
Furthermore, it has been adopted as a diagnostic criterion for
PD by the International Association for Parkinson’s Disease and
Motor Disorders (Postuma et al., 2015). Olfactory dysfunction is
an important clinical marker and predictor of these diseases and
can help identify disease risk.

Olfactory dysfunction can occur in NMOSD and MS, but the
specific mechanism of olfactory dysfunction in patients has not
been fully elucidated. Some studies suggest that olfactory function
is not only negatively correlated with the damage load in olfactory
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brain regions (Doty et al., 1997), but is also associated with
longitudinal changes in the number of plaques in central olfactory
brain regions (Doty et al., 1999), which was also reported by
Schmidt et al. (2011) regarding MS. Zhang et al. (2015) observed
that the decrease in olfactory function-related gray matter volume
was associated with olfactory dysfunction in NMOSD patients. It
suggests that atrophy or microdamage of olfactory structures may
be responsible for olfactory dysfunction. A study that compared
the difference in olfactory function and olfactory-related gray
matter volume between NMO and MS patients revealed different
regions of gray matter atrophy in both patients. The right
orbitofrontal cortex volume in NMO patients with dysosmia was
higher than that dysosmia in MS patients. However, the volume
of gray matter decreased in the right parahippocampal gyrus and
piriform layer in patients with MS (Li et al., 2018), suggesting
that the mechanisms of olfactory disorders in NMO and MS
may be different.

In this study, the VAS scale was used to assess the olfactory
function of patients. The results indicate that the olfactory
function of the NMOSD and MS groups was lower than the
control group, but this method could only roughly evaluate
olfactory function. In this study, an olfactory event-related
fMRI design was used to detect significant differences in the
activation of brain regions between the NMOSD and MS groups,
such as the bilateral insula, left inferior orbital frontal gyrus,
bilateral parahippocampal gyrus, bilateral hippocampus, left
superior temporal gyrus, left middle frontal gyrus. The activation
intensity of patients with NMOSD in the bilateral insula,
left orbital inferior frontal gyrus, bilateral parahippocampal
gyrus, and bilateral hippocampus was stronger than those in
the MS group. The olfactory function may involve neural
networks distributed in multiple regions and pathways (Doty
et al., 1997). Positron emission tomography (PET) neuroimaging
studies reveal that the increase in local cerebral flow in the
right orbitofrontal cortex and bilateral insula is related to
odor perception, and the left orbitofrontal cortex was also
obviously activated during the imagination of odor (Djordjevic
et al., 2005). The orbitofrontal cortex and insula cortex are
secondary olfactory structures that receive olfactory information
transmitted from the primary olfactory cortex. The orbitofrontal
cortex is the key structure for olfaction and acts as a nucleus
in olfactory processing. It forms a bidirectional connection with
the piriform posterior cortex and the amygdala to integrate
olfactory information (Gottfried and Zald, 2005; Kjelvik et al.,
2012; Howard and Gottfried, 2014).

Some studies have demonstrated that the activation of the
piriform and orbitofrontal cortex can also be induced in the
presence of odor stimulation during sniffing (Sobel et al., 1998).
Activation of the left insula is the most stable during olfactory
stimulation (Kurth et al., 2010). At the same time, the insula
appears to have significant activity in the process of scent
discrimination; it plays a key role in the integration of multiple
senses. The dorsolateral prefrontal cortex is the primary structure
of the olfactory center, which receives olfactory inputs from
various regions such as the orbitofrontal cortex, amygdala,
insular cortex, and is involved in odor memory and cognitive
function related to olfactory tasks (Karunanayaka et al., 2014).

Studies on olfactory disorders caused by brain injury
demonstrate that the olfactory discrimination function of
patients with medial temporal lobule or frontal lobule is
decreased, but the olfactory threshold is normal and the frontal
lobule activation in the process of olfactory discrimination may
be related to memory (Plailly et al., 2007). Our results show
that the activation of cerebral regions in NMOSD patients
differs from healthy adults, including the left insular, left middle
frontal gyrus, right superior temporal gyrus, and left cuneus.
While the activation of cerebral regions in patients with MS,
in regions such as the right insular, bilateral hippocampus,
and right parahippocampal gyrus, was different from that in
healthy adults. OuYang et al. (2020) confirmed olfactory-related
changes in cerebral networks of patients with MS. Using fMRI
imaging, we observed changes in olfactory-related brain regions
and differences in the activation of olfactory-related brain regions
in NMOSD and MS patients, it suggests that the pathological
changes of the two diseases may involve olfactory disorders
caused by olfactory networks, but there are different olfactory-
related brain networks between the two diseases.

LIMITATIONS

This study also has some limitations. First, the olfactory function
of patients was roughly evaluated by the VAS score, which cannot
fully reflect their precise olfactory status. In our future research
efforts, we plan to incorporate Sniffin’ Sticks test or University
of Pennsylvania’s smell identification test (UPSIT) to better assess
patients’ olfactory function, combined with fMRI to explore the
changes that occur in olfactory-related brain regions in different
types and degrees of olfactory disorders. Second, the sample
size of the NMO and MS groups was relatively small, which
may have biased the statistical analyses, and which could not
be divided into groups according to the state of their disease,
the course of the disease, or the degree of olfactory impairment.
Moreover, participants included only patients with NMOSD and
MS with decreased olfactory function. Fewer AQP4-IgG-negative
NMOSD patients were recruited, and the AQP4-IgG status was
not divided into two groups. In our future study, we plan to
increase the sample size, conduct a longitudinal study of NMOSD
and MS from the two levels of the presence or absence of olfactory
disorders, and dynamically observe the changes in olfactory
function and olfactory-related brain networks in patients with
NMOSD and MS with different disease progression, which will
help clarify the pathological mechanism or nuclear networks of
olfactory disorders in NMOSD and MS.

CONCLUSION

In summary, our results indicate that multiple brain regions
are activated during olfactory stimulation in NMOSD and MS
patients. Further, there were differences in activation sites and
intensity between both patients. The reason for this observation
may be that different pathological mechanisms of the two
diseases lead to differences in damage to the olfactory cortex and
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changes in olfactory-related brain networks. The evaluation of
the olfactory function of pre-NMOSD and MS is mainly based
on subjective olfactory detection and olfactory system structure
imaging, but there are few studies on functional magnetic
resonance imaging of the olfactory system. This study explored
the olfactory function of patients with NMOSD and MS through
olfactory event-related design, which has a good spatiotemporal
effect, and can expand the study of structural lesions such as
olfactory bulb and olfactory bundle related to olfactory disorders
to olfactory-related brain networks. Objectively exploring the
olfactory function of patients with NMOSD and MS more
completely provides a theoretical basis for the study of the
mechanism of dysosmia in the future, and may be helpful in
providing a new reference index for the clinical differentiation
and disease evaluation of NMOSD and MS.
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