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A novel strategy for SARS-CoV-2 mass screening with 
quantitative antigen testing of saliva: a diagnostic 
accuracy study
Isao Yokota*, Peter Y Shane*, Kazufumi Okada, Yoko Unoki, Yichi Yang, Sumio Iwasaki, Shinichi Fujisawa, Mutsumi Nishida, Takanori Teshima

Summary
Background Quantitative RT-PCR (RT-qPCR) of nasopharyngeal swab (NPS) samples for SARS-CoV-2 detection 
requires medical personnel and is time consuming, and thus is poorly suited to mass screening. In June, 2020, a 
chemiluminescent enzyme immunoassay (CLEIA; Lumipulse G SARS-CoV-2 Ag kit, Fujirebio, Tokyo, Japan) was 
developed that can detect SARS-CoV-2 nucleoproteins in NPS or saliva samples within 35 min. In this study, we 
assessed the utility of CLEIA in mass SARS-CoV-2 screening.

Methods We did a diagnostic accuracy study to develop a mass-screening strategy for salivary detection of SARS-CoV-2 
by CLEIA, enrolling hospitalised patients with clinically confirmed COVID-19, close contacts identified at community 
health centres, and asymptomatic international arrivals at two airports, all based in Japan. All test participants were 
enrolled consecutively. We assessed the diagnostic accuracy of CLEIA compared with RT-qPCR, estimated according 
to concordance (Kendall’s coefficient of concordance, W), and sensitivity (probability of CLEIA positivity given RT-
qPCR positivity) and specificity (probability of CLEIA negativity given RT-qPCR negativity) for different antigen 
concentration cutoffs (0·19 pg/mL, 0·67 pg/mL, and 4·00 pg/mL; with samples considered positive if the antigen 
concentration was equal to or more than the cutoff and negative if it was less than the cutoff). We also assessed a 
two-step testing strategy post hoc with CLEIA as an initial test, using separate antigen cutoff values for test negativity 
and positivity from the predefined cutoff values. The proportion of intermediate results requiring secondary RT-qPCR 
was then quantified assuming prevalence values of RT-qPCR positivity in the overall tested population of 10%, 30%, 
and 50%.

Findings Self-collected saliva was obtained from 2056 participants between June 12 and Aug 6, 2020. Results of CLEIA 
and RT-qPCR were concordant in 2020 (98·2%) samples (Kendall’s W=0·99). Test sensitivity was 85·4% 
(76 of 89 positive samples; 90% credible interval [CrI] 78·0–90·3) at the cutoff of 0·19 pg/mL; 76·4% (68 of 89; 
68·2–82·8) at the cutoff of 0·67 pg/mL; and 52·8% (47 of 89; 44·1–61·3) at the cutoff of 4·0 pg/mL. Test specificity 
was 91·3% (1796 of 1967 negative samples; 90% CrI 90·2–92·3) at the cutoff of 0·19 pg/mL, 99·2% (1952 of 1967; 
98·8–99·5) at the cutoff of 0·67 pg/mL, and 100·0% (1967 of 1967; 99·8–100·0) at the cutoff of 4·00 pg/mL. Using a 
two-step testing strategy with a CLEIA negativity cutoff of 0·19 pg/mL (to maximise sensitivity) and a CLEIA positivity 
cutoff of 4·00 pg/mL (to maximise specificity), the proportions of indeterminate results (ie, samples requiring 
secondary RT-qPCR) would be approximately 11% assuming a prevalence of RT-qPCR positivity of 10%, 16% assuming 
a prevalence of RT-qPCR positivity of 30%, and 21% assuming a prevalence of RT-qPCR positivity of 50%.

Interpretation CLEIA testing of self-collected saliva is simple and provides results quickly, and is thus suitable for 
mass testing. To improve accuracy, we propose a two-step screening strategy with an initial CLEIA test followed by 
confirmatory RT-qPCR for intermediate concentrations, varying positive and negative thresholds depending on local 
prevalence. Implementation of this strategy has expedited sample processing at Japanese airports since July, 2020, 
and might apply to other large-scale mass screening initiatives.
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Introduction
Rapid detection of SARS-CoV-2 is crucial for the pre
vention and containment of COVID-19 outbreaks in 
communities and hospitals. Screening of asymptomatic 
people is a particularly urgent priority, given that sub
stantial viral shedding occurs before symptom onset.1 
Studies in the past year have shown that infectiousness 

peaks at or before symptom onset,2 and that live virus 
can be isolated from asymptomatic individuals.3 
Approximately half of infections are asymptomatic but 
transmissible for at least 10 days after initial infection.3,4 
Thus, a comprehensive strategy is needed to increase 
diagnostic testing capabilities for mass screening of 
SARS-CoV-2.5
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The current gold standard for viral detection is nucleic 
acid amplification tests (NAAT), such as quantitative 
RT-PCR (RT-qPCR) with nasopharyngeal swab (NPS) 
samples.6,7 Traditionally, preferred screening tests are 
simple, inexpensive, and acceptable to those being tested, in 
addition to having high sensitivity and specificity. However, 
NPS sampling in the context of RT-qPCR requires 
specialised medical personnel with protective equipment, 
posing the risk of viral transmission to health-care workers, 
and false-negative results might occur due to errors in 
sampling technique.7,8 Self-collected saliva testing has 
substantial logistic advantages over non-self NPS sampling 
by eliminating these issues. We and others have shown that 
the accuracy of self-collected saliva and non-self NPS 
samples in the detection of SARS-CoV-2 by RT-qPCR is 
equivalent in large-scale direct comparative studies.9–12

Although RT-qPCR is accurate and reliable, it is time 
consuming as a screening test. A rapid alternative is 
antibody-based serological assays, but these cannot be used 
for early diagnosis of infection.6 Viral antigen detection in 
saliva might be a candidate strategy to achieve earlier 
diagnosis than RT-qPCR.13 However, one study showed that 
the sensitivity of an immunochromatographic assay to 
detect viral antigen was only 11·7% when testing the saliva 
of patients with COVID-19.14 In June, 2020, a quantitative 
antigen test that uses a chemiluminescent enzyme 
immunoassay (CLEIA) was developed, which can detect 
SARS-CoV-2 proteins in NPS or saliva samples within 
35 min, called Lumipulse G SARS-CoV-2 Ag (Fujirebio, 
Tokyo, Japan).15–17 In the present study, we prospectively 
compared the utility of this CLEIA test against RT-qPCR 
when applied on self-collected saliva, including perfor
mance in asymptomatic people, and we propose a two-step 
strategy for mass screening of SARS-CoV-2.

Methods
Study design and participants
We did a diagnostic accuracy study to develop a mass-
screening strategy for salivary detection of SARS-CoV-2 by 
CLEIA in hospitalised patients with clinically confirmed 
COVID-19, close contacts identified at community 
health centres, and international arrivals at two airports. 
Three separate cohorts were included to form a test dataset 
in this analysis: an inpatient cohort of consecutive, clinically 
confirmed patients with COVID-19 admitted to Hokkaido 
University Hospital (Sapporo, Japan), Sapporo City General 
Hospital (Sapporo), National Hospital Organization 
Hokkaido Medical Center (Sapporo), and Otaru Kyokai 
Hospital (Otaru, Japan); a contact tracing cohort enrolling 
consecutive people who had been in close contact with 
clinically confirmed patients with COVID-19, with close 
contact defined as being within approximately 2 m of an 
infected person for at least 15 min without a mask, from 
three community health centres in Hokkaido and Tokyo, 
Japan; and an airport quarantine cohort enrolling 
consecutive asymptomatic arrivals tested at quarantine 
stations in Tokyo International Airport (Tokyo, Japan) and 
Kansai International Airport (Osaka, Japan). In the 
inpatient cohort, COVID-19 was confirmed by a positive 
RT-qPCR test of an NPS sample. Participants in the contact 
tracing cohort were identified by the health centres and 
were independent of the inpatient cohort. Results 
comparing the utility of NPS with saliva samples for NAAT 
in asymptomatic people in the contact tracing and airport 
quarantine cohorts have been published in recent 
months.11,18 In all cohorts, the participants were requested to 
provide background information (sex and age, and, in the 
airport quarantine cohort, last point of departure) and 
saliva in addition to mandatory NPS sampling (a national 

Research in context

Evidence before this study
A PubMed search from database inception up to Feb 17, 2021, 
for articles published in English, with the search terms 
“antigen test” AND (“NAAT” OR “PCR”) AND (“COVID” OR 
“SARS-CoV-2”), provided 41 articles. 31 of these pertained to 
the evaluation of various tests, mostly rapid non-quantitative 
antigen tests, compared with PCR, and four were case reports 
or case series. One randomised controlled trial summary, a 
simulation of pretravel testing, and a meta-analysis were also 
identified. Three articles evaluated the performance of the 
Lumipulse G SARS-CoV-2 Ag assay (Fujirebio, Tokyo, Japan), a 
quantitative antigen test based on chemiluminescent enzyme 
immunoassay (CLEIA), but all previous articles used 
nasopharyngeal fluid and not saliva.

Added value of this study
Our study compared the utility of the Lumipulse CLEIA test 
with that of quantitative RT-PCR (RT-qPCR) when applied on 
self-collected saliva, including performance in asymptomatic 

people who might transmit SARS-CoV-2 within communities. 
To our knowledge, our data are the first to show high 
concordance of results between CLEIA and RT-qPCR in the 
testing of saliva, in the largest prospective cohort to date. 
In addition, by using two different thresholds (derived from 
the manufacturer’s package insert) to define test positivity 
and negativity, we were able to maximise both sensitivity 
and specificity.

Implications of all the available evidence
This study showed similar accuracy between CLEIA and 
RT-qPCR, and suggested the potential value of the use of these 
tests in a stepwise manner. Considering the rapid turnaround 
time and ability to vary positive and negative thresholds, 
CLEIA is more suited as the initial test, with RT-qPCR reserved 
for individuals with indeterminate results. Implementation of 
this two-step strategy has expedited sample processing at 
Japanese airports since July, 2020, and might be applicable 
in various large-scale mass screening initiatives.
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requirement for SARS-CoV-2 testing at the time of study) 
by medical personnel. People who did not provide sufficient 
saliva volume were excluded from the analysis. Saliva 
samples were self-collected either immediately before or 
immediately after NPS sampling, in a sterilised 15 mL 
polystyrene sputum collection tube (Toyo Kizai, Warabi, 
Japan) at partitioned booths (with sampling instructions in 
each booth), and transported at 4°C without transport 
media. All specimens were analysed within 48 h at a central 
laboratory (SRL, Tokyo, Japan) to ensure consistency in 
sample processing. This study was approved by the 
institutional ethics board of Hokkaido University Hospital 
(Division of Clinical Research administration number 
020-0116) and informed consent was obtained from all 
individuals orally due to the requirement for rapid 
processing at airports and health centres.

Procedures
Saliva was diluted 4-fold with phosphate-buffered saline 
and centrifuged at 2000 g for 5 min to remove cells and 
debris. RNA was extracted from 200 µL of the supernatant 
with the QIAsymphony DSP Virus/Pathogen Kit and 
QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) 
following the manufacturer’s instructions. RT-qPCR tests 
were done as described previously,11 according to the 
manual by the Japan National Institute of Infectious 
Diseases (NIID).19,20 Briefly, 5 μL of extracted RNA was 
used as a template. One-step RT-qPCR was done with the 
THUNDERBIRD Probe One-step qRT-PCR Kit (Toyobo, 
Osaka, Japan) and 7500 Real-Time RT-PCR System 
(Thermo Fisher Scientific, Waltham, MA, USA) to obtain 
the cycle threshold (Ct) values. SARS-CoV-2 nucleocapsid 
protein (SARS-CoV-2-N) primers for the N2 region 
(NIID_2019-nCOV_N_F2 and NIID_2019-nCOV_N_R2) 
and an N2 probe (NIID_2019-nCOV_N_P2) designed by 
the NIID were used for RT-qPCR (appendix p 2).

The Lumipulse G SARS-CoV-2 Ag assay is a sandwich 
CLEIA that uses monoclonal antibodies against SARS-CoV-
2-N on a Lumipulse G1200 automated machine (Fujirebio), 
which can assay 120 samples per h. 100 µL of saliva diluted 
4-fold with PBS was analysed to measure SARS-CoV-2-N 
concentration according to the manufacturer’s instructions. 
In this assay, the treatment solution and the specimen 
were consecutively aspirated with a single-use tip and 
dispensed into a suspension of magnetic beads coated with 
the monoclonal antibody. After a 10-min incubation 
followed by a wash step, alkaline phosphatase-conjugated 
anti-SARS-CoV-2-N monoclonal antibody was added and 
the suspension incubated for another 10 min. After 
a second wash step, 3-(2ʹ-spiroadamantane)-4-methoxy-4-
(3ʹʹ-phosphoryloxy)phenyl-1,2-dioxetane disodium salt (also 
known as AMPPD) substrate solution was added and 
developed for 5 min. The amounts of SARS-CoV-2-N were 
determined from the developed chemiluminescence 
signals on the Lumipulse G1200 automated machine. 
Calibration of Lumipulse G SARS-CoV-2 Ag was done with 
recombinant SARS-CoV-2-N expressed from Escherichia coli 

(0, 50, 1000, and 5000 pg/mL) provided as part of the assay 
according to manufacturer’s instructions. The standar
disation of Lumipulse G SARS-CoV-2 Ag is based on highly 
purified SARS-CoV-2-N established by the research group 
on development of diagnostic tests for COVID-19 (SRL, 
Tokyo, Japan) under the support of the Japan Agency for 
Medical Research and Development.

Statistical analysis
We calculated the proportions of RT-qPCR positive 
and negative samples at defined CLEIA outputs 
(≥4·00 pg/mL, 0·67 to <4·00 pg/mL, 0·19 to <0·67 pg/mL, 
and <0·19 pg/mL). The proportions of RT-qPCR positivity 
and negativity were calculated in the overall cohort and in 
each of the three cohorts. Subsequently, we estimated the 
sensitivity and specificity of CLEIA, using antigen 
concentrations of 0·19, 0·67, and 4·00 pg/mL as cutoffs 
(ie, CLEIA results were considered positive if equal or 
greater than the cutoff and negative if smaller than the 
cutoff). These cutoff values were taken from the package 
insert of the reagents and based on in-company validation. 
We defined the sensitivity of CLEIA as the proportion of 
samples with CLEIA positivity given RT-qPCR positivity 
(CLEIA[+]|RT-qPCR[+]) and the specificity of CLEIA as the 
proportion of samples with CLEIA negativity given 
RT-qPCR negativity (CLEIA[–]|RT-qPCR[–]). For specimens 
testing positive by RT-qPCR, the correlation between the 
Ct value and the CLEIA antigen concentration was shown 
in a scatter plot with Kendall’s coefficient of concordance 
(W). Sensitivity and specificity were also calculated with 
several other cutoff values, ranging from 0·02 pg/mL to 
100·00 pg/mL. An additional sensitivity analysis was done 
with use of Ct values ranging from 30 to 37 (which includes 
Ct=35, the threshold for viral transmission21) as conditional 
RT-qPCR positivity.

As a post-hoc analysis, we also evaluated CLEIA as an 
initial test in a two-step testing strategy, by selecting 
separate antigen cutoff values for specimen negativity 
and positivity that would not require further validation by 
RT-qPCR. Results smaller than the lower cutoff were 
considered negative and results equal to or greater than 
the upper cutoff were considered positive. All results 
between the two cutoffs were considered indeterminate 
and in need of RT-qPCR for confirmatory testing; the 
upper and lower cutoffs were varied and the proportion 
of participants within the indeterminate category was 
estimated. The proportion of secondary RT-qPCR tests 
as a function of the lower cutoff value, with the 
upper cutoff value fixed at 4·00 pg/mL, was estimated 
assuming an RT-qPCR positivity of 10%, 30%, and 50%, 
as follows:

[probability of RT-PCR-positivity ×
(sensitivity at the lower cutoff – sensitivity at
≥4·00 pg/mL)] + [probability of RT-PCR
negativity × (specificity at ≥4·00 pg/mL – specificity
at the lower cutoff)]
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Sample size for the three cohorts was determined 
separately, reflecting different assumptions around a 
credible interval (CrI) set to 90%. Sample size in the 
airport quarantine cohort was calculated as 1818 on the 
basis of an 80% probability that the 90% CrI for specificity 
would be greater than 99·0%, with an expected specificity 
of 99·5%. In the inpatient cohort, with an expected 
sensitivity of 60·0%, 40 participants were needed 
to accomplish an 80% probability of the 90% CrI 
exceeding 40·0%. Sample size in the contact tracing 
cohort was calculated as 250 on the basis of a probability 
of RT-qPCR-positivity of 10%, and 25 positive samples 
being needed to keep the 90% CrI of sensitivity 
within 30·0% under an expected sensitivity of 70·0%.

All statistical analyses were done with R version 4.0.2. 
The 90% CrI for the proportion x/n was the range 
between the 5th and 95th percentile of the beta 
distribution, beta(x + 1, n – x + 1). According to the study 
design, this construction of CrIs is based on Bayesian 
estimation with beta(1,1) as the uninformative prior 
distribution reflecting the unknown proportion before 
the study.

Role of the funding source
The funder of the study was involved in selecting 
the study sites, but had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
Of 2600 people screened for study enrolment, 
2077 (79·9%) gave consent, and 2056 (79·1%) were 
included for analysis after exclusion of 21 people with 
insufficient saliva volume (figure 1). Of the final study 
population, the airport quarantine cohort contributed 

1763 (85·7%) participants (enrolled between June 12 and 
June 23, 2020), the contact tracing cohort 251 (12·2%) 
participants (enrolled between June 12 and July 7, 2020), 
and the inpatient cohort 42 (2·0%) participants (enrolled 
between June 12 and Aug 6, 2020), with a total of 
132 (6·4%) symptomatic people and 1924 (93·6%) 
asymptomatic people. The total population consisted of 
1048 (51·0%) male participants, 913 (44·4%) female 
participants, and 95 (4·6%) people who did not specify 
their gender (appendix p 3). Participants in the airport 
quarantine cohort had a median age of 33·5 years 
(IQR 22·6–47·4), whereas the inpatient cohort was highly 
represented by older patients (median age 69·8 years 
[51·6–83·4]). In the contact tracing cohort, median age 
was similar between symptomatic participants (n=90; 
42·2 years [34·8–59·6]) and asymptomatic participants 

Figure 1: Participant enrolment in the three study cohorts
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Figure 2: Comparison of viral load between RT-qPCR and CLEIA in saliva samples
(A) Histogram of CLEIA antigen concentration according to diagnostic outcome of 
RT-qPCR. Numbers of participants with each antigen concentration range are 
shown above each column. (B) Antigen concentration measured by CLEIA 
and Ct values from RT-qPCR were plotted according to symptomatic and 
asymptomatic status. W indicates Kendall’s coefficient of concordance. Data were 
plotted for RT-qPCR-positive samples (n=89). A histogram of Ct values is also 
shown. RT-qPCR=quantitative RT-PCR. CLEIA=chemiluminescent enzyme 
immunoassay. Ct=cycle threshold. *Minimum antigen concentration was 
displayed as 0·01 pg/mL by the Lumipulse G1200 machine.
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(n=161; 44·9 years [29·8–66·4]). The last point of 
departure in the airport quarantine cohort was reasonably 
distributed between North America (713 [40·4%] of 
1763 participants), Asia and Oceania (583 [33·1%]), and 
Europe (467 [26·5%]).

Overall, 89 (4·3%) of 2056 participants tested positive 
for SARS-CoV-2 on RT-qPCR during the study; 38 
(90·5%) of 42 participants tested positive in the inpatient 
cohort, 47 (18·7%) of 251 tested positive in the contact 
tracing cohort, and four (0·2%) of 1763 tested positive in 
the airport quarantine cohort. The virus was assumed to 
have cleared in the four patients who tested negative in 
the inpatient cohort after they initially tested positive on 
hospital admission. In the total study population, results 
of CLEIA and RT-qPCR were concordant in 2020 (98·2%) 
of 2056 samples. The median antigen concentration 
measured by CLEIA was 4·29 pg/mL (IQR 0·72–359·02) 
in RT-qPCR-positive specimens, compared with 
0·06 pg/mL (0·01–0·11) in RT-qPCR-negative specimens 
(figure 2A). The maximum antigen concentration in 
RT-qPCR-negative specimens was 2·42 pg/mL. The 
scatter plot of antigen concentrations against Ct values 
(figure 2B) indicated high correlation between CLEIA 
and RT-qPCR, with a Kendall’s W of 0·99.

Increasing the antigen cutoff value (ie, the value at and 
above which a CLEIA result was considered positive, and 
below which a CLEIA result was considered negative) 
led to reduced test sensitivity but increased test specificity 
(table). For the overall population, a cutoff value of 
0·19 pg/mL yielded a sensitivity (CLEIA[+]|RT-qPCR[+]) 
of 85·4% (76 of 89 samples; 90% CrI 78·0–90·3), a cutoff 
value of 0·67 pg/mL yielded a sensitivity of 76·4% (68 of 89; 
68·2–82·8), and a cutoff value of 4·00 pg/mL yielded a 
sensitivity of 52·8% (47 of 89; 44·1–61·3). Specificity 

(CLEIA[–]|RT-qPCR[–]) was 91·3% (1796 of 1967 samples; 
90% CrI 90·2–92·3) at a cutoff value of 0·19 pg/mL, 
99·2% (1952 of 1967; 98·8–99·5) at a cutoff value of 
0·67 pg/mL, and 100·0% (1967 of 1967; 99·8–100·0) at a 
cutoff value of 4·00 pg/mL (table). Sensitivity and 
specificity at other cutoff values are shown in figure 3 and 
the appendix (pp 4–5). We generally observed no marked 
difference in CLEIA sensitivity or specificity between 
symptomatic and asymptomatic people (table). Although 
some variation in sensitivity was evident for cutoff 
values smaller than 0·67 pg/mL, the small numbers of 
participants in these groups might not accurately reflect 
meaningful differences. The conditional sensitivity with 
use of a Ct value of 35 or less for RT-qPCR positivity 
(CLEIA[+]|Ct≤35), reflecting the threshold for viral 
transmission,21 was 97·3% (73 of 75 samples; 90% CrI 
91·9–98·9) at a cutoff value of 0·19 pg/mL, 89·3% 

Positive RT-qPCR 
result

Negative RT-qPCR 
result

Overall population (n=2056)

≥4·00 pg/mL 47 (52·8%) 0

0·67 to <4·00 pg/mL 21 (23·6%) 15 (0·8%)

0·19 to <0·67 pg/mL 8 (9·0%) 156 (7·9%)

<0·19 pg/mL 13 (14·6%) 1796 (91·3%)

Symptomatic population (n=132)

≥4·00 pg/mL 23 (56·1%) 0

0·67 to <4·00 pg/mL 10 (24·4%) 2 (2·2%)

0·19 to <0·67 pg/mL 5 (12·2%) 10 (11·0%)

<0·19 pg/mL 3 (7·3%) 79 (86·8%)

Asymptomatic population (n=1924)

≥4·00 pg/mL 24 (50·0%) 0

0·67 to <4·00 pg/mL 11 (22·9%) 13 (0·7%)

0·19 to <0·67 pg/mL 3 (6·3%) 146 (7·8%)

<0·19 pg/mL 10 (20·8%) 1717 (91·5%)

Data are n (%). RT-qPCR=quantitative RT-PCR.

Table: Proportion of positive and negative RT-qPCR results by 
chemiluminescent enzyme immunoassay antigen concentrations

Figure 3: Diagnostic performance against antigen cutoff value
Graphs were plotted by the cutoff values for antigen concentration. The solid 
line indicates point estimates and the dashed lines indicate 90% credible 
intervals. The cutoff value indicates the antigen concentration equal to and 
above which a sample is considered positive and below which a sample is 
considered negative. CLEIA=chemiluminescent enzyme immunoassay. 
RT-qPCR=quantitative RT-PCR. (CLEIA[+]|RT-qPCR[+])=CLEIA positivity given 
RT-qPCR positivity. (CLEIA[–]|RT-qPCR[–])=CLEIA negativity given RT-qPCR 
negativity.
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(67 of 75; 81·8–93·7) at a cutoff value of 0·67 pg/mL, 
and 62·7% (47 of 75; 53·1–71·2) at a cutoff value of 
4·00 pg/mL. Conditional sensitivity and specificity with 
use of Ct values between 30 and 37 are shown in the 
appendix (p 6).

Based on the high concordance of the two tests, and 
given the logistic advantages of CLEIA, we assessed a 
two-step testing strategy post hoc. Antigen concentrations 
equal to and greater than the upper cutoff value were 
considered positive, and concentrations less than the 
lower cutoff value were considered negative, with 
concentrations between the two thresholds considered 
indeterminate and in need of secondary testing by RT-
qPCR. When the cutoff values were set to 0·19 pg/mL 
and 4·00 pg/mL, test sensitivity was 85·4% and test 
specificity was 100·0%. Reducing the range between the 
cutoff values decreased both sensitivity and specificity 
with reduced diagnostic performance, albeit with a 
decrease in the number of secondary RT-qPCR tests 
needed. The proportion of secondary RT-qPCR tests 
needed as a function of the lower cutoff value was 
plotted assuming three different probabilities of RT-qPCR 
positivity (figure 4). Unsurprisingly, by increasing the 
probability of RT-qPCR positivity, the proportion of 
secondary RT-qPCR tests needed after CLEIA testing 
increased across the range of lower cutoff values 
tested. Applying a lower cutoff of 0·19 pg/mL and an 
upper cutoff of 4·0 pg/mL, the proportions of results 
requiring secondary RT-qPCR would be approximately 
11% assuming a prevalence of RT-qPCR positivity of 10%, 
16% assuming a prevalence of RT-qPCR positivity of 30%, 
and 21% assuming a prevalence of RT-qPCR positivity 
of 50%.

Discussion
Our results showed high correlation between antigen 
concentrations measured by CLEIA and RNA load 
measured by RT-qPCR, indicating CLEIA to be a reliable 
and accurate test. Improved diagnostic accuracy can be 
attained if the two tests are used in combination. 
Accordingly, CLEIA has been in use across Japanese 
airports as part of a two-step strategy with NAAT since July, 
2020. Quantitative CLEIA could allow for positive and 
negative thresholds to be adjusted according to estimated 
prevalence in a local population, and would provide a 
pretest estimate on the number of RT-qPCR tests that 
might be necessary for final diagnosis. We found that a 
cutoff value of 4·00 pg/mL would give 100·0% specificity 
(CLEIA[–]|RT-qPCR[–]), but with a lower sensitivity 
of 85·4% (CLEIA[+]|RT-qPCR[+]). If the diagnosis must 
be made by CLEIA alone with one cutoff, a low value, such 
as 0·67 pg/mL, should be used to minimise the 
compromise in sensitivity while maintaining a specificity 
greater than 99%, to avoid the isolation of non-infected 
individuals due to false-positive results. Conversely, if 
capacity is sufficient to implement RT-qPCR as a 
confirmatory test after initial testing by CLEIA, a lower 
threshold, such as 0·19 pg/mL, should be set to increase 
the sensitivity of CLEIA and its suitability for screening 
purposes. For example, assuming a situation in which 
100 000 people might be tested with an estimated 
prevalence of 10%, 10 000 people will be positive 
by RT-qPCR. In this scenario, applying the most accurate 
cutoffs for positivity (4·00 pg/mL) and negativity 
(0·19 pg/mL), 5281 people (10 000 × 47/89; table) will test 
positive in an initial CLEIA test, with another 3258 patients 
having an indeterminate CLEIA result and testing positive 
by NAAT. Of the 90 000 people with RT-qPCR negativity, 
7824 people will test negative by NAAT after an inde
terminate result from CLEIA. By employing a two-step 
strategy, NAAT would only be needed in 11 082 of 
100 000 people (ie, about 11% of all individuals). At an 
estimated prevalence of 50%, a similar calculation shows 
that the number of people who would require confirmation 
by NAAT to be 20 639 (~21%). Therefore, this two-step 
testing strategy exploits the advantage of rapid and accurate 
quantitative antigen testing to save the resources for NAAT 
to approximately 10–20% of an entire test population.

Previous reports on the Lumipulse G SARS-CoV-2 Ag 
assay in NPS samples showed a concordance with RT-qPCR 
of 91·4% in 313 samples15 and 98·2% in 548 samples.16 By 
contrast, Kobayashi and colleagues17 reported a lower 
concordance of 66·0% in 100 NPS samples, although 
samples with discrepant results were collected considerably 
later in the course of infection than those with concordant 
results. To our knowledge, our study is the first to evaluate 
saliva samples with CLEIA. In addition, we obtained 
specimens from more than 2000 symptomatic and 
asymptomatic people, and found 98·2% (2020 of 2056 
samples) of CLEIA results to be in agreement with results 
by RT-qPCR. All samples were collected prospectively and 

Figure 4: Proportion of secondary RT-qPCR tests needed after initial CLEIA in 
a two-step strategy
The proportion of secondary RT-qPCR tests needed (representing 
indeterminate results on CLEIA) against the lower cutoff value (ie, cutoff for 
CLEIA test negativity) was plotted for different probabilities of RT-qPCR 
positivity. The upper cutoff value (ie, for CLEIA test positivity) was set at 
4·00 pg/mL. RT-qPCR=quantitative RT-PCR. CLEIA=chemiluminescent enzyme 
immunoassay.
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consecutively, providing credibility to our results, with the 
implication that CLEIA might be a viable alternative to RT-
qPCR. Furthermore, all tests were done with self-collected 
saliva, enabling simultaneous parallel sample collection 
and rapid processing, which are in need at sites of mass 
screening. Despite use of a central laboratory to ensure 
quality control in this study, the size of the automated 
machine (Lumipulse G1200; 1·20 m × 0·80 m × 1·45 m) is 
small enough to be installed at points of care.

A positive RT-qPCR result does not necessarily indicate 
presence of live virus,22 and studies in the past year 
have shown COVID-19 patients with Ct values greater 
than 33 or 34 on RT-qPCR not to be contagious.23,24 
Conversely, in our study, 15 (0·7%) of 2056 samples 
had antigen concentrations between 0·67 pg/mL and 
4·00 pg/mL but were negative on RT-qPCR. This 
discrepancy could reflect a false-positive CLEIA, but the 
possibility of a false-negative RT-qPCR result cannot be 
ruled out, and the clinical implication of this discrepancy 
remain to be elucidated.

Large-scale comparative studies in recent months 
have shown that saliva and NPS samples have equivalent 
efficacy in the detection of SARS-CoV-2 by RT-qPCR.9–12 
Since saliva testing has substantial logistic advantages 
over NPS testing, we are confident that a combination 
of CLEIA and NAAT with self-collected saliva is the 
best available testing method for mass screening 
of SARS-CoV-2. Reverse transcriptase loop-mediated 
isothermal amplification (LAMP)25 has become the 
second most common NAAT after RT-qPCR with several 
advantages over RT-qPCR, including rapid turnaround 
time within 30 min, ease of implementation, and 
potential utility at the point of care with a simple 
device.11,14,26–31 In 2020 we reported that LAMP had 
equivalent efficacy to RT-qPCR in detecting SAR-CoV-2 
when testing saliva from asymptomatic people in our 
contact tracing and airport quarantine cohorts.11 For 
these reasons, LAMP is currently being used at the 
international airport quarantine stations in Japan as the 
confirmatory NAAT test after indeterminate results 
from CLEIA.

Limitations of this study include the absence of 
longitudinal clinical follow-up and the low number of 
positive cases in the airport quarantine cohort. We were 
unable to confirm whether the participants who tested 
negative did not subsequently develop COVID-19. 
However, simple follow-up might be inadequate as a 
large number of false-negative people might never 
develop symptoms and yet be infectious (although a low 
viral load might attenuate transmission23). Therefore, 
negative test results might warrant repeated testing in 
individuals with strongly suspected infection, such as 
people travelling from countries with high prevalence of 
COVID-19 or people consistently in close contact with 
known infected patients. In the present study, we showed 
that test specificity with CLEIA was 99·8% or greater if 
the higher cutoff was set to 2·43 pg/mL, as the highest 

concentration in the 1967 specimens that tested negative 
on RT-qPCR. Considering the differences between the 
specificities of CLEIA and RT-qPCR, a higher CLEIA 
positivity cutoff would be necessary if the greatest priority 
is minimising false-positives.

In summary, we showed CLEIA to be a reliable 
alternative to RT-qPCR with high concordance between 
the results of the two tests in a large population. 
Furthermore, use of these tests in a stepwise strategy with 
self-collected saliva is more efficient than use of NPS and 
RT-qPCR alone in real-life mass screening settings. A two-
step testing methodology with CLEIA and LAMP has 
already been implemented at Japanese airport quarantine 
stations, facilitating expeditious processing of samples 
from international travellers, with all tests done at the 
point of care. We believe that the two-step test strategy with 
self-collected saliva is presently the most effective method 
for screening large numbers of people in a short period. 
Further studies on prospectively validating the two-step 
approach and data on longitudinal follow-up after point-of-
care testing might be warranted.
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