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Foods and drinks have been adulterated with illicit drugs to facilitate criminal activities.

Unfortunately, conventional analytical methods are incapable of rapidly characterizing

these drugs in samples, as serious interferences from sample matrices must be removed

through tedious and time-consuming pretreatment. Ambient ionization mass spectrom-

etry (AMS) generally does not require sample pretreatment and is thus a suitable tool for

directly and rapidly detecting illicit drugs in samples in different physical states. In this

study, thermal desorption electrospray ionization mass spectrometry (TD-ESI/MS), an AMS

technique, was utilized to efficiently characterize illicit drugs spiked in samples including

drinks, powders, and jelly candies. To perform sensitive analysis, the mass analyzer was

operated in multiple reaction monitoring mode to monitor the molecular and fragment

ions of the target analytes. The time required to complete a typical TD-ESI/MS analysis was

less than 30 s. The limits of detection (LODs) for illicit drugs were found to be 100 ppb in

drinks, 100e1000 ppb in instant powders, and 1.3e6.5 ng/mm2 on stamp surfaces. FM2 and

nitrazepam laced in the inner layer of a jelly candy were detected by TD-ESI/MS, show-

casing the advantage of the technique for direct and rapid analysis as opposed to con-

ventional methods.
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1. Introduction

Analyzing illicit drugs is an important aspect of criminal

investigation. For instance, illegal drugs such as ketamine, 3,4-

methylenedioxymethamphetamine (MDMA), mephedrone,

FM2, and nitrazepam have been spiked in candies, drinks,

foods, instant coffees, milk teas, herbal tea packs, and gummy

bears, which have been previously found at crime scenes.

These illegal drugs are commonly detected using chemical

color tests [1], Fourier transform infrared spectroscopy [2,3], or

portable Raman spectroscopy [3e5], as well as techniques like

gas chromatography mass spectrometry (GC/MS) [6e8] and

liquid chromatography mass spectrometry (LC/MS) [7e9].

These techniques have been indispensable in forensic labora-

tories for their chemical identification capabilities but unfor-

tunately require laborious and time-consuming sample

pretreatment to remove interfering matrices from complex

samples before these drugs can be characterized. Additionally,

the presence of proteins, peptides, lipids, sugars, dyes and fi-

bers in the sample matrices can interfere with the results of

conventional color tests and spectroscopic examinations.

Alternatively, ambient mass spectrometry (AMS) benefits

from easy sample introduction, fast analyte desorption, and

ionization and sensitive detection of chemical compounds

[10e13]. The analytes on solids and in liquids can be rapidly

characterized using AMS, which in contrast to conventional

techniques requires only minimal or no sample preparation.

For these reasons, several AMS techniques have been applied

in forensic laboratories to conduct direct and sensitive anal-

ysis. For example, electrospray laser desorption ionization

(ELDI), desorption electrospray ionization (DESI), and easy

ambient sonic spray ionization (EASI) have been used to

characterize trace ink molecules on questioned documents

and distinguish authentic and counterfeit banknotes based on

their surface chemical compositions [14e19]. Trace explosives

such as 1,3,5-triazine, triperoxide, and trinitrotoluene on

various surfaces have been detected by DESI, direct analysis in

real time (DART), and flame-induced atmospheric pressure

chemical ionization (FAPCI) [20e22]. ELDI, DESI, DART, and

desorption FAPCI have been used to characterize the active

ingredients in drug tablets, powders, and ointments without

sample preparation [23e26]. Moreover, DART and DESI have

been used to characterize drugs and metabolites in biofluids

such as dried whole blood and serum [27e29]. Drinks laced

with illegal drugs such as flunitrazepam, gamma-

hydroxybutyric acid (g-GHB), ketamine, and methylone are

often encountered in real criminal cases; they can be rapidly

characterized by using DART, DESI, and proton transfer re-

action mass spectrometry (PTR-MS) that do not require

tedious sample pretreatment [30e33].

Although the molecular ion signals for illicit drugs in

samples can be detected using AMS techniques, high-

throughput analysis is generally impractical. Samples are

placed near the ionization source for AMS analysis, restrict-

ing the size, shape, and portability of the sample d analysis

of samples that are oversized, irregularly shaped, or

immovable is thus non-ideal. To overcome this problem, it is

necessary to use an AMS technique that combines easy

sampling and high-throughput analysis to detect trace illicit
drugs in samples that have different physical states and

properties.

Thermal desorption electrospray ionization mass spec-

trometry (TD-ESI/MS) is an AMS technique previously devel-

oped for high throughput analysis [34]. Trace chemical

compounds on solid or in liquid samples are conveniently

collected on a sampling probe that is then inserted into a

heated oven to thermally desorb analytes on the probe. The

analytes are then delivered by a nitrogen flow into an ESI

plume for ionization. Since a sampling probe can conveniently

collect trace amounts of analytes regardless of sample's state,

TD-ESI/MS has been applied to characterize explosives, resid-

ual pesticides, and plasticizers on various sample surfaces and

in different solutions [34e38]. The relative standard deviations

(RSDs) were between 7.5 and 15.6% for phthalate standard

solutions and between 2.77 and 6.81% for pesticides in oral

fluid. The probe material can be tailored to the physical and

chemical properties of the analyte to improve the efficiency of

analyte sampling and thermal desorption; for example, ma-

terials such as solid phase microextraction (SPME) fibers have

been combined with TD-ESI/MS to sample and quantify trace

drugs in plasma for pharmacokinetic studies [39].

In this study, to implement a high-throughput and conve-

nient AMS technique for forensic assays, probe sampling

combinedwith TD-ESI/MSwas used to expedite the analysis of

illicit drugs regardless of sample shape, size, and physical

state. Since sample matrices were either nonvolatile or ther-

mally unstable compounds, they decomposed or were not

desorbed in the TD-ESI source; therefore, interferences from

these compounds during TD-ESI/MS analysis was minimized,

making it possible to directly detect volatile drugs without

sample pretreatment. We characterized illicit drugs laced in

drinks, coffee powders, jelly candies, and on stamps, facili-

tating easy and fast sample collection usingmodified probes to

collect analytes from solid surfaces, inside soft solid, or in

solutions.
2. Materials and methods

2.1. Chemicals and solvents

Chloroform (CHCl3) and ethyl acetate (EA) were purchased from

Macron Fine Chemicals (Center Valley, PA, U.S.A.). Formic acid

andmethanolwereobtained fromSigmaeAldrich (St. Louis,MO,

U.S.A.) and Merck (Darmstadt, Germany), respectively. Ethanol

and acetic acid were purchased from J.T. Baker (Phillipsburg, NJ,

U.S.A.). Distilled deionized water was produced by a PURELAB

purifier (ELGA, Marlow, U.K.). Standards for illegal drugs

including 5-MeO-AMT, amphetamine (AM), methamphetamine

(MA), mephedrone, para-methoxymethamphetamine (PMMA),

3,4-methylenedioxymethamphetamine (MDMA), methylone, 2-

(4-chloro-2,5-dimethoxyphenyl)ethan-1-amine (2C-C), keta-

mine, nitrazepam, flunitrazepam (FM2), and lysergic acid

diethylamide (LSD) were purchased from Cerilliant Corporation

(Round Rock, TX, U.S.A.). Stock solutions of illicit drugs were

prepared in MeOH. Drinks and powders for whole fat milk (Uni-

President Enterprises Corporation), grape juice (Uni-President

Enterprises Corporation), fruit and vegetable juice (Chou-Chin

Industrial Co.), sugar-free green tea bags (Vitalon Foods

https://doi.org/10.1016/j.jfda.2018.12.005
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Company), 3-in-1 instant coffee packs (Nestl�e Company),

matcha tea packs (Starbucks), and gelatin powder (Tehmag

Foods Corporation) were obtained from local supermarkets.

Postage stamps were purchased from Chunghwa Post Co.,

Taiwan.

2.2. Preparation of illicit drug-laced samples

Individual standard solution for each illicit drug was prepared

at a concentration of 1000 ppm. To simulate drinks laced with

illicit drugs, drug standards for MA, mephedrone, MDMA,

methylone, 2C-C, nitrazepam, and FM2 were spiked into

whole fat milk, fruit and vegetable juice, and sugar-free green

tea, respectively. The drug-laced solutions were further

diluted to produce sample solutions at different concentra-

tions ranging from 1 ppb to 100 ppm. An aliquot of the solution

containing amphetamine, PMMA, ketamine, and LSD was

spiked in both the 3-in-1 instant coffee and matcha powders

so that the concentration of each drug standard in the powder

was between 100 ppb and 100 ppm. The solid powders were

then ground and stirred to well mix the drugs in the powders.

Standard solutions of 5-MeO-AMT, ketamine, MDMA, and LSD

at concentrations from 25 ppb to 100 ppm (40 mL) were indi-

vidually spiked onto the back of the stamp (32 mm � 24 mm,

W � L) so that the concentration of each illicit drug on the

stamp surface was between 1.3 pg/mm2 and 5.2 ng/mm2.

The drug-laced gummy bear was produced as follows: 8 g

gelatin powder and 40 g grape juice were mixed in a glass cup

and heated at 80 �C for 15 min to dissolve the gelatin. The

temperature of the gelatin solution was then decreased to

35 �C in a water bath. The gelatin solution (1.5 mL) was mixed

with a 100 mL drug standard solution (100 ppm of FM2 and

nitrazepam); the mixture was then poured in a bear-shaped

silicone mold and placed in a refrigerator at 4 �C for 30 min.

For the outer drug-free gelatin layer, 8 g gelatin powder and

40 g tea solution were mixed and heated at 80 �C for 15 min,

after which the temperature of gelatin solution was cooled to

35 �C in a water bath; the solution was then deposited on a

star-shaped silicone mold and the drug-laced gummy bear

was put inside the mold and stored in a refrigerator at 4 �C for

30 min.

2.3. Solvent extraction of drug-laced samples

To extract illicit drugs in the liquid samples, an aliquot of the

sample solution (200 mL) was mixed in 100 mL chloroform:

ethyl acetate: ethanol (3:1:1, v/v/v) solvent containing 1%

NaOH (aq) and then vortexed for 15 s, after which the sus-

pension was collected for TD-ESI/MS analysis. The illicit

drugs mixed with the 3-in-1 instant coffee or matcha powder

(10 mg) were extracted in 200 mL chloroform: ethyl acetate:

ethanol (3:1:1, v/v/v) solvent; after vortexing, the suspension

was collected for TD-ESI/MS analysis. As for the extraction of

illicit drugs from solid samples, the stamp was cut into

quarters, where one of which was suspended in 200 mL

chloroform: ethyl acetate: ethanol (3:1:1, v/v) solvent con-

taining 1% NaOH (aq). Fast solvent extraction was completed

within 30 s. The extracts were analyzed as liquid samples,

where 2 mL of each extract was sampled onto the inoculating

loop for TD-ESI/MS analysis.
2.4. Thermal desorption electrospray ionization mass
spectrometry (TD-ESI/MS)

The samples laced with illicit drugs were (i) directly charac-

terized by TD-ESI/MS or (ii) extracted in a solvent before TD-

ESI/MS analysis. The TD-ESI/MS setup, which has been

described in previous publications [34e36], consisted of a

metal probe, heated oven, and ESI source. To directly collect

illicit drugs on solid sample surfaces for analysis, a stainless

steel inoculating loop was swept across the stamp surface

(200 mm2). Conversely, we used an acupuncture needle

(0.27 mm in diameter, Ching Ming, Taiwan) to collect small

amounts of liquid, gelatin, and powder samples. To collect

analytes from liquid samples, the needle was simply dipped

into each sample to a depth of 2 mm and then removed. For

the double-layered jelly candy, the acupuncture needle was

inserted into the sample to a depth of 5 mm and 12 mm to

sample analytes from the outer and inner layers, respectively.

Since it was difficult to collect the fine particles in powder

samples with an acupuncture needle, the needle was first

dipped into water and then inserted into the powder sample;

wetting the surface of the needle enabled the adsorption of a

small amount of the sample powder. In addition to direct

sampling, analytes were collected from each sample via sol-

vent extraction; an aliquot of the extract (2 mL) was deposited

on the stainless steel inoculating loop with a pipette prior to

TD-ESI/MS analysis. The metal probe was then inserted into

the heated oven (300 �C) to desorb and vaporize analytes. A

stream of preheated nitrogen gas (2 L/min) was used to carry

gaseous analytes into the ESI plume for post-ionization. The

flow rate of the ESI solution (40% MeOH with 1% formic acid)

was set at 160 mL/h and the pressure of the nebulizing nitrogen

gas was set at 4 psi. The TD-ESI unit was coupled to an Ultivo

triple quadrupole mass spectrometer (Agilent, Santa Clara,

CA, U.S.A.); the voltage of the MS capillary was set at þ4.5 kV,

the drying gas temperature was 280 �C, and the scan rate of

the triple quadrupole mass analyzer was 500 ms/scan. The

mass analyzer was operated in multiple reaction monitoring

mode (MRM) to study the limits of detection (LODs, S/NS 3) of

the illicit drugs in the samples. Table 1 shows the fragmentor

and CE voltages of the parent/fragment ion pairs used in this

study.
3. Results and discussion

TD-ESI/MS combined with probe sampling was utilized to

directly characterize illicit drugs in samples with different

physical states. A stainless steel inoculating loop and

acupuncture needle were utilized to collect samples.

3.1. Analysis of illicit drugs in drinks

In many cases of drug-facilitated sexual assault, illicit drugs

such as FM2 and nitrazepam d also known as date rape

drugs d are adulterated into the drinks to be administered to

victims. Since the matrix compounds in drinks are usually

complicated, tedious sample preparation is necessary to

remove the matrix interference before traditional GC/MS and

LC/MS analysis. However, most of the matrix compounds are

https://doi.org/10.1016/j.jfda.2018.12.005
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nonvolatile or thermally unstable, they are either undesorbed

or decomposed during thermal desorption. This minimizes

the interferences from the drink matrices during TD-ESI/MS

analysis and direct characterization of volatile illegal drugs

in drinks without sample pretreatment become possible. The

TD-ESI mass spectra for whole fat milk, fruit and vegetable

juice, and sugar-free green tea were first recorded. Even

though the chemical composition of the fruit and vegetable

juice was complicated, its TD-ESI mass spectrum (Fig. 1a) was

dominated by ions derived from the decomposition products

of sugars; such ions included dehydrated disaccharides (m/z

289 and 325) and dehydrated monosaccharides (m/z 127, 145,

and 163). For whole fat milk, its TD-ESI mass spectrum was

dominated by ions derived from creatinine (m/z 114), dehy-

drated monosaccharides, dehydrated cholesterol (m/z 369),

and diglycerides (m/z 355, 383, 411, and 439) (Fig. 1b). Protein

molecules could not be desorbed or totally decomposed by

thermally heating, their molecular ion signals were not

detected on the TD-ESI mass spectrum. For sugar-free green

tea, its TD-ESI mass spectrum was dominated by the caffeine

ion (m/z 195) (Fig. 1c).

Fig. 1def shows the TD-ESI mass spectra for the drug-laced

drinks, wherein the concentration of each illicit drug was

100 ppm. Ion signals for the protonated illicit drugs [MþH]þ

including those for MA (m/z 150), mephedrone (m/z 178),

MDMA (m/z 194), methylone (m/z 208), 2C-C (m/z 216), nitra-

zepam (m/z 282), and FM2 (m/z 314) were all detected in the

three drinks without sample pretreatment. In addition, the

fragment ions of MDMA (m/z 163) and mephedrone or meth-

ylone (m/z 160) were also detected on the mass spectra. The

illicit drug ions were further characterized by MS/MS analysis

for identification. The mass analyzer was operated in MRM

mode to (i) monitor the parent/fragment ion pairs listed in

Table 1, and (ii) to study the LODs of illicit drugs in the drinks.

The S/N ratio of each analyte was determined based on the

peak of firstMRM transition shown in Table 1. The S/N ratios of

some illicit drugswere higher than 10 due to their secondMRM

transitions were interfered by sample matrix (Table 2). The

LODs of the illicit drugs were determined to be 100 ppb. Since

much higher concentrations of these laced drugs are found in

samples from real criminal cases, the LODsof usingTD-ESI/MS

to detect these illicit drugs are adequately low to enable rapid
Table 1 e The fragmentor and CE voltages of parent/fragment
analysis.

Compound Precursor ion (m/z) Pro

5-MeO-AMT 205.1

Amphetamine 136.1

Methamphetamine 150.1

Mephedrone 178.1

PMMA 180.1

MDMA 194.1

Methylone 208.1

2C-C 216.1

Ketamine 238.1

Nitrazepam 282.1

FM2 314.1

LSD 324.2

a The product ion fragmented at its respective collision energy (CE).
identification. The repeatability of using TD-ESI/MS to analyze

illicit drugs in drinks was studied by detecting drug-laced fruit

and vegetable juice (1 ppm, each). The relative standard de-

viation (RSD, n¼ 5)was calculated to be 19.5% forMA, 16.7% for

mephedrone, 16.4% for MDMA, 16.5% formethylone, 22.8% for

2C-C, 23.1% for nitrazepam, and 12.1% for FM2.

3.2. Analysis of illicit drugs in instant powders

In addition to liquid samples, TD-ESI/MS was also utilized to

analyze powder samples. An acupuncture needle was used to

collect small amount of the particles from powder samples.

The needle surface was wetted by dipped it into water first, it

was then inserted into the powders for sampling. Fig. 2 shows

the TD-ESI mass spectra for the 3-in-1 instant coffee and

matcha tea powders lacedwithAM, PMMA, ketamine, and LSD,

where the concentration of each drug was 100 ppm. The 3-in-1

coffee and matcha tea powders contained abundant caffeine,

so that the ion signal of protonated caffeine (m/z 195) was the

dominant peak on theirmass spectra. The 3-in-1 instant coffee

powder also contained creamer powder, we therefore detected

several ion peaks related to diglycerides (m/z 355, 383, 411, and

439). In addition, protonated AM (m/z 136), PMMA (m/z 180),

ketamine (m/z 238), and LSD (m/z 324) ions were detected in

both powder samples. The LODs for AM, PMMA, ketamine, and

LSDwere between 500 and 1000 ppb in the 3-in-1 instant coffee

powder and 100e500 ppb in the instant matcha powder (Table

3). The LODs for these illicit drugs were higher in the instant

powders than those in its respective drinks indicating more

serious matrix effects from the powder samples. Even so, TD-

ESI/MS is still suitable for real sample analysis because previ-

ous forensic cases have found that the contents of illicit drugs

laced in instant powders usually range from 1 to 6% (w/w),

which is a high enough analyte concentration for TD-ESI/MS.

The RSDs (n ¼ 3) for the detection of drugs (1 ppm, each) in

the matcha powder were between 15.1 and 38.3% (25.1% for

ketamine, 15.1% for AM, 18.7% for PMMA, and 38.3% for LSD).

3.3. Analysis of illicit drugs on a stamp

Analyzing paper soaked in drug solutions is an important task

in forensic science because illicit drugs such as LSD have been
ion pairs for multiple reaction monitoring (MRM) mode

duct ion (m/z) Fragmentor (V) CE (V)

188.1a, 147.0 96 2a, 14

91.0a, 119.0 80 10a, 2

91.0a, 119.1 96 14a, 2

160.2a, 145.1 96 2a, 14

149.1a, 121.1 96 2a, 14

163.1a, 105.0 96 2a, 18

160.1a, 190.1 96 10a, 2

199.1a, 184 96 2a, 14

125.0a, 207.1 112 22a, 6

236.1a, 180.1 144 18a, 38

268.2a, 239.1 160 22a, 30

223.1a, 208.1 144 18a, 26
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Table 2 e The LODs of TD-ESI/MS for illicit drugs in three drinks analyzed with and without solvent extraction.

Compound Sugar-free green tea Whole fat milk Fruit and vegetable juice

Direct analysis Solvent
extraction before

analysis

Direct analysis Solvent
extraction before

analysis

Direct analysis Solvent
extraction before

analysis

LOD
(ppb)

S/N
ratio*

LOD
(ppb)

S/N
ratio*

LOD
(ppb)

S/N
ratio*

LOD
(ppb)

S/N
ratio*

LOD
(ppb)

S/N
ratio*

LOD
(ppb)

S/N
ratio*

FM2 100 5.0 5 7.0 100 34.1 1 3.2 100 6.3 1 3.0

Nitrazepam 100 12.6 5 3.2 100 6.7 1 6.3 100 3.7 1 7.5

MDMA 100 21.9 1 3.3 100 18.9 5 13.6 100 21.5 10 13.6

Mephedrone 100 7.7 1 4.2 100 24.5 1 8.9 100 11.1 10 8.6

Methamphetamine 100 7.2 1 5.9 100 15.6 5 3.0 100 6.6 10 5.5

Methylone 100 13.9 1 4.7 100 56.6 1 9.7 100 23.0 10 3.5

2C-C 100 10.8 5 4.9 100 6.5 5 4.0 100 4.8 10 9.4

* The S/N ratio of each analyte was determined based on the peak of first MRM transition shown in Table 1.

Fig. 2 e TD-ESI mass spectra for (a) 3-in-1 instant coffee powder and (b) instant matcha powder laced with amphetamine,

PMMA, ketamine, and LSD (each at 100 ppm).

Table 3 e The LODs of TD-ESI/MS for illicit drugs in two instant powders analyzed with and without solvent extraction.

Compound 3-in-1 instant coffee powder Instant matcha powder

Direct analysis Solvent extraction
before analysis

Direct analysis Solvent extraction
before analysis

LOD (ppb) S/N ratio* LOD (ppb) S/N ratio* LOD (ppb) S/N ratio* LOD (ppb) S/N ratio*

Ketamine 1000 5.2 100 4.7 500 26.3 100 6.4

Amphetamine 1000 6.8 500 6.5 100 4.9 100 7.7

PMMA 1000 3.1 500 6.6 500 18.2 100 3.7

LSD 500 8.0 100 13.3 500 26.2 50 5.1

* The S/N ratio of each analyte was determined based on the peak of first MRM transition shown in Table 1.
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Fig. 3 e TD-ESI mass spectrum for a stamp with ketamine, MDMA, 5-MeO-AMT, and LSD applied on the backside of stamp

surface (each 5.2 ng/mm2).

Table 4 e The LODs of TD-ESI/MS for illicit drugs on a
stamp characterizedwith andwithout solvent extraction.

Compound Direct analysis Solvent extraction
before analysis

LOD (ppb) S/N ratio* LOD (ppb) S/N ratio*

Ketamine 6.5 pg/mm2 3.2 1.3 pg/mm2 4.8

MDMA 1.3 pg/mm2 5.0 1.3 pg/mm2 3.3

5-MeO-AMT 1.3 pg/mm2 6.9 6.5 pg/mm2 10.0

LSD 1.3 pg/mm2 9.9 1.3 pg/mm2 12.6

* The S/N ratio of each analytewas determined based on the peak of

first MRM transition shown in Table 1.

Fig. 4 e TD-ESI mass spectra for a jelly candy. To collect the sam

star-shaped layer and (b) pierced through the outer layer to ins
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deposited on blotting paper to avoid suspicion and facilitate

transportation; the blotting paper can then be placed under

the tongue to orally administer the drug. In this study, solu-

tions of MDMA, ketamine, 5-MeO-AMT, and LSD were depos-

ited on the backside of a stamp to simulate a “blotter” form

sample. The concentration of each illicit drug deposited on the

stamp paper was between 1.3 pg/mm2 and 5.2 ng/mm2. To

collect drug molecules for detection, an inoculating loop was

swept across the back of the stamp over an area of approxi-

mately 200 mm2 (see inset in Fig. 3). Fig. 3 shows the TD-ESI

mass spectrum for the stamp with drugs deposited on its

back surface. The protonated ions [MþH]þ of illicit drugs
ple, an acupuncture needle was (a) inserted into the outer

ert into the inner gummy bear.

https://doi.org/10.1016/j.jfda.2018.12.005
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including MDMA (m/z 194), ketamine (m/z 238), 5-MeO-AMT

(m/z 205), and LSD (m/z 324) were all detected. In addition,

phthalate-related ions (m/z 149 and 279) and the fragment

ions of MDMA (m/z 105 and 163) and 5-MeO-AMT (m/z 188)

were also detected (Fig. 3). When the mass analyzer was

operated in MRM mode, the LODs of these illicit drugs detec-

ted on stamp backside surface by TD-ESI/MS/MS LODs was

1.3 pg/mm2 for MDMA, LSD, and 5-MeO-AMT, and 6.5 pg/mm2

for ketamine (Table 4). Since a much higher concentration of

the illicit drugs would be encountered in real cases, TD-ESI/

MS/MS is a useful tool to examine the suspected blotting

paper samples.

3.4. Analysis of illicit drugs in jelly candies

Gummy bears, which are made of gelatin, have been laced

with MDMA to avoid suspicion and facilitate oral admin-

istration. The drug laced jelly candies were covered with

normal gelatin to avoid suspicion and examination.

Therefore, we made a double-layered jelly candy with a

light brown star-shaped layer enveloping a purple gummy

bear (see the inset in Fig. 4). The inner gummy bear was

made by mixing of gelatin powder, grape juice, and illicit

drugs (FM2 and nitrazepam) together, whereas the outer

star shape was made by mixing gelatin powder and green

tea solution without drugs. Only caffeine (m/z 195) and

dehydrated monosaccharide ions (m/z 127 and 145) were

detected in the outer layer of the candy (Fig. 4a). On the

other hand, illicit drugs including FM2 (m/z 314) and

nitrazepam (m/z 282), sugar-related ions (m/z 127, 145, and

163), and caffeine (m/z 195) were detected as the sampling

needle pierced through the outer layer and insert into the

gummy bear (Fig. 4b).

The LODs for the detection of aforementioned drugs with

TD-ESI/MS/MS were determined by examining candies laced

with different concentrations of illicit drugs, which were

found to be 5 ppm for FM2 and 1 ppm for nitrazepam. The

double-layered jelly candies were also bifurcated with a knife

to expose the drug-laced inner layer so that a sampling needle

was directly inserted into the inner layer to collect analytes.

Under these conditions, FM2 and nitrazepam both had a LOD

of 1 ppm.

3.5. Solvent extraction prior TD-ESI/MS analysis

Tables 2e4 show the results of fast solvent extraction followed

by TD-ESI/MS analysis. The LODs for the illicit drugs extracted

from the drinks were between 1 and 10 ppb, which were lower

than those obtained by direct analysis of the liquid samples

(Table 2). The LODs for the illicit drugs extracted from the

powders were between 50 and 500 ppb (Table 3), which were

similar to those obtained by direct analysis of the powder

samples. Similarly, the LODs for the illicit drugs extracted

from the solid stampwere between 1.3 and 6.5 pg/mm2 (Table

4), which were similar to those obtained by direct analysis of

the solid sample. These results demonstrate that direct TD-

ESI/MS sample analysis is faster than solvent extraction fol-

lowed by TD-ESI/MS analysis while yielding a similar

sensitivity.
4. Conclusion

Thermal desorption electrospray ionization mass spectrom-

etry (TD-ESI/MS) combined with probe sampling was utilized

to rapidly characterize illicit drugs in suspicious samples

including drinks, instant 3-in-1 coffee powders, jelly candies,

and stamps. Rapid and direct analysis of drug-laced samples

was done without pretreatment while requiring very small

sample amounts. The results of TD-ESI/MS analysis indicate

LODs for illicit drugs at 100 ppb for drinks, 100e1000 ppb for

instant powders, 1e5 ppm for jelly candies, and 1.3e6.5 ng/

mm2 for stamps. The LODs of this approach are low enough to

enable the sensitive analysis of real samples that are adul-

terated with illegal drugs at a concentration above 1% (w/w).

Since the entire analytical process took less than 30 s, probe

sampling combined with TD-ESI/MS is a promising approach

for the rapid and high-throughput screening of illegal drugs in

suspicious samples. TD-ESI/MS can also be combined with

solvent extraction to improve the LODs of illicit drugs in more

complex sample matrices like biological fluids. Furthermore,

the use of isotopically labeled internal standard will improve

the precision of TD-ESI/MS for drug quantification, allowing

this technique more reliable for legal judgment.
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