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Abstract 

Background:  In livestock breeding, selection for some traits can be improved with direct selection for crossbred 
performance. However, genetic analyses with phenotypes from crossbred animals require methods for multibreed 
relationship matrices; especially when some animals are rotationally crossbred. Multiple methods for multibreed 
relationship matrices exist, but there is a lack of knowledge on how these methods compare for prediction of breed-
ing values with phenotypes from rotationally crossbred animals. Therefore, the objective of this study was to compare 
models that use different multibreed relationship matrices in terms of ability to predict accurate and unbiased breed-
ing values with phenotypes from two-way rotationally crossbred animals.

Methods:  We compared four methods for multibreed relationship matrices: numerator relationship matrices (NRM), 
García-Cortés and Toro’s partial relationship matrices (GT), Strandén and Mäntysaari’s approximation to the GT method 
(SM), and one NRM with metafounders (MF). The methods were compared using simulated data. We simulated two 
phenotypes; one with and one without dominance effects. Only crossbred animals were phenotyped and only pure-
bred animals were genotyped.

Results:  The MF and GT methods were the most accurate and least biased methods for prediction of breeding 
values in rotationally crossbred animals. Without genomic information, all methods were almost equally accurate for 
prediction of breeding values in purebred animals; however, with genomic information, the MF and GT methods were 
the most accurate. The GT, MF, and SM methods were the least biased methods for prediction of breeding values in 
purebred animals.

Conclusions:  For prediction of breeding values with phenotypes from rotationally crossbred animals, models using 
the MF method or the GT method were generally more accurate and less biased than models using the SM method 
or the NRM method.
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Background
Several livestock production systems use crossbred ani-
mals at the commercial level. In these systems, the phe-
notypic performance of crossbred animals should be the 
primary objective of the breeding goal.

Crossbred performance is often indirectly selected 
for through selection for purebred performance. This 
is valid if the genetic correlation between the crossbred 
and purebred performances is strong [1]. However, the 
genetic correlation between crossbred and purebred per-
formances is only moderate for many traits [2]. For such 
traits, it may be a solution to directly select for crossbred 
performance.

Multiple crossbreeding procedures exist [3]. The most 
notable procedures for modern pork and beef systems 
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are the two-way terminal, three-way terminal, and two-
way rotational crossbreeding procedures. Among these 
crossbreeding systems, genetic analysis is most compli-
cated with phenotypes from rotationally crossbred ani-
mals [4–6]. Nevertheless, rotationally crossbred animals 
comprise a possible source of both additional and novel 
phenotypes. Therefore, in the following, we will focus on 
genetic analyses with phenotypes from rotationally cross-
bred animals.

Phenotypes from rotationally crossbred animals are 
often subject to more variable genetic effects than phe-
notypes from purebred animals and F1 animals [4, 7]. 
Mating animals from different populations often leads to 
offspring with a high degree of heterozygosity. For domi-
nance effects, the increase in heterozygosity results in a 
favorable change in the phenotypic mean and increased 
dominance variance in subsequent generations [7]. For 
additive genetic effects, the increase in heterozygosity 
increases the additive genetic variance in following gen-
erations [4]. All the aforementioned changes are relative 
to the average of the genetic parameters in the consti-
tuting purebred populations. Animal breeding focuses 
mainly on additive genetic effects, which are modelled 
using additive genetic relationship matrices. Since the 
usual numerator relationship matrix (NRM) [8] can not 
correctly model additive genetic effects in rotationally 
crossbred animals [4], specialized additive relationship 
matrices are needed.

Specialized additive genetic relationship matrices for 
crossbred animals exist [4, 9–11]. These relationship 
matrices decompose the additive genetic relationships 
into a breed-specific term for each breed and a segrega-
tion term for each pair of breeds. The partial relation-
ship matrices for the breed-specific terms are analogous 
to NRM-based matrices and they refer to the additive 
genetic variances in the purebred base populations. 
Meanwhile, the partial relationship matrices for the 
segregation terms model the increased additive genetic 
variances in crossbred animals. Both types of partial rela-
tionship matrices have later been approximated [12] and 
the theory for the partial relationship matrices for breed-
specific terms has been extended to incorporate genomic 
information [13]. The additive relationship matrix with 
metafounders was proposed by Legarra et  al. [14], and 
it is an alternative to the partial relationship matrices 
mentioned above. In theory, the relationship matrix with 
metafounders simultaneously models both breed-specific 
and segregation terms with one additive genetic effect 
[14]. There is a need to investigate how models with these 
relationship matrices compare for prediction of accu-
rate and unbiased breeding values with phenotypes from 
rotationally crossbred animals.

The objective of this study was to compare methods for 
relationship matrices in terms of ability to predict accu-
rate and unbiased breeding values with phenotypes from 
rotationally crossbred animals. We compared the NRM 
as used by Poulsen et  al. [15], the partial relationship 
matrices by García-Cortés and Toro [9], the approximate 
partial relationship matrices by Strandén and Mäntysaari 
[12], and the relationship matrix with metafounders by 
Legarra et al. [14].

We hypothesized that the methods by García-Cortés 
and Toro [9] and Legarra et al. [14] were the most accu-
rate and least biased methods because they are the only 
methods which fully comply with the theory [4].

Methods
The prediction accuracies and prediction biases of the 
models with different relationship matrices were investi-
gated through a simulation study. The simulation design 
represents a two-way-rotational crossbreeding system 
[3]. In this section, we first present how the populations 
were simulated. This includes the description of their 
population structure, genomic architecture, genetic 
effects, and phenotypes. Then, we present how we pre-
dicted breeding values with phenotypes from rotationally 
crossbred animals using statistical models with different 
relationship matrices. Lastly, we present how we evalu-
ated and compared the statistical models with different 
relationship matrices. In the following, we refer to the 
statistical models with different relationship matrices as 
methods.

Simulation
General
A two-way-rotational crossbreeding system and genomic 
architecture were simulated with the QMSim software 
[16]. For all populations, generations did not overlap, 
the numbers of males and females were equal, sires and 
dams were chosen at random (no selection), mating was 
random and sampled without replacement, and the litter 
size was 6. We simulated 100 replicates. The population 
structures are shown in Fig. 1.

Historical population
The first generation in the historical population consisted 
of 3000 animals. The population size was constant for 
1000 generations, and over the following 200 generations 
the population size decreased linearly to 2800 animals at 
the end.

Purebred populations
We created two purebred populations. Each purebred 
population was founded by 25 males and 25 females 
from the last generation in the historical population. The 



Page 3 of 17Poulsen et al. Genetics Selection Evolution           (2022) 54:25 	

Fig. 1  General population structures. Colors: Types of information made available for prediction. Grey: No information. Blue: Pedigree information. 
Red: Pedigree information and phenotypes. Green: Pedigree information and genomic information

sampling of founders was random and independent for 
the two purebred populations. The purebred populations 
were kept separate for 39 generations. At each genera-
tion, 25 randomly selected sires were mated with 25 ran-
domly selected dams; i.e., the effective population sizes 
were approximately 50 [17], and not all animals produced 
offspring. In the following, the two purebred populations 
are referred to as Population A and Population B.

Crossbred population
The first crossbred generation was founded by mating 
75 males from Population A and 75 females from Popu-
lation B. These animals were drawn from generation 32 
of their respective population. The first generation in 
the crossbred population is referred to as generation 33. 
For generations 34 to 39, crossbred animals were created 
by mating 75 males from one of the purebred popula-
tions with 150 females from the crossbred population; 
i.e., for these generations, each purebred sire was mated 
with two crossbred dams. Sires were from Population A 
in odd-numbered generations and Population B in even-
numbered generations. In the following, the crossbred 
population is referred to as Population C.

Genomic architecture
The genome consisted of five 100-cM chromosomes. 
Each chromosome contained 3500 markers and 350 
quantitative trait loci (QTL). Marker positions, QTL 
positions, and allele frequencies were randomly and uni-
formly distributed. Marker and QTL genotypes were ini-
tialized in the first generation of the historical population.

On average, 12,104 of the 17,500 markers segregated 
with a minor allele frequency (MAF) higher than 0.01 in 
generation 32 of either purebred population. Meanwhile, 
13,769 markers segregated with a MAF higher than 0.01 

when marker genotypes were pooled across the pure-
bred populations. Similarly, 1223 of the 1750 QTL segre-
gated in generation 32 of either purebred population and 
1394 QTL segregated when QTL genotypes were pooled 
across the purebred populations.

Genetic effects
We simulated both additive and dominant QTL effects. 
Additive and dominant QTL effects were identical across 
populations.

The additive genetic animal effects were solely based on 
additive QTL effects. The absolute additive QTL effects 
were drawn from a gamma-distribution with the stand-
ard parameters in QMSim [16]. Additive QTL effects 
were scaled by QMSim such that the additive genetic ani-
mal variance was 0.2 after the historical population [16].

The dominant QTL effects, were simulated as described 
by Wellmann and Bennewitz [18]:

where dQ is a vector of dominant QTL effects; 
h ∼ N ( 1

2
1, 1

10
I) is a vector of dominance degrees; ◦ is the 

Hadamard product; β1 is a vector of additive QTL effects 
of the first QTL-allele; and β2 is a vector of additive QTL 
effects of the second QTL-allele. Dominant genetic ani-
mal effects, d, were calculated as the sum of dominant 
QTL effects where the animal was heterozygous. Domi-
nant genetic animal effects were scaled such that the 
dominant genetic animal variance was 0.1 in Population 
C. On average, 8% of the loci showed overdominance; 
45% showed partial dominance that was greater than 
half the allele substitution effect; and 46% showed partial 
dominance that was less than half the allele substitution 
effect.

(1)dQ = h ◦ |β1 − β2|,
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Phenotypes
We defined two phenotypes: a phenotype without domi-
nance effects, yA = a + e , and a phenotype with domi-
nance effects, yAD = a + d + e , where a is a vector of 
additive genetic animal effects, d is a vector of domi-
nant genetic animal effects, e is a vector of environmen-
tal effects, and e ∼ N (0, 0.8I) . Note that yA and yAD 
have different narrow-sense heritabilities: h2A = 0.2 and 
h2AD = 0.2/1.1.

Information used for prediction
We used the information such as to represent a system 
where only crossbred animals were phenotyped and only 
the purebred animals were genotyped (Fig. 1). It is com-
mon practice to not genotype crossbred animals because 
it is more important to genotype selection candidates 
than phenotyped animals [19].

More specifically, pedigree information was kept only 
for animals born in generations 32 through 39. Animals 
born before generation 32 were regarded as unknown. 
Marker information was only available for purebred ani-
mals born in generations 35 through 39. Phenotypes were 
only available for crossbred animals born in generations 
33 through 39.

Prediction
General
We compared four methods for multibreed relationship 
matrices, i.e., the NRM [8]; García-Cortés and Toro (GT) 
[9]; Strandén and Mäntysaari (SM) [12]; and Legarra et al. 
(MF) [14]. All four methods can be extended to include 
genomic information using the single-step procedure 
[13, 20, 21]. For each method, we describe the theory, 
pedigree(s), incorporation of genomic information, the 
statistical model, and calculation of predicted breeding 
values. In Appendix 1, each method is showcased with a 
small example pedigree. We highly recommend readers 
who are unfamiliar with the methods to view Appendix 1 
after reading their respective sections in Methods.

The NRM method
This method can be used for multibreed analyses in mul-
tiple ways. We use the NRM method such that we have 
one relationship matrix per breed. This allows us to par-
tition the breeding values of crossbred animals into one 
term per purebred population. Furthermore, it allows 
the additive genetic variances to differ between purebred 
populations. In this study, the NRM method required 
two relationship matrices; one for terms contributed 
from Population A, and one for terms contributed from 
population B.

The recursive algorithm for each of the NRM matrices 
is:

where i and j denote animals, aij is the pedigree-based 
covariance between the additive genetic effects of ani-
mals i and j, s is the sire of j , and d is the dam of j [8].

The pedigrees for the two relationship matrices were 
different. The pedigree for Population A included animals 
from both Population A and Population C, and the pedi-
gree for Population B included animals from both Pop-
ulation B and Population C. To create the pedigree for 
Population A, animals from Population B were removed 
from the pedigree and vice versa.

We used two genomic relationship matrices for the 
NRM method; GNRM

A  and GNRM
B  . Preliminary genomic 

relationship matrices, GVanRaden
A  and GVanRaden

B  , were 
calculated using VanRaden’s first method [22], geno-
types from purebred animals in generations 35 to 39, 
and marker allele frequencies in the respective pure-
bred base-populations. When calculating GVanRaden

A  
and GVanRaden

B  , a marker was included if its minor 
allele frequency was higher than 0.01 in its respec-
tive purebred base-population. The positive definite-
ness of genomic relationship matrices was ensured 
by using the weighted average between VanRaden’s 
first method and the sub-matrix of genotyped ani-
mals from its respective pedigree-based relationship 
matrix: GNRM

X = 0.05{ANRM
X }22 + 0.95GVanRaden

X  , where 
X ∈ {A,B} denotes the population and {ANRM

X }22 is the 
sub-matrix of genotyped animals from the respective 
pedigree-based relationship matrix. The genomic rela-
tionship matrices, GNRM

A  and GNRM
B  , were scaled and 

centered such that their average diagonal and off-diago-
nal elements were equal to those of the sub-matrices of 
genotyped animals from their respective pedigree-based 
relationship matrices. We calculated combined relation-
ship matrices for genotyped and non-genotyped animals 
[20, 21] because some animals were not genotyped. The 
combined relationship matrices for genotyped and non-
genotyped animals were HNRM

A  and HNRM
B  for animals 

with genetic contributions from Populations A and B, 
respectively.

The statistical model for the NRM method was:

where y is a vector of phenotypes; b is a vector of param-
eters for the general mean, pedigree-derived breed pro-
portion, and pedigree-derived heterosis; aA is a vector of 
additive genetic effects from Population A; aB is a vector 
of additive genetic effects from Population B; e is a vector 
of residuals; and X , ZA , and ZB are design matrices.

The three vectors with random effects (aA , aB , and e ) 
were assumed to be distributed as:

(2)aij =

{

1+ 1
2
asd , i = j

1
2
(ais + aid), otherwise,

(3)y = Xb+ ZAaA + ZBaB + e,
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where ANRM
A  is a relationship matrix for additive genetic 

effects from Population A; ANRM
B  is a relationship matrix 

for additive genetic effects from Population B; σ 2
AA

 is the 
additive genetic variance in Population A; σ 2

AB
 is the addi-

tive genetic variance in Population B; 0s are vectors or 
matrices of zeros; I is an identity matrix; and σ 2

e  is the 
residual variance. For prediction with genomic infor-
mation, ANRM

A  was replaced with HNRM
A  and ANRM

B  was 
replaced with HNRM

B .
The vector of predicted breeding values for the NRM 

method was:

where âA and âB are the vectors of predicted addi-
tive genetic effects in the statistical model for the NRM 
method (Eq. 4); subscript P denotes that the sub-vector 
only contains predicted effects from purebred animals; 
subscript C denotes that the sub-vector only contains 
predicted effects from crossbred animals; and 0s are vec-
tors of zeros.

The GT method
This method partitions the additive genetic relationship 
into several partial relationship matrices [9]: one for each 
breed (partial relationship matrices for breed-specific 
terms; AGT

A  and AGT
B  in our study), and one for each pair 

of breeds (partial relationship matrices for segregation 
terms; AGT

AB  in our study). The partial relationship matrix 
for segregation terms captures the increase in additive 
genetic variance in crossbred animals [4, 9].

The recursive algorithm for calculating AGT
A  is [9]:

where i , j , s , and d are as described for the algorithm 
for the NRM method (Eq.  2); aij is the pedigree-based 
covariance between the breed-specific partial additive 
genetic effects of animals i and j; and f Ai  is the propor-
tion of genetic material from Population A in animal i . 
The sub-matrix of AGT

A  for purebred animals is identical 
to its analogous sub-matrix of ANRM

A .
The recursive algorithm for AGT

AB  is:

(4)





aA
aB
e



 ∼ N









0
0
0



 ,





ANRM
A σ 2

AA

0 ANRM
B σ 2

AB

0 0 Iσ 2
e







 ,

(5)ebvNRM =





{âA}P
0

{âA}C



+





0
{âB}P
{âB}C



 ,

(6)aij =

{

f Ai +
1
2
asd , i = j

1
2
(ais + aid), otherwise,

where i , j , s , and d are as for the algorithm for the NRM 
method (Eq.  2); aij is the pedigree-based covariance 
between the additive genetic segregation effects of ani-
mals i and j; f As  and f Bs  are the proportions of genetic 
material from Population A and Population B, respec-
tively, in the sire of animal j ; and f Ad  and f Bd  are the 
proportions of genetic material from Population A and 
Population B, respectively, in the dam of animal j . Both 
diagonal and off-diagonal elements in AGT

AB  can only be 
non-zero for descendants of crossbred animals.

The pedigree for the GT method included all the ani-
mals, purebred and crossbred, in generations 32 through 
39.

We used two genomic relationship matrices for the GT 
method; GGT

A  and GGT
B  . Generally, the single-step proce-

dure for the GT method requires that marker alleles are 
phased and traced such that their breed of origin can 
be determined [13]; however, tracing the breed of ori-
gin of alleles was not required in this study because we 
only used genotypes from purebred animals. Therefore, 
GGT
A  and GGT

B  were the same as the genomic relationship 
matrices for the NRM method; i.e., GGT

A = GNRM
A  and 

GGT
B = GNRM

B  . The single-step procedure [20, 21] was 
used for the partial relationship matrices for breed-spe-
cific terms. The combined partial relationship matrices 
for breed-specific terms for genotyped and non-gen-
otyped animals were HGT

A  and HGT
B  for animals with 

genetic contributions from Populations A and B, respec-
tively. The partial relationship matrix for the segregation 
term did not include genomic information.

The statistical model for the GT method was:

where y, b, and X are as described for the statistical 
model for the NRM method (Eq.  4); aA is a vector of 
breed-specific partial additive genetic effects from Popu-
lation A; aB is a vector of breed-specific partial additive 
genetic effects from Population B; aAB is a vector of addi-
tive genetic segregation effects between Populations A 
and B; e is a vector of residuals; and ZA , ZB , and ZAB are 
design matrices.

The four vectors of random effects (aA , aB , aAB and e ) 
were assumed to be distributed as:

(7)aij =

{

2
(

f As f Bs + f Ad f Bd
)

+
1
2
asd , i = j

1
2
(ais + aid), otherwise,

(8)y = Xb+ ZAaA + ZBaB + ZABaAB + e,

(9)







aA

aB

aAB

e






∼ N















0

0

0

0






,









A
GT

A
σ 2
AA

0 A
GT

B
σ 2
AB

0 0 A
GT

AB
σ 2
AAB

0 0 0 Iσ 2
e

















,
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where AGT
A  is a partial relationship matrix for the 

breed-specific term from Population A; AGT
B  is a par-

tial relationship matrix for the breed-specific term from 
Population B; AGT

AB  is a partial relationship matrix for the 
segregation term between Populations A and B; σ 2

AA
 is 

the additive genetic variance in Population A; σ 2
AB

 is the 
additive genetic variance in Population B; σ 2

AAB
 is the seg-

regation variance between Populations A and B; 0s are 
vectors or matrices of zeros; I is an identity matrix; and 
σ 2
e  is the residual variance. For prediction with genomic 

information, AGT
A  was replaced with HGT

A  and AGT
B  was 

replaced with HGT
B .

The vector of predicted breeding values for the GT 
method was:

where âA , âB , âAB are the vectors of predicted partial 
additive genetic effects in the statistical model for the GT 
method (Eq. 8); subscript P denotes that the sub-vector 
only contains the predicted effects from purebred ani-
mals; subscript C:F1 denotes that the sub-vector only 
contains the predicted effects from F1 crossbred animals; 
subscript C:R denotes that the sub-vector only contains 
the predicted effects from rotationally crossbred animals; 
and 0s are vectors of zeros.

The SM method
This method is an approximation of the GT method and 
it partitions the additive genetic variance in the same 
way.

The relationship matrices for the SM method are cal-
culated as:

where FA and FB are diagonal matrices with square roots 
of breed proportions for populations A and B, respec-
tively; ANRM

AB  is a NRM-based relationship matrix repre-
senting at least all the descendants of crossbred animals; 
and FAB is a diagonal matrix with square roots of the 
“ 2
(

f
A
s f

B
s + f

A

d
f
B

d

)

 ” term from Eq. 7. As for the GT method, 
the sub-matrices of ASM

A  and ASM
B  for purebred animals 

(10)ebvGT =







{âA}P
0

{âA}C:F1
{âA}C:R






+







0
{âB}P

{âB}C:F1
{âB}C:R






+







0
0
0
âAB






,

(11)AGT
A ≈ASM

A = FAA
NRM
A FA,

(12)AGT
B ≈ASM

B = FBA
NRM
B FB,

(13)AGT
AB ≈ASM

AB = FABA
NRM
AB FAB,

are identical to submatrices from ANRM
A  and ANRM

B  for 
purebreds animals, respectively.

The SM method is equivalent to random-
regressions of additive genetic effects on 
FA, FB , and FAB , respectively [12], because 
FAaA ∼ N

(

0,FAA
NRM
A

F
T
A

)

,FBaB ∼ N
(

0,FBA
NRM
B

F
T
B

)

, 
and FABaAB ∼ N

(

0,FABA
NRM
AB

F
T
AB

)

 . In this study, we 
apply the SM method through random-regression.

Three pedigrees were constructed for the SM method: 
one for each purebred population, which are identical to 
those for the NRM method, and the third is for the par-
tial relationship matrix for the segregation term between 
Populations A and B. The partial relationship matrix for 
the segregation term between Populations A and B was 
calculated with a pedigree from which all purebred and 
F1 animals had been removed.

We did not use the same pedigree for segregation 
effects as described by the SM method [12]. They used 
the full pedigree to construct an additive genetic relation-
ship matrix on which they applied random regression. 
However, using the full pedigree may promote discre-
prancies between the GT and SM methods. According 
to the GT method, segregation effects are independent 
among all offspring from F1 animals and their magni-
tude only depend on the breed proportions of parental 
animals. For the SM method, a deep pedigree for seg-
regation effects would increase the likelihood of both 
non-zero inbreeding coefficients in offspring from F1 
animals and covariance between offspring from F1 ani-
mals. Therefore, the compliance between the GT and SM 
methods should be greater if purebred and F1 animals 
are removed from the pedigree for segregation effects, as 
done in this study.

The genomic relationship matrices for this method 
were the same as for both the NRM and GT methods. As 
for the GT method, we calculated combined relationship 
matrices for genotyped and non-genotyped animals for 
the breed-specific terms but not for the segregation term.

The statistical model for the SM method was:

where FA , FB , and, FAB are as defined for the calculation 
of partial relationship matrices with the SM method 
(Eqs.  11, 12, 13); and the remaining components are 
the same as in the statistical model for the GT method 
(Eq. 8). Note that the additive genetic vectors now consist 
of regression coefficients.

The four vectors of random effects (aA , aB , aAB and e ) 
were assumed to be distributed as:

(14)
y = Xb+ ZAFAaA + ZBFBaB + ZABFABaAB + e,
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where σ 2
AA

 , σ 2
AB

 , σ 2
AAB

 , σ 2
e  , 0, and I are as in the statistical 

model for the GT method (Eq.  8); ANRM
A  and ANRM

B  are 
as in the statistical model for the NRM method (Eq. 4); 
and ANRM

AB  is the usual numerator relationship matrix 
based on the pedigree without purebred and F1 animals. 
For prediction with genomic information, ANRM

A  was 
replaced with HNRM

A  and ANRM
B  was replaced with HNRM

B .
The vector of predicted breeding values for the SM 

method was:

where âA , âB , âAB are the vectors of predicted partial 
additive genetic effects in the statistical model for the SM 
method (Eq. 14); and 0, subscript P, subscript C:F1, and 
subscript C:R are as defined for the GT method (Eq. 10).

The MF method
This method is conceptually different from the other 
methods. The other methods model populations as sep-
arate entities while the MF method models populations 
as sub-populations derived from a common ancestral 
population. In practice, this is done by identifying each 
sub-population through a metafounder, calculating an 
additive genetic relationship matrix, Ŵ , between meta-
founders, and then incorporating this information into 

one shared additive genetic relationship matrix for all 
populations, A(Ŵ) . In theory, this method should simul-
taneously account for both the breed-specific terms and 
the segregation term [14].

The metafounder relationships can be calculated in 
several ways [14, 23]. We used the method proposed by 
Garcia-Baccino et al. [23]:

(15)







aA
aB
aAB
e






∼ N















0
0
0
0






,









ANRM
A σ 2

AA

0 ANRM
B σ 2

AB

0 0 ANRM
AB σ 2

AAB

0 0 0 Iσ 2
e

















,

(16)ebvSM =







{âA}P
0

{âA}C:F1
{âA}C:R






+







0
{âB}P

{âB}C:F1
{âB}C:R






+







0
0
0
âAB






,

where γA is the metafounder relationship for Population 
A; γB is the metafounder relationship for Population B; 
γAB is the metafounder relationship between Populations 
A and B; σ 2

p∗A
 is the variance of marker allele frequencies 

in Population A; σ 2
p∗B

 is the variance of marker allele fre-
quencies in Population B; σp∗Ap∗B is a covariance between 
marker allele frequencies in Populations A and B; p∗A and 
p∗B are marker-allele frequencies in the base populations 
of Populations A and B, respectively; and the asterisk 
superscripts in p∗A and p∗B denote that allele annotations 
were randomized such that E(p∗A) = E(p∗B) =

1
2
.

In this study, metafounder relationships were calcu-
lated with estimated marker allele frequencies in genera-
tion 32. We estimated marker allele frequencies as 
proposed by Gengler et al. [24] and genotypes from pure-
bred animals in generations 35 to 39. Marker allele fre-
quencies were estimated independently for each 
purebred population. Finally, metafounder relationships 
were calculated from markers that have a minor allele 
frequency higher than 0.01 when averaged across the 
purebred base-populations. The average metafounder 
relationship matrix across replicates, Ŵ̄ , was: 

Ŵ̄ =

[

γ̄A
¯γAB γ̄B

]

=

[

0.80

0.38 0.80

]

.

The recursive algorithm for the MF method is:

where i , j , s , and d are as in the recursive algorithms for 
the NRM and GT methods (Eqs. 4 and 8); aij is as in the 
recursive algorithm for the NRM method (Eq. 4); γA , γB , 
and γAB are the metafounder relationships (Eq.  17); mA 
is a vector of base animals from Population A; mB is a 
vector of base animals from Population B; ∧ is the logi-
cal “and”; and ∨ is the logical “or”. Please note that the 
last two elements of the recursive algorithm for the MF 

(17)Ŵ =

[

γA
γAB γB

]

= 8

[

σ 2
p∗A

σp∗Ap
∗
B
σ 2
p∗B

]

,

(18)
aij =







































1+ 1
2
γA, i = j ∧ i ∈ mA

1+ 1
2
γB, i = j ∧ i ∈ mB

γA, i �= j ∧ {i, j} ⊂ mA

γB, i �= j ∧ {i, j} ⊂ mB

γAB, i �= j ∧ [(i ∈ mA ∧ j ∈ mB) ∨ (i ∈ mB ∧ j ∈ mA)]

1+ 1
2
asd , i = j ∧ i �∈ {mA,mB}

1
2
(ais + aid), otherwise,
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method are the same as in the algorithm for the NRM 
method. In other words, the only differences between 
the NRM method and the MF method are that base ani-
mals are related and their inbreeding coefficient can be 
greater than zero. These differences then carry over into 
the additive genetic relationships for animals which are 
not in the base population.

The pedigree for the MF method included all the ani-
mals, purebred and crossbred, in generations 32 to 39.

The MF method uses one genomic relationship matrix 
across all populations; GMF . A preliminary genomic rela-
tionship matrix, GVanRaden , was calculated using Van-
Raden’s first method [22], and genotypes from purebred 
animals in generations 35 to 39; however, we scaled and 
centered the genomic relationship matrix with allele fre-
quencies of 0.5. Markers were included in the genomic 
relationship matrix if their minor allele frequency was 
higher than 0.01 when pooling genotypes from the pure-
bred base-populations. The positive definiteness of the 
genomic relationship matrix was ensured by using the 
weighted average of GVanRaden and the sub-matrix of 
genotyped animals from the pedigree-based relationship 
matrix: GMF = 0.05{A(Ŵ)}22 + 0.95GVanRaden , where 
{A(Ŵ)}22 is the sub-matrix of genotyped animals from the 
pedigree-based relationship matrix. The genomic rela-
tionship matrix, GMF , was not scaled and centered such 
that its average diagonal and off-diagonal elements were 
equal to those of {A(Ŵ)}22 because GMF and {A(Ŵ)}22 
are comparable when GMF and Ŵ are calculated with the 
same set of markers. We calculated a combined rela-
tionship matrix for genotyped and non-genotyped ani-
mals [14, 20, 21], H(Ŵ) , because some animals were not 
genotyped.

The statistical model for the MF method was:

where y, b, and X are as described for the NRM method 
(Eq. 4); a is a vector of additive genetic effects; e is a vec-
tor of residuals; and Z is a design matrix.

The two vectors of random effects (a and e ) were dis-
tributed as:

where A(Ŵ ) is the additive relationship matrix with 
metafounders [14]; Ŵ is the additive relationship matrix 
between metafounders; σ 2

AMF
 is the additive genetic vari-

ance in the ancestral population; 0s are vectors or matri-
ces of zeros; I is an identity matrix; and σ 2

e  is the residual 
variance. The additive genetic relationship matrix, A(Ŵ) , 
was replaced with H(Ŵ) when breeding values were pre-
dicted with genomic prediction.

(19)y = Xb+ Za + e,

(20)
[

a
e

]

∼ N

([

0
0

]

,

[

A(Ŵ)σ 2
AMF

0 Iσ 2
e

])

,

The vector of predicted breeding values for the MF 
method was:

where â is the vector of predicted additive genetic effects 
in the statistical model for the MF method (Eq. 19).

Variance components
We estimated variance components for each method 
and its respective statistical model (Eqs. 4, 8, 14, and 19). 
Variance components were only estimated with pedigree 
information. Breeding values were predicted with these 
estimated variance components regardless of whether 
breeding values were predicted with or without genomic 
information.

The estimated variance components for the phenotype 
without dominance effects are in Table  1. For presenta-
tion only, the estimated additive genetic variance from 
the MF method was transformed using the estimated 
metafounder relationships, Ŵ , such that the parametriza-
tion was the same as for the GT method [14]:

where σ 2
AA

 , σ 2
AB

 , and σ 2
AAB

 are the partial additive genetic 
variance components; σ 2

AMF
 is the estimated additive 

genetic variance in the ancestral population (Eq. 20); and 
γA , γB , and γAB are metafounder relationships (Eq. 8). 

We calculated true partial additive genetic variance 
components and used them as reference for the magni-
tude of the estimated variance components in Table  1. 
The true partial additive genetic variance components 

(21)ebvMF
= â,

(22)

σ 2
AA

= σ 2
AMF

(

1−
1

2
γA

)

σ 2
AB

= σ 2
AMF

(

1−
1

2
γB

)

σ 2
AAB

=
1

8
σ 2
AMF

(γA + γB − 2γAB)

,

Table 1  Means and standard deviations of variance 
components across replicates

σ 2

AA
 : Additive genetic variance for Population A

σ 2

AB
 : Additive genetic variance for Population B

σ 2

AAB
 : Additive genetic segregation variance between populations A and B

σ 2
e  : Residual variance

a The true residual variance was constant across replicates

Method σ
2

AA
σ
2

AB
σ
2

AAB
σ
2
e

True 0.15 ± 0.01 0.15 ± 0.01 0.023 ± 0.003 0.80a

GT 0.15 ± 0.04 0.14 ± 0.04 0.035 ± 0.039 0.80 ± 0.02

MF 0.15 ± 0.02 0.15 ± 0.02 0.026 ± 0.005 0.80 ± 0.02

SM 0.25 ± 0.07 0.19 ± 0.06 0.297 ± 0.052 0.61 ± 0.04

NRM 0.23 ± 0.05 0.22 ± 0.05 0.51 ± 0.07
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were calculated with the parametrization of the GT 
method and the phenotype without dominance effects.

The true partial additive genetic variance for breed-
specific effects from Population A was calculated as:

where σ 2
AA

 is the true partial additive genetic variance for 
breed-specific effects from Population A; nqtl is the num-
ber of QTL; pi,A is the allele frequency at QTL i in base 
animals from Population A; βi,1 is the additive genetic 
effect of the first QTL allele at QTL i; and βi,2 is the addi-
tive genetic effect of the second QTL allele at QTL i. The 
partial additive genetic variance for breed-specific effects 
from Population B was calculated in the same way.

The true partial additive genetic variance for segrega-
tion effects between Populations A and B was calculated 
as [4]:

where βi,1 , βi,2 , and nqtl are as in Eq.  23; σ 2
AB is the true 

partial additive genetic variance for segregation effects 
between Populations A and B; pi,F1 is a vector of QTL 
allele frequencies in generation 33 of Population C; σ 2

A is 
the true partial additive genetic variance for breed-spe-
cific effects from Population A; and σ 2

B is the true partial 
additive genetic variance for breed-specific effects from 
Population B.

Software for analysis and prediction
Most data-handling was carried out in the R-software 
[25]. The relationship matrices for the GT and MF meth-
ods were calculated using the RcppArmadillo R-package 
[26]. The relationship matrices for the NRM and SM 
methods were calculated using the DMU software [27]. 
Variance components were estimated using the AI-ReML 
algorithm in the DMU software package [27]. Additive 
genetic effects were predicted using the best linear unbi-
ased prediction (BLUP) method and the Preconditioned 
Conjugate Gradient algorithm implemented in DMU 
software [27].

Comparison of the methods
General
We compared how well the methods predicted accurate 
and unbiased breeding values in animals from generation 
39. In the following, we describe how we calculated true 
breeding values, accuracies, and biases, and the statistical 

(23)σ 2
AA

= 2

nqtl
∑

i=1

pi,A
(

1− pi,A
)(

βi,1 − βi,2
)2
,

(24)
σ 2
AAB

=2

nqtl
∑

i=1

[

pi,F1
(

1− pi,F1
)(

βi,1 − βi,2
)2
]

−
1

2

[

σ 2
AA

+ σ 2
AB

]

,

methods used to compare the methods. We stratified the 
comparison according to population.

True breeding values
The true breeding value depends on whether the pheno-
type includes only an additive genetic term, or both addi-
tive genetic and dominant genetic terms.

The true breeding values with only an additive genetic 
term were calculated as:

where Q is a QTL genotype matrix with allelic loads of 
the first allele; β1 is a vector of additive genetic effects 
of the first QTL allele; β2 is a vector of additive genetic 
effects of the second QTL allele; and J is a matrix of 1s 
with dimensions equal those of Q.

In the presence of dominance, the true breeding value 
of an animal depends on its ability to promote both addi-
tive and dominance genetic effects in its offspring [28, 
29]. Therefore, the true breeding value now depends on 
the genotypes of the mate. True breeding values with a 
dominance term can be calculated with allele frequen-
cies from the population of mating candidates [28, 29]. 
The true breeding values with both an additive term and 
a dominance term were calculated as:

where X ∈ {A,B,C} denotes the population to which 
the possible mating candidates belong; pX is a vector of 
QTL allele frequencies in population X; dQ is a vector 
of dominant QTL effects; ◦ is the Hadamard product; 1 
is a vector of ones; and tbvA , Q, β1 , β2 , and J are as for 
true breeding values with only an additive genetic term 
(Eq. 25).

Accuracy and bias
We evaluated the methods according to their prediction 
accuracy and prediction bias. We used two measures for 
the prediction bias [30, 31]: level bias and dispersion bias.

The prediction accuracy was defined as Pearson’s corre-
lation between true breeding values and predicted breed-
ing values:

where ρ(.) is the Pearson correlation function; tbv is a 
vector of true breeding values; and ebv is a vector of pre-
dicted breeding values.

The level bias was calculated as:

(25)tbvA = Q(β1 − β2)+ 2Jβ2,

(26)tbvXAD = tbvA + (Q − J)
[

(1− 2pX ) ◦ d
Q
]

,

(27)Accuracy = ρ(tbv, ebv),

(28)µbias = ebv − tbv + tbvbase,
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where µbias is the level bias; ebv is the mean predicted 
breeding value in validation animals; tbv is the mean true 
breeding values in validation animals; and tbvbase is the 
mean true breeding value in base animals. The correction 
for tbvbase was required because the true breeding values, 
in contrast to predicted breeding values, differed from 
zero in the base populations. There is no level bias when 
µbias is equal to 0.

The dispersion bias was calculated as:

where bbias is the dispersion bias; cov() is the empirical 
covariance; ebv is a vector of predicted breeding values; 
tbv is a vector of true breeding values; and var() is the 
empirical variance. There is no dispersion bias when bbias 
is equal to 1.

Statistical analysis of accuracy, level bias, and dispersion bias
The accuracies and biases were compared across meth-
ods, use of genomic information, and replicates; but 
not across populations and definition of true breeding 
values.

We used non-parametric tests because accuracies and 
biases were heteroscedastic across methods and not nor-
mally distributed.

We investigated whether a method was more accurate 
or biased than others using paired Wilcoxon signed rank 
tests. We used paired tests to compare the methods to 
remove the variation caused by the stochastic simulation; 
i.e., the methods were paired within replicates. Further-
more, we investigated whether the methods were biased 
using the one-sample Wilcoxon signed rank tests. The 
null hypotheses for these tests were that the level biases 
were equal to 0 and that the dispersion biases were equal 
to 1.

We used the Bonferroni-correction of p-values to con-
trol for multiple testing: αbon = α/ntests = 0.05/1000 , 
where α is the significance level and ntests is the 
number of statistical tests. Among the 1000 tests, 
np × ng × nm × (nm − 1)/2 = 840 were com-
parisons between validation parameters and 
(np − 1)× ng × nm = 160 were tests for whether vali-
dation parameters differed from expected values, where 
np = 3 is the number of validation parameters (accuracy, 
level bias, and dispersion bias); ng = 10 is the number of 

(29)bbias =
cov(tbv, ebv)

var(ebv)
,

groups within which validation parameters were com-
pared; and nm = 8 is the number of unique combinations 
between methods and use of genomic information.

Expected pattern in results
The accuracies and biases are expected to differ between 
populations A, B, and C. For animals in generation 39 
of Population A, halfsibs are the closest relatives with 
phenotypes. For animals in generation 39 of Population 
B, cousins are the closest relatives with phenotypes. For 
animals in generation 39 of Population C, own perfor-
mance is available for all animals. Therefore, we expect 
that prediction is most accurate in Population C, less 
accurate in Population A, and least accurate in Popula-
tion B.

Results
Prediction accuracy
Generally, the GT and MF methods were as accurate or 
more accurate than the SM and NRM methods (Table 2). 
Use of genomic information always increased the predic-
tion accuracy (Table 2).

For Population A, the methods were equally accurate 
for prediction of breeding values without genomic infor-
mation (median: 0.37–0.41, Table 2). When breeding val-
ues were predicted with genomic information, the MF 
and GT methods were the most accurate (median: 0.59–
0.65, Table 2). The SM method was generally as accurate 
as the MF and GT methods (median: 0.58–0.65, Table 2), 
while the NRM method was always the least accurate 
(median: 0.56–0.63).

For Population B, the methods were equally accu-
rate for prediction of breeding values without genomic 
information (median: 0.29–0.35, Table 2). When breed-
ing values were predicted with genomic information, 
the MF method and the GT method were the most 
accurate for prediction of any definition of true breed-
ing value (median: 0.50–0.55, Table  2) while the SM 
and NRM methods were the least accurate (median: 
0.48–0.51).

For Population C, the GT and MF methods were the 
most accurate (median: 0.61–0.63, Table  2). The least 
accurate methods were the SM method (median: 0.57) 
and the NRM method (median: 0.48–0.49), respectively 
(Table 2).
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Level bias
The level biases were not statistically significantly differ-
ent from 0 for the phenotype without a dominant genetic 
term (Table  3). For the phenotype with a dominant 
genetic term, the level biases were statistically signifi-
cantly different from 0 for mating an animal with another 
animal from the same population.

Dispersion bias
In general, the dispersion biases for the GT, MF, and SM 
methods were not statistically significantly different from 
1 (Table 4). 

Table 2  Median prediction accuracy across replicates

Median absolute deviations are in parentheses

Accuracy: Pearson’s correlation between true breeding values and predicted 
breeding values

Superscripts: Different superscripts denote that medians are significantly 
different

Superscripts are comparable within combinations of Population and column

ss-prefix: Relationship matrices include genomic information

yA : A phenotype with additive genetic effects

yAD : A phenotype with both additive and dominant genetic effects

Purebred: True breeding value is for production of purebred animals

F1: True breeding value is for production of F1-animals

Rotation: True breeding value is for mating with rotationally crossbred animals

Population × 
method

yA yAD

Purebred F1 Rotation

Population A (Purebred)

 GT 0.41 (0.09)c 0.37 (0.11)c 0.40 (0.11)c 0.39 (0.12)c

 MF 0.41 (0.09)c 0.37 (0.11)c 0.40 (0.11)c 0.39 (0.12)c

 NRM 0.39 (0.09)c 0.37 (0.09)c 0.40 (0.11)c 0.37 (0.11)c

 SM 0.41 (0.09)c 0.37 (0.10)c 0.41 (0.09)c 0.40 (0.12)c

 ssGT 0.65 (0.06)a 0.59 (0.08)a 0.60 (0.08)a 0.60 (0.08)a

 ssMF 0.65 (0.06)a 0.59 (0.08)a 0.60 (0.07)a 0.60 (0.08)a

 ssNRM 0.63 (0.05)b 0.56 (0.07)b 0.58 (0.06)b 0.58 (0.07)b

 ssSM 0.65 (0.04)ab 0.58 (0.08)a 0.60 (0.07)b 0.60 (0.08)a

Population B (Purebred)

 GT 0.34 (0.12)c 0.31 (0.11)c 0.34 (0.12)c 0.34 (0.12)c

 MF 0.33 (0.12)c 0.31 (0.12)c 0.34 (0.12)c 0.34 (0.12)c

 NRM 0.33 (0.11)c 0.30 (0.11)c 0.31 (0.13)c 0.31 (0.13)c

 SM 0.35 (0.11)c 0.29 (0.11)c 0.31 (0.11)c 0.32 (0.11)c

 ssGT 0.53 (0.10)a 0.50 (0.08)a 0.54 (0.10)a 0.53 (0.09)a

 ssMF 0.55 (0.09)a 0.51 (0.07)a 0.54 (0.08)a 0.54 (0.08)a

 ssNRM 0.50 (0.11)b 0.50 (0.09)b 0.50 (0.09)b 0.51 (0.08)b

 ssSM 0.51 (0.11)b 0.48 (0.09)b 0.49 (0.08)b 0.50 (0.08)b

Population C (Crossbred)

 GT 0.62 (0.03)b 0.61 (0.03)b

 MF 0.62 (0.03)b 0.62 (0.03)b

 NRM 0.48 (0.02)f 0.48 (0.02)e

 SM 0.57 (0.02)d 0.57 (0.02)d

 ssGT 0.63 (0.03)a 0.62 (0.03)a

 ssMF 0.63 (0.03)a 0.62 (0.03)a

 ssNRM 0.48 (0.02)e 0.49 (0.03)e

 ssSM 0.57 (0.02)c 0.57 (0.02)c

Table 3  Median level bias across replicates

Median absolute deviations from medians are in parentheses

Level Bias: Difference between change in predicted and true breeding values 
relative to in the base population

Bold: Medians in bold differ significantly from zero

Superscripts: Different superscripts denote that medians are significantly 
different

Superscripts are comparable within combinations of Population and column

ss-prefix: Relationship matrices include genomic information

yA : A phenotype with additive genetic effects

yAD : A phenotype with both additive and dominant genetic effects

Purebred: True breeding value is for production of purebred animals

F1: True breeding value is for production of F1-animals

Rotation: True breeding value is for mating with rotationally crossbred animals

Population 
× method

yA yAD

Purebred F1 Rotation

Population A (Purebred)

 GT −0.02 (0.08)a 0.29 (0.09)a −0.03 (0.08)a 0.12 (0.08)a

 MF −0.02 (0.08)a 0.28 (0.09)a −0.03 (0.08)a 0.12 (0.08)a

 NRM −0.01 (0.08)a 0.29 (0.10)a −0.04 (0.09)a 0.12 (0.09)a

 SM −0.03 (0.08)a 0.28 (0.09)a −0.03 (0.09)a 0.11 (0.09)a

 ssGT −0.01 (0.07)a 0.28(0.07)a −0.01 (0.07)a 0.13 (0.07)a

 ssMF −0.01 (0.08)a 0.28 (0.07)a −0.04 (0.07)a 0.13 (0.08)a

 ssNRM 0.00 (0.08)a 0.29 (0.08)a −0.02 (0.09)a 0.14 (0.09)a

 ssSM 0.00 (0.07)a 0.29 (0.08)a −0.03 (0.08)a 0.13(0.08)a

Population B (Purebred)

 GT 0.00 (0.07)a 0.28 (0.09)a −0.03 (0.08)a 0.04 (0.07)a

 MF 0.00 (0.07)a 0.28 (0.10)a −0.02 (0.08)a 0.04 (0.07)a

 NRM 0.01 (0.08)a 0.28 (0.10)a 0.03 (0.09)a 0.05 (0.08)a

 SM 0.01 (0.07)a 0.29 (0.08)a −0.03 (0.08)a 0.04 (0.07)a

 ssGT −0.01 (0.06)a 0.28 (0.08)a −0.03 (0.07)a 0.04 (0.06)a

 ssMF 0.01 (0.06)a 0.28 (0.08)a −0.01 (0.07)a 0.05 (0.07)a

 ssNRM 0.01 (0.07)a 0.28 (0.08)a −0.02 (0.08)a 0.04 (0.08)a

 ssSM 0.01 (0.06)a 0.28 (0.08)a −0.02 (0.07)a 0.04 (0.07)a

Population C (Crossbred)

 GT 0.00 (0.05)a 0.20 (0.07)a

 MF 0.00 (0.06)a 0.20 (0.07)a

 NRM 0.00 (0.06)a 0.19 (0.07)a

 SM 0.00 (0.06)a 0.20 (0.06)a

 ssGT 0.00 (0.06)a 0.20 (0.07)a

 ssMF 0.00 (0.06)a 0.20 (0.07)a

 ssNRM 0.00 (0.06)a 0.21 (0.06)a

 ssSM 0.00 (0.06)a 0.20 (0.06)a
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For Population A, the dispersion biases for the GT and 
MF methods were not statistically significantly different 
from 1 for the phenotype without a dominant genetic 
term (median: 0.94–1.01). The dispersion biases for SM 
method were not statistically significantly different from 
1 when breeding values were predicted without genomic 
information or the phenotype was without a dominant 

genetic term (median: 0.78–0.94). The dispersion biases 
for the NRM method were always statistically signifi-
cantly different from 1.

For Population B, the dispersion biases for the GT and 
MF methods were not statistically significantly different 
from 1 (median: 0.91–1.12). The dispersion biases for 
the SM method were only statistically significantly dif-
ferent from 1 when breeding values were predicted with 
genomic information and the phenotype did not include 
a dominant genetic term (median: 1.20). The dispersion 
biases for the NRM method was statistically significantly 
different from 1 in almost all cases (median: 0.67–0.82).

For Population C, the dispersion biases for the GT and 
MF methods were not statistically significantly different 
from 1 when the phenotype did not include a dominant 
genetic term (median: 0.99–1.02). The dispersion biases 
for the SM and NRM methods were always statistically 
significantly different from 1.

Discussion
As hypothesized, the GT and MF methods were generally 
the most accurate and least biased methods for predic-
tion of breeding values with phenotypes from rotation-
ally crossbred animals. The SM method was almost as 
accurate as the GT and MF methods but was also more 
biased. The NRM method was the least accurate and 
most biased of the methods.

The GT and MF methods
We found that the GT and MF methods performed simi-
larly for prediction of breeding values with phenotypes 
from rotationally crossbred animals. This is in accord-
ance with the fact that the MF method, in theory, can 
account for both breed-specific terms and segregation 
terms from GT method [14]. More specifically, the GT 
and MF methods are equivalent when the tranforma-
tions of Eq. 22 yield the estimated variance components 
from the GT method. However, this relies on the accu-
rate estimation of the metafounder relationships which 
has some degree of estimation error. Fortunately for the 
MF method, it is the relative sizes of γA , γB , and γAB which 
determine the relative sizes of the partial additive genetic 
parameters, σ 2

AA
 , σ 2

AB
 , and σ 2

AAB
 (Eq. 22). As long as Eq. 22 

holds true, changes to the metafounder relationships are 
accounted for through changes to the estimated additive 
genetic variance in the ancestral population, σ 2

MF.
One major advantage of the MF method is that genomic 

information can readily be included in the additive rela-
tionship matrix with metafounders using the single-step 
procedure [14], regardless of the genetic composition of 
the animals in the relationship matrix. On the contrary, 
the single-step procedure has only been developed for 
the partial relationship matrices for breed-specific terms 

Table 4  Median dispersion bias across replicates

Median absolute deviations from medians are in parentheses

Dispersion Bias: Linear regression coefficient of true breeding values onto 
predicted breeding values

Bold: Medians in bold differ significantly from zero

Superscripts: Different superscripts denote that medians are significantly 
different

Superscripts are comparable within combinations of Population and column

ss-prefix: Relationship matrices include genomic information

yA : A phenotype with additive genetic effects

yAD : A phenotype with both additive and dominant genetic effects

Purebred: True breeding value is for production of purebred animals

F1: True breeding value is for production of F1-animals

Rotation: True breeding value is for mating with rotationally crossbred animals

Population 
× method

yA yAD

Purebred F1 Rotation

Population A (Purebred)

 GT 0.98 (0.22)ab 0.85 (0.22)ab 0.89 (0.28)ab 0.86 (0.27)ab

 MF 0.96 (0.22)ab 0.84 (0.20)b 0.88 (0.24)ab 0.85 (0.24)ab

 NRM 0.74 (0.17)c 0.62 (0.17)c 0.65 (0.15)c 0.65 (0.18)c

 SM 0.94 (0.24)ab 0.78 (0.25)b 0.84 (0.26)b 0.79 (0.25)b

 ssGT 1.01 (0.14)a 0.90 (0.15)a 0.96 (0.14)a 0.95 (0.14)a

 ssMF 1.00 (0.11)ab 0.88 (0.12)ab 0.93 (0.12)ab 0.90 (0.11)ab

 ssNRM 0.76 (0.10)c 0.67 (0.11)c 0.69 (0.10)c 0.66 (0.10)c

 ssSM 0.94 (0.15)b 0.84 (0.18)b 0.86 (0.15)b 0.84 (0.17)b

Population B (Purebred)

 GT 1.12 (0.40)bc 1.02 (0.44)a 1.01 (0.43)a 1.01 (0.41)a

 MF 1.10 (0.37)bc 0.98 (0.39)a 1.02 (0.42)a 0.96 (0.44)a

 NRM 0.82 (0.30)d 0.72 (0.33)b 0.74 (0.34)b 0.73 (0.33)b

 SM 1.26 (0.57)a 0.94 (0.47)a 1.15 (0.51)a 1.13 (0.50)a

 ssGT 1.09 (0.16)c 0.98 (0.20)a 0.99 (0.17)a 0.96 (0.16)a

 ssMF 1.04 (0.17)c 0.91 (0.19)a 0.93 (0.16)a 0.93 (0.15)a

 ssNRM 0.80 (0.16)d 0.67 (0.15)b 0.68 (0.14)b 0.67 (0.12)b

 ssSM 1.20 (0.30)ab 1.02 (0.27)a 0.98 (0.23)a 0.97 (0.22)a

Population C (Crossbred)

 GT 1.00 (0.06)a 0.92 (0.06)a

 MF 1.01 (0.06)a 0.93 (0.05)a

 NRM 0.40 (0.04)e 0.34 (0.03)e

 SM 0.54 (0.05)c 0.46 (0.04)c

 ssGT 0.99 (0.07)a 0.92 (0.06)a

 ssMF 1.00 (0.07)a 0.93 (0.05)a

 ssNRM 0.41 (0.04)d 0.34 (0.03)d

 ssSM 0.55 (0.05)b 0.46 (0.04)b
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from the GT method; i.e., a combined partial relation-
ship matrix for both genotyped and non-genotyped ani-
mals for segregation terms has not been developed [6]. 
This may make the MF method more appropriate than 
the GT method when rotationally crossbred animals are 
genotyped.

Based on this study, it is not possible to conclude 
whether the GT or MF method is better for the analysis 
of these specific populations.

The SM method
This method was generally as accurate and unbiased as 
the GT and MF methods for prediction in purebred ani-
mals but less accurate and more biased for prediction in 
rotationally crossbred animals (Tables 2 and 4). The inac-
curacy and bias of the SM method may be caused by its 
inability to properly separate the phenotype into its com-
ponents (Table 1).

The SM method is only an approximation to the 
GT method and discreprancies between the two are 
expected. For example, for the GT method and disregard-
ing inbreeding, the covariance between siblings depends 
on the diagonal elements of their shared parents (Eq. 7). 
Meanwhile, for the SM method, the covariance between 
siblings depends on the product between their own 
regression covariates for partial additive genetic effects 
(Eqs. 11, 12, 13). Consequently, the SM method is a bet-
ter approximation to the GT method between animals 
where the weighted average of diagonal and off-diagonal 
elements of common ancestors is equal to the product 
between the animals’ regression covariates for partial 
additive genetic effects and their additive genetic covari-
ance according to the NRM method.

In a rotational crossbreeding system, breed proportions 
differ across generations. Consequently, the weighted 
average of diagonal and off-diagonal elements of com-
mon ancestors can differ from the product between the 
animals’ regression covariates for partial additive genetic 
effects and their additive genetic covariance according 
to the NRM method. For example, in this study and dis-
regarding inbreeding, the covariance of partial additive 
breed-specific effects from Population A between full 
sibs i and j from generation 34 and Population C was not 
the same for the GT and SM methods:

where subscripts i, j, s, and d denote animals; f A is the 
breed proportion from Population A; and superscript 
NRM:A denotes that the covariance was calculated with 

(30)

aSMij =

√

f Ai f Aj
1

4

[

aNRM:A
s + aNRM:A

d

]

=

√

1

4

1

4

1

4
[0+ 1] =

1
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,

aGTij =
1

4

[

f As + f Ad

]

=
1

4

[

0+
1

2

]

=
1

8
,

the NRM method and the pedigree tracing breed-spe-
cific genetic effects from Population A. Meanwhile, the 
covariance for partial additive breed-specific effects from 
Population B between the same animals was the same for 
the GT and SM methods:

where superscript NRM:B denotes that the covariance 
was calculated with the NRM method and the pedigree 
that traces breed-specific genetic effects from Population 
B; f B is the breed proportion from Population B; and the 
other terms are as for Eq. 30.

It is simple to see that the GT and SM methods do 
not always produce identical relationships. However, it 
is challenging to explain how discreprancies between 
the GT and SM methods across the three partial addi-
tive relationship matrices affect the partitioning of ran-
dom effects. Nevertheless, according to our study, the 
SM method seems to be a good approximation of the GT 
method when the aim is to predict breeding values in 
purebred animals.

The NRM method
This method has the most inaccurate assumptions for 
additive genetic effects among the methods investigated. 
In rotationally crossbred animals between divergent 
purebred populations, the model does not fit the data 
if the partial additive genetic variances due to breed-
specific effects are not proportional to breed propor-
tions [10], and the segregation variance is not modelled 
[4]. Therefore, it was expected that this method was the 
least accurate and most biased among those investigated 
(Tables 2, 3, 4).

The NRM method is a common approach for multi-
breed analyses. The main argument for the NRM method 
is that it is commonly implemented into softwares for 
genetic evaluations. However, we argue that the GT, 
MF, and SM methods either are accessible or can easily 
become accessible. Currently, the GT or MF methods 
may not be implemented in softwares for genetic evalua-
tions, but both random regression and the NRM method 
are. The combination of random regression and the NRM 
method enables the use of the SM method which, in this 
study, was more accurate and less biased than the NRM 
method (Tables  2, 3, 4). In the future, the GT and MF 
methods should become accessible through their imple-
mentation into commonly used softwares for genetic 
evaluations. The implementation of both the GT and 
MF methods is simple as the algorithms for directly 

(31)
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computing their inverse covariance matrices are very 
similar to the algorithm for the NRM method [9, 14]. 
Consequently, the time required for implementing the 
GT and MF methods should be greatly reduced as a large 
proportion of program code from the NRM method can 
be reused. All things considered, we do not recommend 
the NRM method for genetic analyses with phenotypes 
of rotationally crossbred animals, because its alternatives 
are more accurate, less biased, and easily accessible.

Simulation design
Results from simulation studies are most relevant when 
the simulated populations are representative of real pop-
ulations. Populations can be described with several 
parameters, however, the divergence between the popu-
lations is a key argument for the relevance of multibreed 
relationship matrices [4]. The magnitude of divergence 
between two populations can be represented by the ratio 
between the segregation variance and the additive genetic 
variance in F2 animals: σ 2

AB
/

(

1
2
σ 2
A
+

1

2
σ 2
B
+ σ 2

AB

)

 ; which, 
in turn, can be calculated using the metafounder rela-
tionships (Eq. 22). Using this measure, the average mag-
nitude of divergence between Populations A and B is 15% 
based on the metafounder relationships (Table 1). Mean-
while, this measure for the magnitude of divergence is 
16% between DanBred Landrace and DanBred Yorkshire 
pigs [32], 15% between Hereford and Zebu cattle [33], 
and on average 11% (min: 3%, max: 25%) between sub-
populations of Manech Tête Rousse sheep [34]. There-
fore, the magnitude of divergence between populations A 
and B is representative of the divergence between real 
populations.

It would have been reasonable to compare the meth-
ods with a different simulation design, which would most 
likely give a different result. However, the purebred popu-
lations need to have diverged from each other; otherwise 
segregation effects would be small. We ensured that the 
purebred populations had diverged by simulating sepa-
rate population bottlenecks in the two populations, and 
not a shared population bottleneck; by only sampling 50 
animals (0.2% of the historical population) when found-
ing the purebred populations; by keeping the effec-
tive population sizes small in the purebred populations 
( Ne ≈ 50 animals); and by isolating the purebred popu-
lations for 32 generations prior to the pedigreed genera-
tions. In a scenario where the purebred populations had 
only slightly diverged from each other, segregation effects 
would be small and the additive genetic variances would 
be the same in the purebred populations. This would 
diminish the argument for partial additive relationship 
matrices for the breed-specific terms and the segrega-
tion term. In other words, it would be better to regard the 
two purebred populations as one purebred population. 

A simulation design with less diverged purebred popu-
lations would most likely yield the same ranking of the 
methods but with less absolute differences between their 
prediction accuracies.

In this study, only genetic drift caused changes in 
allele frequencies. In practice, allele frequencies are also 
affected by selection. Simulating selection would most 
likely also change the results. However, we have no rea-
son to believe that selection would change the ranking 
between the methods, because all the methods theoreti-
cally can account for selection, and because their mecha-
nism for doing so is the same [8, 9, 12, 14].

Genotypes from crossbred animals
It is simpler to incorporate genomic information from 
crossbred animals into some methods than into others. 
For the MF, SM, and NRM methods, genomic informa-
tion on crossbreds can be incorporated as for purebred 
animals. For the GT method, it becomes necessary to 
trace the breed of origin of alleles to construct genomic 
relationship matrices for breed-specific terms [13]. 
Furthermore, to our knowledge, it is not known how 
genomic information should be incorporated into par-
tial relationship matrices for segregation terms. Although 
it is simple to incorporate genomic information for the 
MF, SM, and NRM methods, it is not known whether the 
resulting relationship matrices correctly represent the 
additive genetic covariance between animals. In particu-
lar, this is the case for the SM method and our applica-
tion of the NRM method, as they are approximations. 
Although relevant, it was outside the scope of this study 
to compare the methods in a scenario with genomic 
information from crossbred animals.

Synthetic breeds
This study was on genetic analyses with rotationally cross-
bred animals, but our results may also apply to other 
genetic analyses of mixed populations. For example, some 
breeding companies create synthetic breeds. In practice, 

Table 5  Example pedigree

Id Sire Dam Breed

1 0 0 A

2 0 0 B

3 0 0 A

4 0 0 B

5 1 2 –

6 3 4 –

7 5 6 –

8 5 6 –

9 1 7 –
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Table 6  Breed-specific relationship matrix for the GT-method with the sample pedigree

Upper triangle and zeroes are omitted

A
GT

A
1 3 5 6 7 8 9

1 1.00

3 1.00

5 0.50 0.50

6 0.50 0.50

7 0.25 0.25 0.25 0.25 0.50

8 0.25 0.25 0.25 0.25 0.25 0.50

9 0.63 0.13 0.38 0.13 0.38 0.25 0.88

Table 7  Breed-specific relationship matrix for the NRM-method with the sample pedigree

Upper triangle and zeroes are omitted

A
NRM

A
1 3 5 6 7 8 9

1 1.00

3 1.00

5 0.50 1.00

6 0.50 1.00

7 0.25 0.25 0.50 0.50 1.00

8 0.25 0.25 0.50 0.50 0.50 1.00

9 0.63 0.13 0.50 0.25 0.63 0.38 1.13

Table 8  Breed-specific relationship matrix for the SM-method with the sample pedigree

Upper triangle and zeroes are omitted

A
SM

A
1 3 5 6 7 8 9

1 1.00

3 1.00

5 0.35 0.50

6 0.35 0.50

7 0.18 0.18 0.25 0.25 0.50

8 0.18 0.18 0.25 0.25 0.25 0.50

9 0.54 0.11 0.31 0.15 0.38 0.23 0.84

Table 9  Relationship matrix for the segregation term with 
sample pedigree and the GT-method

Upper triangle and zeroes are omitted

A
GT

AB
7 8 9

7 1.00

8 1.00

9 0.50 0.50

Table 10  Relationship matrix for the segregation term with 
sample pedigree and the SM-method

Upper triangle and zeroes are omitted

A
SM

AB
7 8 9

7 1.00

8 0.50 1.00

9 0.44 0.27 0.56
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synthetic breeds are crossbred populations and they are 
subject to the same mechanisms as other crossbred popula-
tions. The only difference between a rotationally crossbred 
population and a synthetic breed is that sires are not nec-
essarily purebred for synthetic breeds. Similar to the rota-
tionally crossbred populations, the complex distributions of 
genetic effects may complicate accurate and unbiased pre-
diction of breeding values in synthetic breeds. Our results 
may assist with the choice of method for the relationship 
matrix used in genetic analysis of synthetic breeds.

Solving BLUP equation systems
The choice between methods may also be impacted by 
their computational requirements. For all the relationship 
matrices that were studied here, the inverse can be directly 
computed [8, 9, 14]. However, the resulting equation sys-
tems differ in dimensions and sparseness. Using the GT, 
SM, or NRM method results in a larger equation system 
than with the MF method; especially with large numbers 
of breeds and crossbred animals. Meanwhile, the MF 
method contains more non-zero elements than the other 
methods; and using the MF method with the single-step 
procedure may require the inversion of one large genomic 
relationship matrix rather than the inversion of smaller 
genomic relationship matrices as with the other meth-
ods. Comparison of computational demands between the 
methods was outside the scope of this study but it could be 
relevant when computer hardware is a limiting factor.

Conclusion
In the scenarios that  we investigated, models using the 
additive relationship matrix with metafounders [14] or 
the partial relationship matrices by García-Cortés and 
Toro [9] were generally more accurate and less biased 
than those using the partial relationship matrices by 
Strandén and Mäntysaari [12] or the usual numerator 
relationship matrix [8].

Appendix
Appendix 1: Multibreed relationship matrices with a small 
example pedigree
The differences between the NRM, GT, and SM methods 
are easier to understand through examples. This example 
is based on a pedigree with both purebred animals, F1 
animals, F2 animals, and a F2-backcross animal (Table 5). 
We use the GT method as reference because it is theo-
retically correct.

The methods yield different additive relationship matri-
ces for the term from breed A (Tables 6, 7, 8). The NRM 
method calculates the correct relationships for purebred 
animals; but is erroneous after it encounters crossbred 
animals. The diagonal elements for crossbred animals are 
not scaled according to their breed proportions, and this 
error affects both diagonal and off-diagonal elements for 
descendants of the crossbred animals (Tables  6 and  7). 
The SM method yields the same diagonal elements as the 
GT method in the absence of inbreeding (Table  8). The 
off-diagonal elements between F1 and F2 crossbred ani-
mals are also correct. The off-diagonal elements between 
purebred animals and crossbred animals are erroneous, 
and so is the off-diagonal element for the F2-backcross 
(animal 9; Table 8).   

The methods also yield different partial additive rela-
tionship matrices for the segregation term (Tables 9 and 
10). The SM method calculates non-zero off-diagonal ele-
ments for related animals where the off-diagonal element 
is zero for the GT method. Furthermore, the off-diagonal 
elements between animals 7 and 9 are erroneous as is the 
diagonal element for animal 9. 

The relationship matrix from the MF method is not 
directly comparable to those from the other methods 
(Table  11) although it is theoretically equal to the GT 
method [14]. 

Table 11  Relationship matrix with sample pedigree and the MF-method

Upper triangle is omitted. The matrix was calculated with: γA = 0.66 , γAB = 0.1 , and γB = 0.50

A
MF 1 2 3 4 5 6 7 8 9

1 1.33

2 0.10 1.25

3 0.66 0.10 1.33

4 0.10 0.50 0.10 1.25

5 0.72 0.68 0.38 0.30 1.05

6 0.38 0.30 0.72 0.68 0.34 1.05

7 0.55 0.49 0.55 0.49 0.70 0.70 1.17

8 0.55 0.49 0.55 0.49 0.70 0.70 0.70 1.17

9 0.94 0.29 0.60 0.29 0.71 0.54 0.86 0.62 1.27
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