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Quercetin liposomes ameliorate 
streptozotocin-induced diabetic 
nephropathy in diabetic rats
Lixia Tang   1, Ke Li1, Yan Zhang2, Huifang Li1, Ankang Li3, Yuancheng Xu4 & Bing Wei   5*

The effects of quercetin liposomes (Q-PEGL) on streptozotocin (STZ)-induced diabetic nephropathy 
(DN) was investigated in rats. Male Sprague Dawley rats were used to establish a STZ induced DN 
model. DN rats randomly received one of the following treatments for 8 weeks: blank treatment (DN), 
free quercetin (Que), pegylated liposomes (PEGL) and pegylated quercetin liposomes (Q-PEGL). A group 
of healthy rats served as the normal control. The fasting blood glucose (FBG), body weights (BWs), 
renal hypertrophy index (rHI), serum and urine biochemistry, renal histopathology, oxidative stress 
and immunohistochemical measurements of AGEs were analyzed to compare the effect of different 
treatments. Que and Q-PEGL significantly improved DN biochemistry and pathological changes, 
although the treated rats still had some symptoms of DN. The therapeutic effect of Q-PEGL surpassed 
that of Que. Pegylated quercetin liposomes allow maintaining higher quercetin concentrations in 
plasma than non-encapsulated quercetin. In conclusion the use of quercetin liposomes allows to reduce 
disease symptoms in a rat model of DN.

Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia due to impaired body’s ability to 
produce or respond to the hormone insulin1. Diabetic nephropathy (DN) is a microvascular complication of DM 
and causes long-term or end-stage renal disease2. Multifactorial interaction between lipid disorders, oxidative 
stress, renal hemodynamic changes, polyol activation, inflammatory pathways, and mitogen-activated protein 
kinase signaling pathways are involved in the pathophysiology of DN3,4,7. Therefore, strong antioxidants could 
potentially serve as treatments to diabetes related diseases5 Quercetin (C15H10O7,3′,4′,5,7-pentahydroxyflavone) 
is a potent dietary bioflavonoid found in diverse fruits, seeds, and vegetables such as legumes, apples, and chili 
peppers4–7. Pharmacological studies in humans show that quercetin has multiple biological functions including 
circulation system protection, anti-allergic, anti-inflammatory, anti-cancer, anti-diabetes, and cataract preven-
tion7. Another important attribution of quercetin is to reduce aldose reductase, which is an enzyme that converts 
glucose to sorbitol through polyol pathway5.

Natural quercetin has poor water solubility, therefore, quercetin liposomes are laboratory-prepared to improve 
its solubility and in vivo absorbability7–9. Liposomes are the most studied particle carrier systems allowing sus-
tained release, and have the potential of enhancing the oral bioavailability of proteins and peptides10. Liposomes 
are small spherical lipid vesicles, composed of phospholipids and cholesterol, characterized on size, number of 
lamellae, and inner/outer phases11,12. Liposomes have good cell compatibility, reduce drug toxicity, improve drug 
stability and function for a long time13, and have been used to deliver drugs including antibiotic, antifungal, 
and cytotoxic agents14. Coating inert biocompatible polymers, such as PEG, on the liposome surface will form a 
protective layer over the liposome surface, which slows down liposomes recognition and clearance, and extends 
liposome circulation time and provides slow release of an encapsulated drug9,15. Yuan et al.9 utilized liposomes for 
delivery of quercetin to study anti-tumoral properties. Yue et al.13 also developed coenzyme Q10-loaded lipos-
omes to treat DN.

Streptozotocin (STZ) is used to induce diabetic kidney injury with hyperuricemia, hyperlipidemia and inflam-
mation2,16. In the present study, we evaluated the effects of quercetin liposomes on STZ-induced DN rats through 
comparing the histopathological and biochemical alterations among different treatment groups.
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Results
Pharmacokinetics and kidney distribution of free Que or Q-PEGL.  The maximum concentration of 
quercetin in the plasma was 92.77 ± 11.21 nmol/ml for the Q-PEGL group at 60 minutes and was 104.53 ± 12.08 
nmol/ml for the Que group at 5 minutes (Fig. 1A). The maximum concentration of quercetin in the kidney was 
88.03 ± 11.20 nmol/g for the Q-PEGL group at 60 minutes and was 99.80 ± 11.37 nmol/ml for the Que group at 
5 minutes (Fig. 1B). In the Q-PEGL group, quercetin was still detectable at 1,440 minutes in the plasma and kid-
ney. The concentrations of quercetin were relatively high in plasma and kidney in rats treated by free quercetin 
(Que group) at 5 minutes, and the concentration of quercetin declined with time. After 15 minutes the quercetin 
concentration was higher in the Q-PEGL than in the Que group (Fig. 1).

Changes in BWs, FBG, rHI, and 24-h urinary protein of rats with STZ induced DN.  The char-
acteristics of STZ induced DN rat are summarized in Fig. 2. The body weight was decreased in the DN rats but 
increased in the normal control group (P < 0.01). The body weight of all groups increased after STZ induction 
until week 4, from where the body weight started to decrease in the DN group and the PEGL group, while kept 
increasing in the rest three groups. At the end of the treatment period (8 weeks after administration of STZ), 
body weights in NC group and PEGL group were significantly lower than those of the other groups (P < 0.01). No 
significant difference was detected between the DN and the PEGL groups (P > 0.05). The body weight of Q-PEGL 
rats was significantly higher than that of the other groups (P < 0.01), except that it was lower than that of the NC 
group (P < 0.01).

At the end of the STZ injection, FBG level was significantly increased in DN model rats compared to NC 
rats (P < 0.01). Treatment reduced FBG level in the Que and Q-PEGL groups compared to the DN or PEGL 
group (P < 0.01). In addition, the FBG level in the Q-PEGL group was significantly lower than that in the Que 
group (P < 0.01). Compared with the Q-PEGL group, the increase of FBG induced by STZ in the PEGL, Que and 
DN groups was more pronounced, which peaked at week 4 and then gradually decreased. The peak of FBG in 
Q-PEGL group was at week 3. The FBG levels of all groups are shown in Fig. 2B.

At the end of the treatment period, the rHI and 24-h urinary protein were significantly lower in the NC 
group than those in the other groups (P < 0.01). In addition, the rHI and 24-h urinary protein were lower in the 
Q-PEGL and Que groups than those in the DN and PEGL groups (both P < 0.05), but there was no significant 
difference between the DN and PEGL groups (P > 0.05). The rHI and 24-h urinary protein were lower in the 
Q-PEGL than those in the Que group (P < 0.05). The rHI and 24-h urinary protein of all groups are shown in 
Fig. 2C,D, respectively.

Changes in oxidative stress indicators in serum and kidney.  Figure 3 shows serum and kidney chem-
istry of the 5 groups of rats at the end of the treatment period. Levels of BUN, Scr, TNF-α, IL-1β, AGEs and MDA 
were lower in the NC group than those in the other groups (P < 0.01). The Que and Q-PEGL groups had lower 
levels of BUN, Scr, TNF-α, IL-1β, AGEs and MDA compared to the DN or PEGL groups (P < 0.05). There was 
no significant difference in these variables between the DN and PEGL groups (P > 0.05). Q-PEGL significantly 
decreased BUN, Scr, TNF-α, IL-1β, AGEs, and MDA (P < 0.05) compared to Que. NC group had higher levels 
of SOD and GSH-Px than the other groups (P < 0.01). Que and Q-PEGL groups had higher levels of SOD and 
GSH-Px (P < 0.05) compared to the DN and PEGL groups, and the effect of Q-PEGL was greater than Que 
(P < 0.05). There was no significant difference in these variables between the DN group and the PEGL group 
(P > 0.05).

Histopathological of kidneys.  Images of PAS-stained kidney tissue sections from selected experimental 
groups were obtained by using an optical microscope, as shown in Fig. 4A. The histological appearance of the 
glomerular and renal tubules were normal in the NC group. The DN and PEGL groups showed severe glomer-
ular and tubular changes. These changes included glomerular volume atrophied, mesangial extracellular matrix 

Figure 1.  Distribution of quercetin liposomes and free quercetin in DN rats. Rats were intragastrically treated 
with free Que (50 mg/kg) or Q-PEGL (200 mg/kg) dissolved in 0.9% sodium chloride. The quercetin in plasma 
and kidney were detected by high-performance liquid chromatography. (A) concentration-time curve of 
quercetin in plasma both Q-PEGL and free Que; (B) kidney distribution of free Que and Q-PEGL at different 
time points (5, 15, 30, 60, 120, 240, 720, and 1,440 min). *Indicates a difference of P < 0.05.
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increase, high deposition of glycogen, and basement membrane thickening. Q-PEGL and Que treatment allevi-
ated the renal lesions, especially the Q-PEGL treatment. A significant increase in mesangial index was detected in 
the DN and PEGL groups compared to the NC group (P < 0.01 for both). The mesangial indices in the Que and 
Q-PEGL groups were significantly lower than that of the DN group (P < 0.05, P < 0.01).

Renal immunohistochemistry.  The kidney AGE expression at week 8 by immunohistochemistry is shown 
in Figs. 4B and 5B. In the NC group, little immunofluorescence around the renal corpuscle wall and the tubular 
basement membrane was observed. Notably, AGEs expressions in the DN and PEGL groups were higher than 
those in the other groups (P < 0.01, for all), no significant difference was found between the DN and PEGL groups 
(P > 0.05). Interestingly, Que and Q-PEGL groups showed considerably decreased immunofluorescence labeling 
around the capsule and on the tubular basement membrane. The reduction of AGE expression in the Q-PEGL 
group was more pronounced than that in the Que group (P < 0.05).

Discussion
Diabetic hypertension and unresolved inflammation in DN lead to renal fibrosis and kidney failure. Currently, 
the mainstays of DN treatment are glycemic control and blood pressure lowering using durgs to block the 
renin-angiotensin system. Despite emerging clinical candidates under investigation for the treatment of DN, there 
is a lack of successful new treatments for DN. Some innovative treatment make use of traditional anti-diabetic 
drugs (insulin and exenatide), cytokines, metabolic modulation, nucleotide and quercetin16. Quercetin is an 
active compound for anti-cancer, anti-bacterial, anti-allergic and analgesic, and improves DN through various 
signaling pathways, making it a promising compound for the management of these diseases7,19. The T2DM recov-
ery from oxidative stress by quercetin was observed in single cell alkaline gel electrophoresis5. In this study, we 
showed quercetin carried by a synthesized PEGL was beneficial in reducing the deterioration of DN in rats.

Liposomes are non-toxic, biocompatible, biodegradable, and have the following advantages as carriers in drug 
delivery: first, liposomes can reduce toxicity; second, hydrophilic and lipophilic agents can be incorporated into 
liposomes; third, liposomes control the drug release; and fourth, the liposome delivery system increases bio-
availability12. However, because quercetin has the disadvantage of low solubility in vivo and short cycle time, we 
synthesized a PEGL carrier to load quercetin to improve its biological activity in vivo20,21. The mass ratio of the 
composition of the Q-PEGL compound quercetin/lecithin/cholesterol/polyethylene glycol 4000 was 6:13:4:1 in 
weight ratio9, and the mass of the chloroform/methanol was very small. To ensure similar load of quercetin, Que 
(50 mg/kg) and Q-PEGL (200 mg/kg) were administered intragastrically in our study. In addition, PEGL (150 mg/
kg) and Q-PEGL (200 mg/kg) were also administered intragastrically. Our results showed that Q-PEGL sustained 
a higher concentration of quercetin in plasma and kidney tissue compared to the free Que group after a given 

Figure 2.  The mean BWs (A), FBG (B), rHI (C) and 24-h urinary protein (D) of all groups (n = 8). Data were 
presented as the mean ± S.D. aP < 0.05, aaP < 0.01 versus control group. bP < 0.05, bbP < 0.01versus DN group. 
cP < 0.05, ccP < 0.01 versus Que group. NC: normal control; DN: blank treatment; Que: free quercetin 50 mg/
kg/day; PEGL: liposomes dissolved in 0.9% sodium chloride 150 mg/kg/day; Q-PEGL: Pegylated quercetin 
liposomes 200 mg/kg/day. *Indicates a difference of P < 0.05, and **indicates a difference of P < 0.01.
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time point. The peak of quercetin appeared at 60 minutes, while the result of Yuan et al.9 was at 30 minutes, prob-
ably due to the Q-PEGL in our study was intragastrical administered instead of intravenous injection.

STZ is a natural compound that can induce DN through selectively destroying islet β cells of animals, because 
DN is usually associated with reduced viability and dysfunction of pancreatic β cells23. The rat DN model induced 

Figure 3.  The mean serum and kidney chemistry of all groups (n = 8). (A) blood urea nitrogen. (B) serum 
creatinine. (C) tumor necrosis factor-α. (D) interleukin-1β. (E) advanced glycation end products. (F) 
superoxide dismutase. (G) malonaldehyde. (H) glutathione peroxidase. Data were presented as the mean ± S.D. 
aP < 0.05, aaP < 0.01 versus control group. bP < 0.05, bbP < 0.01versus DN group. cP < 0.05, ccP < 0.01 versus Que 
group. NC: normal control; DN: blank treatment; Que: free quercetin 50 mg/kg/day; PEGL: liposomes dissolved 
in 0.9% sodium chloride 150 mg/kg/day; Q-PEGL: Pegylated quercetin liposomes 200 mg/kg/day.

Figure 4.  (A) Histopathological changes in PAS-stained sections were detected in all groups. The representative 
images are shown from different renal tissue sections from each group. Original magnification, 400×. (B) 
Representative photomicrographs of kidneys showing AGEs immunohistochemistry. The kidneys of DN rats 
showed highest intensity expression of AGEs. The kidneys of Q-PEGL rats showed lower expression of AGEs 
than other groups, except for comparison with NC group. Original magnification, 400×. NC: normal control; 
DN: blank treatment; Que: free quercetin 50 mg/kg/day; PEGL: liposomes dissolved in 0.9% sodium chloride 
150 mg/kg/day; Q-PEGL: Pegylated quercetin liposomes 200 mg/kg/day.

https://doi.org/10.1038/s41598-020-59411-7


5Scientific Reports |         (2020) 10:2440  | https://doi.org/10.1038/s41598-020-59411-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

by STZ increased FBG and proteinuria in our study. Previous studies have shown that quercetin or quercetin 
liposomes were effective in controlling FBG, BWs, rHI, biochemistry and pathology in STZ induced diabetic 
animals22, which is consistent with our observation. Quercetin can reduce the plasma glucose level because it 
inhibits intestinal glucose absorption while enhances tissue and organ glucose levels;, quercetin increases insulin 
secretion by β-cells and protect DM against oxidative stress7. Administering quercetin to INS-1 pancreatic β-cells 
potentiated insulin secretion through enhanced glucose metabolism and protected β-cells against oxidative dam-
ages24. In STZ induced DN models of our study, quercetin liposomes or free quercetin were able to prevent body 
weight loss, decrease the renal hypertrophy index, lower blood glucose levels, and reduce the 24-h urinary pro-
tein. The effect of quercetin liposomes was stronger than quercetin alone. In addition, FBG peaked at 3 weeks and 
4 weeks in the Q-PEGL and the Que group respectively, and in both groups, it decreased gradually with time. This 
difference in the peak time can be explained by the slow release of PEGL carrier. Increased kidney weight caused 
by diabetes indicates renal hypertrophy, a common finding in the early stages of diabetes25,26. In this study, inter-
stitial fibrosis, mesangial contraction, and structural remodeling contributed to the decrease in renal hypertrophy, 
and improved renal function reduced the 24-h urinary protein.

The oxidative stress is considered to be important in the development of diabetic nephropathy5,20,27. Kuo et al.28  
suggested that the interaction between ROS production and the anti-oxidant pathways can contribute to the 
progression of diabetic nephropathy. SOD, MDA, TNF-α and IL-1β are the most common indicators of oxida-
tive stress. GSH-Px is one of the key enzymes that scavenge free radicals in the body. These factors can reflect 
the body’s antioxidant capacity. Literature shows that being an intracellular antioxidant, GSH-Px protects DNA, 
proteins and other biomolecules from ROS. AGEs are products of non-enzymatic glycosylation of proteins under 
chronic hyperglycemia, and levels of AGEs reflect the severity of renal injury. AGEs are thought to be a mech-
anism of action in the pathogenesis of clinical complications of diabetes, and accelerating synthesis and tissue 
deposition of AGEs leads to the microvascular alterations in DN29. Furthermore, in this study, DN model has 
shown that Que and Q-PEGL have the antioxidant capacity and scavenge free radicals, as evidenced by decreased 
levels of MDA, TNF-α, IL-1β, AGEs and increased activity of SOD, GSH-Px. Our results also revealed that Que 
and Q-PEGL significantly attenuated the increase in Scr, BUN levels, and reduced histopathological damage of 
kidneyin DN rats.

Long-term hyperglycemia increases secretion of inflammatory and fibrotic factors by renal cells, leading to cell 
hypertrophy and proliferation, and renal interstitial fibrosis30. In our study, pathological changes including glo-
merulosclerosis, interstitial fibrosis, and tubular atrophy due were observed, and these observation are consistent 
with previous studies in rats30,31. Xu et al.32 and Chen et al.33 have also reported that quercetin can improve the 
shape of the kidney, delay the progression of DN, and prevent diabetes-induced oxidative stress.

During hyperglycemia, the formation of hyperglycosylated AGEs in the glomerular basement membrane 
collagen is increased, which is extensively cross-linked with collagen, altering its spatial structure, increasing 
vascular permeability, mesangial proliferation and basement membrane thickening. The presence of AGEs in 
the kidneys of normal control rats indicates that AGEs occur even in healthy kidneys. Low levels of AGEs are 
probably resulted from enzyme-mediated detoxification21. Our results showed that quercetin liposomes and 
quercetin decreased the glomerular mesangial matrix expansion index and AGE levels, and the effect of quercetin 
liposomes was more significant. Gomes et al.19 showed that quercetin treatment can significantly improve renal 
structural changes, including glomerulosclerosis index and kidney/body weight normalization. The PAS and 
immunohistochemistry results showed that the pathological changes in the Q-PEGL group were better than 
those in the Que group. However, the relevant indicators for the PEGL group were similar to the DN group. This 
suggested that PEGL did not delay the progression of DN or prevent diabetes-induced oxidative stress. The study 

Figure 5.  (A) Glomerular mesangial matrix expansion quantified from PAS staining. (B) Expression of 
AGEs in the tissues by immunohistochemistry at the end of the treatment period. Data were presented as the 
mean ± S.D. aP < 0.05, aaP < 0.01 versus control group. bP < 0.05, bbP < 0.01versus DN group. cP < 0.05, ccP < 0.01 
versus Que group. NC: normal control; DN: blank treatment; Que: free quercetin 50 mg/kg/day; PEGL: 
liposomes dissolved in 0.9% sodium chloride 150 mg/kg/day; Q-PEGL: Pegylated quercetin liposomes 200 mg/
kg/day.
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has limitations. We did not verify the solubility of Que and Q-PEGL, and the dose used in the study was based on 
previous study, which could introduce potential bias to the results.

In conclusion, the liposomes-loaded quercetin was successfully prepared using ratio of a mixture of querce-
tin/lecithin/cholesterol/polyethylene glycol 4000 and used for drug delivery by the intragastric administration 
route. In vivo study exhibited that the developed formulation had renal protective effects in STZ-induced DN rats 
by reducing oxidative stress, attenuating AGE expression, and delaying the progression of DN. In addition, the 
positive effect of quercetin liposomes on diabetic nephropathy is greater than that of quercetin alone. Therefore, 
quercetin liposomes can be used as a valuable therapeutic agent in DN.

Materials and Methods
Chemicals.  High-purity lecithin of soybean, cholesterol, polyethylene glycol 4000, glucosidase, streptozoto-
cin and quercetin were purchased from Sigma (MO, USA). Rat TNF-α and IL-1β ELISA kits were purchased from 
Elabscience Biotechnology Co. (Wuhan, China). The rat AGEs ELISA kit was purchased from Cusabio (Wuhan, 
China). All the other chemicals were purchased from Sigma (MO, USA). The SOD assay kit was purchased 
from Sigma-Aldrich (Shanghai, China).The MDA and GSH-PX assay kits were purchased from Elabscience 
Biotechnology Co. (Wuhan, China). All the other reagents used in the present study were of analytical grade and 
were purchared from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).

Animals.  A total of 88 male Sprague-Dawley rats, weighing 190~220 g, were purchased from the Animal 
Laboratory of Guilin Medical University (Guangxi Province, China). The animals were maintained under stand-
ard laboratory conditions with a 12-h light:12-h dark cycle, at a temperature of 25 ± 2 °C, throughout the study. 
Animals were fed with standard rat chow and tap water ad libitum before and during the experiments. The ani-
mals were euthanized by injection of pentobarbital sodium (200 mg/kg) after the experiments. All study protocols 
including diabetes induction and sacrifice operation were approved by the ethics review board of the Institutional 
Animal Care and Use Committee at the Guilin Medical University. The animal experiment followed the guide 
for the care and use of laboratory animal published by the US National Institutes of Health (NI H Publication 
updated in 2011).

Preparation of pegylated quercetin liposomes and empty pegylated liposomes.  Pegylated 
quercetin liposomes (Q-PEGL) and empty pegylated liposomes (PEGL) were prepared at the pharmaceutical 
laboratory of Guilin Medical University (Guangxi Province, China). Briefly, a mixture of quercetin/lecithin/
cholesterol/polyethylene glycol 4000 (6:13:4:1 by weight) was dissolved in a chloroform/methanol (3:1, v/v) 
solution, and then evaporated to dryness in a rotary evaporator9. The dried lipid films were sonicated in a 5% 
glucose solution in a constant container, then concentrated and lyophilized. The PEGL was prepared in the same 
manner as the Q-PEGL, which did not contain quercetin in the mixture. According to the calculation reported 
by Mukhopadhyay et al.17, the final Q-PEGL and PEGL are small unilamellar liposomes with a size range of 
128.8 ± 18.05 nm. In addition, the Que encapsulation efficiency and load capacity were 87.1 ± 2.7% and 58 ± 7%, 
respectively. Q-PEGL and PEGL were concentrated, lyophilized under vacuum for 5 hours and stored at −20 °C. 
The final product has good solubility and can be used directly or intraperitoneally dissolved in saline8.

Pharmacokinetic studies in free Que or Q-PEGL treated rats.  The DM modle induction was as fol-
lows: forty-eight rats were fasted overnight and then given a single intraperitoneal injections of 60 mg/kg STZ dis-
solved in 10 mM citrate buffer (pH 4.5)18. Three days after STZ administration, the FBG was determined in a tail 
vein sample using blood glucose meter (LifeScan, CA, USA). Rats with FBG levels above 16.7 mM for 3 consec-
utive days were considered DM13. DM rats were fed with standard rat chow and tap water ad libitum for 4 weeks. 
All DM rats were transferred to metal metabolic cages and 24-hour urine samples were accurately collected.

A 24-hour urinary albumin excretion rate of >30 mg/24 h was observed at week 4, indicating the successful 
construction of DN13. Rats were treated intragastrically with free Que (50 mg/kg) or Q-PEGL (200 mg/kg) dis-
solved in 0.9% sodium chloride. Dose of 200 Q-PEGL and 50 Que mg/kg/day allows similar Que load between 
groups for the comparison according to our estimation. At each time point (5, 15, 30, 60, 120, 240, 720, and 
1,440 mins), three rats were sacrificed and their blood was collected from the abdominal aorta. The plasma was 
obtained by centrifugation (12,000 × g for 20 min). The kidney tissue was excised, weighed and homogenized. 
Glucosidase was added into the plasma samples and incubated for 2 hours at 37 °C. Plasma and homogenized 
kidney tissue were extracted with ethyl acetate, and the supernatant was collected and evaporated to dryness. The 
dry residue was dissolved in methanol for high-performance liquid chromatography9. The level of quercetin in 
plasma or kidney is expressed as nmol/mL.

Experimental design.  There were 5 groups of rats. The DN model preparation was described above. DN 
rats were randomly divided into 4 groups (n = 8 per group), and treated intragastrically with quercetin liposomes 
(200 mg/kg/day, Q-PEGL group), free quercetin (50 mg/kg/day, Que group), liposomes dissolved in 0.9% sodium 
chloride (150 mg/kg/day, PEGL group), and blank treatment (DN group). Eight non-diabetic rats received 
sodium chloride and served as a normal control (NC group). Treatment of Q-PEGL, Que or PEGL was started 
since day 3 after STZ injection, at 9:00 a.m.–10:00 a.m. each day, and lasted for 8 weeks.

Rat urine samples were collected weekly with a metabolic cage during drug treatment and were purified by 
centrifugation at 3000 g for 5 min to remove the impurities. At the end of the experiment, a 24-h urine sample was 
collected, and then a further 12 h fast, blood sample was taken from the abdominal aorta under an anesthesia of 
intraperitoneal administration of 50 mg/kg 1% chloral hydrate. The serum sample was centrifugation at 3 000 g 
for 5 minutes at 4 °C. The 24-h urine samples and serum were stored at −80 °C until analysis. Rats were sacrificed 
following the above steps. Both kidneys from each rat were removed and weighed. The right kidney was divided 
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into two parts and stored in 10% formaldehyde solution for periodic acid-Schif (PAS) staining and immunohis-
tochemical assays. The left kidneys were stored at −80 °C for biochemical evaluation.

Evaluation of BWs, FBG, rHI, and 24-h urinary protein.  Body weights and fasting blood glucose levels 
were recorded each week before and after STZ induction, including drug intervention period. FBG was meas-
ured by a blood glucose meter (LifeScan, CA, USA) in samples obtained from the tail vein. It was about 2 mins 
from blood collection to obtaining results. The renal hypertrophy index (mg/g) was calculated as follows: renal 
index = kidney weight (mg)/body weight (g). 24-h urine protein was determined on an AU2700 automatic bio-
chemical analyzer (Olympus, Japan).

Evaluation of serum BUN, Scr, TNF-α, IL-1β and AGEs levels.  Serum was centrifuged at 3600 g for 
10 minutes and the supernatant was then used to assess the renal function. The levels of BUN and Scr were 
determined on an AU2700 automatic biochemical analyzer (Olympus, Japan). The levels of TNF-α, IL-1β and 
AGEs were measured according to the manufacturer’s instructions of the immunoassay kit. The assay employs 
the ELISA techniques.

Evaluation of SOD, MDA and GSH-Px in kidney.  Approximately 100 mg of kidney tissue was homog-
enized in 5% phosphate‑buffered saline using a homogenizer. The kidney homogenate was then centrifuged at 
15000 g for 10 minutes at 4 °C and the clear supernatant was collected. The SOD value (U/mg) was measured 
by the xanthine oxidase activity assay kit; the MDA level (nmol/mg) was measured by the thiobarbituric acid 
method (MDA colorimetric assay kit); and the GSH-Px value (U/mg) was measured using a colorimetric assay 
kit according to the manufacturer’s instructions (Elabscience Biotechnology Co., China).

Histopathological staining.  A portion of the right kidney was trimmed into small pieces and stored in 
phosphate buffered 10% formaldehyde solution for 24 hours. After embedding these pieces in paraffin, a thin slice 
of 5 mm thickness was cut. Glomerular damage was assessed in PAS stained sections. Ten glomeruli randomly 
selected from each group were quantified in PAS stained sections using image analysis software (Image-Pro plus 
6.0) to assess the percentage of PAS-positive areas in the glomerulus, which was expressed as mesangial index.

Immunohistochemical measurement of AGEs.  The other part of right kidney tissues was fixed, dehy-
drated, paraffin embedded, and cut into paraffin slices (4 mm). Tissue sections were deparaffinized, rehydrated, 
washed in water and subjected to antigen retrieval (60 °C, 2 hours) in 0.1 M citrate buffer (pH 6.0). After blocking, 
the selected sections were incubated with AGEs (1:100) for 1 hour. After washing with PBS, the sections were 
incubated with goat anti-rabbit IgG (1:100) for 20 minutes. Finally, the nuclei were stained with DAB, washed 
with PBS and mounted in a fluoromount solution. Incubation with immunoglobulin of the same species at the 
same concentration with no primary antibody was used as a negative control. Five fields of view were digitized 
using a 400× magnifying objective. The sum of IOD of all fields was collected and analyzed by Image-Pro Plus 
6.0.

Statistical analysis.  Data were analyzed by the statistical software IBM SPSS version 23 (Chicago, IL, US). 
Values are presented as the means ± standard deviation. For comparisons in multiple groups, one-way analysis 
of variance (ANOVA) was used and post hoc analysis was done using Bonferroni test. P < 0.05 was considered as 
statistically significant for a two-tailed test.
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