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Abstract Recently emerged viral infectious diseases (VIDs) include HIV/AIDS, influenzas
H5N1 and 2009 H1N1, SARS, and Ebola hemorrhagic fevers. Earlier research determined
metabolic oxidative stress in hosts deficient in antioxidant selenium (Se) (<1 μMol Se/L of
blood) induces both impaired human host immunocompetence and rapidly mutated benign
variants of RNA viruses to virulence. These viral mutations are consistent, rather than
stochastic, and long-lived. When Se-deficient virus-infected hosts were supplemented with
dietary Se, viral mutation rates diminished and immunocompetence improved. Herein is
described the role of micronutrient Se deficiency on the evolution of some contemporary
RNA viruses and their subsequent VIDs. Distinguishing cellular and biomolecular evidence
for several VIDs suggests that environmental conditions conducive to chronic dietary Se
deprivation could be monitored for bioindicators of incipient viral virulence and subsequent
pathogenesis.

Keywords Antioxidant . Ebola . HIV. Influenza . Reactive oxygen species (ROS) . SARS .
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Introduction

Viral infectious diseases (VIDs), primarily influenzas and human immunodeficiency virus/
acquired immunodeficiency syndrome (HIV/AIDS), take personal, social, and economic
tolls—HIV/AIDS ranks among the five global causes of death now and for the foreseeable
future [1]. Influenza, in the United States alone, claims an estimated 36,000 people from
annual epidemics and associated respiratory complications [2]; during pandemics, when the
population has developed little immunity against novel influenza viruses, this figure can
increase. Though socioeconomic/ecological factors contribute to the emergence and spread
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of various infectious diseases [1–3], a host’s nutritional status was found to influence the
etiology of specifically VIDs. This review describes the role of chronic micronutrient
selenium (Se) deficiency on the evolution of some contemporary RNA viruses and their
subsequent VIDs [4].

Significance of host Se status is based on the antioxidant properties of amino acid
(aa) selenocysteine, the catalytic center of selenoenzymes. The glutathione peroxidase
(GPx) family regulates biologic oxidative homeostasis by neutralizing metabolically
produced “reactive oxygen species” (ROS: H2O2

−, O2
−, OH∙). Left unchecked,

hyperoxidation disrupts biomolecules, cellular lipid membranes, organ tissues, metabolic
pathways, and genetic mechanisms. Location and function of each tissue type of GPx is
specific and not transferable [5]; intracellular glutathione peroxidase-1 (GPx1) resides in
most body cells including red blood cells and, as measured in the blood, is a bioindicator
of subject Se status.In the Se-adequate host, GPx1 is quiescent and non-essential [5] until
chemically attracted to infection-induced ROS [6], for example, inhaled influenza A virus
prompts pulmonary cellular production of ROS to attack the virus and to signal initiation
of host cellular/biomolecular immune responses to destroy and clear the virus from the
body:

Influenza virus-laden sneeze → Healthy, Se-adequate host inhales influenza virus →
Virus infects lung epithelium → Induces ROS (inflammation) → Chemoattracts GPx1
→ Stimulates host proinflammatory chemokines → Induces dendritic cell activity,
including polypeptide C1q [7] → Primes viral antigen-specific T cells → ↑ anti-
inflammatory interferon-gamma (IFN-γ) and antibody immunoglobulin G (IgG)
neutralization of viral antigen → inhibits virus replication and clears virus from host.

Persistence of parasitic viruses requires infecting host cells, pirating host resources,
outmaneuvering host immune components and replicating. The generic RNA virus,
equipped with a limited genome (3,000–30,000 nucleotides (nt)), codes for antigenic
envelope glycoproteins, interior structural and non-structural proteins, and polymerases
used for virion replication. Random point mutations, averaging 1–8×10−3 nt substitutions
per site per year [8, 9], and gene segment re-assortments alter viral modes of operation and,
if successful for the virus, effectively outpace human immune system adaptations against
the viruses. In the case of influenza A virus, 16 viable hemagglutinin (HA) and seven
neuraminidase (NA) glycoproteins have contributed to novel, pandemic influenza A virus
types H1N1, H2N2, H3N2, H5N1 [10]. As viral antigenic composition veers from host
antibody recognition, the immune system is pressed to combat the particular viral invasion.
Thus, commercial vaccines are routinely developed to anticipate and neutralize the various
viral antigenic presentations, before pathogenesis.

During Se-deficient host conditions, transcription of GPx1 falls disproportionately to
10% Se-replete levels [11], and the limited nutrient is shunted elsewhere to meet other
physiologic functions in Se-requiring tissues [12]. Discrepancy between concurrent
heightened immune system requirements for GPx1 during viral infection and its diminished
production help define the role of Se in the etiology of VIDs [13]. Initially, host
vulnerability to ROS expresses increased bronchial epithelial cell mucus production [14]
and lung pathology [15]; T cell proliferation is suppressed and immunocompetence
impaired, including poor antibody response [13]. In addition, oxidative stress induces rapid
mutation rates in some RNA virus types—often to virulence; under laboratory conditions,
these mutations are not stochastic but consistent and quantifiable, and they are immediate,
specific, and orders of magnitude faster than for the RNA virus genome under healthy host
conditions [16]. Traceability and longevity of these mutations indicates optimal
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biomolecular reconfiguration for stability and is a basis for viral virulence and
pathogenesis.

While researching Keshan disease (KD), a myocarditis endemic to China [17], Beck et
al.[18] discovered that women and children infected with Coxsackievirus B3 (CVB3)
exhibited this lesioned heart condition when deficient in Se. KD occurs in geologic locales
poor in soil Se available to dietary crops, including grains [19], on which inhabitants in
rural, isolated regions subsist. Further epidemiology found that benign forms of both CVB3
and influenza virus type A rapidly mutate to virulence in hosts with Se-deficient status [20,
21]. Broome et al. [22] determined that a threshold of 1 μMol Se/L of host blood deterred
rapid mutation of a live, attenuated poliomyelitis virus used as vaccine. Though dietary Se
supplementation increased host blood Se levels, decreased viral mutation rates for each of
these viruses and improved host immune responses including viral clearance from the hosts,
mutated virulent RNA virions remained pathogenic and infectious, even to individuals with
Se-replete status [20–22].

Method

To scope whether the findings of Beck and of Broome [20–22] apply to other VIDs, a
world map depicting regions of “low soil-Se” (<0.01 mg/kg) [23] was superimposed with
geographic origins of diseases [24] (Fig. 1). Pandemic influenzas type A (H2N2 “Asian,”
H3N2 “Hong Kong,” and H5N1 “Avian” influenzas) and severe acute respiratory syndrome
(SARS) originated in biogeochemically “Se-poor” regions of China; HIV/AIDS and Ebola
hemorrhagic fevers (Ebola “Zaire”, Ebola “Uganda”) originated in nutrient-depleted

CVB3
H2N2 flu
H3N2  
H5N1 
SARS

HIV
Ebola Z

Ebola U

Fig. 1 Etiological origins of viral infectious diseases correlate with geologic regions of poor Se
bioavailability from soils (<0.01 mg/kg, yellow) [23] to food crops. Some countries (U.S.A. and Scandinavia)
fertilize with selenium for plant uptake. (Pink patches (China) indicate incidence of Keshan disease; gray
ovals depict nutrient iodine deficiency, which seems not to influence the etiology of viral infectious diseases;
and brown patches indicate high arsenic concentrations)
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regions of sub-Saharan Africa (SSA). A literature review of worldwide human blood Se
assays indicates sparse data from Se-poor regions of China and SSA, which can fall
substantially <1 μMol Se/L (Fig. 2); reported diets there provide as low as 10–17 mcg of Se
per day [25, 26], compared to the US recommended daily intake of 55 mcg of Se per day.

To substantiate the above observations, the literature was searched for geographic,
ecologic, dietary, cellular, and biomolecular characteristics associated with RNA viruses
and VIDs. This review does not consider the protective effects of antioxidant nutrients other
than Se, nor any confounding Se antagonists, including toxic concentrations of nutrient
iron, methyl-mercury, or other heavy metals, on the etiology of VIDs. Further, this review
does not consider the effects of host Se-deficient status on the infectious oncological
behavior of tumorigenic viruses such as the human variant of mouse mammary tumor virus
or hepatitis virus on hepatoma.

Results

Influenza A Virus

The eight-gene influenza genome encodes 12 known endogenous proteins, including HA/
NA surface glycoproteins, three ribonucleic acid (vRNA) polymerase subunits (vRNP: PA,
PB1, PB2), non-structural protein (NS1), and matrix proteins M1 and M2. During benign
influenza A virus status, the abundant highly conserved matrix M1 protein (M1) transports
recently replicated vRNP components from the host cell nucleus to membrane [27, 28];
nonetheless, transport of the viral M1–vRNP assemblage is hindered by host polypeptide
C1q [29], housed in infection-responder dendritic cells (DCs). Under healthy host
conditions, multifunctional C1q also induces antigen-specific T cell regulation of antibody
IgG and cytokine IFN-γ impedance of viral replication [7].

When, however, Nelson et al. [21] infected both Se-adequate and Se-deficient mice with
a mild influenza H3N2 virus strain, the influenza A virus matrix M1 gene (M1), not the
expected HA or NA glycoprotein genes, mutated rapidly, resulting in a virulent H3N2
variant in the Se-deficient mice; that is, 29 nucleotide (nt) substitutions, within interior nt
numbers 309–740 of the M1 segment, code for seven specific aa changes in the newly
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Fig. 2 Human blood Se values
<1 μMol Se/L [25, 26, 72–78]
provide insufficient antioxidant
protection for host immunocom-
petence against mutating RNA
viruses
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mutated M1. In this research, Se-deficient-induced ROS is the sole variable resulting in the
M1 nucleotide/aa changes. Interior location of the several aa substitutions would alter
biomolecular conformation of the M1 structure profoundly, and separate research describes
a very different biomolecular mechanism than for the benign M1–C1q interaction [7, 29].
Zhang et al. [30] determined that the N-terminus of M1 firmly binds the globular domain of
host C1q, thus blocking C1q stimulus of T cell activity, diminishing T cell use of antibody
IgG and induction of INF-γ. As such, virulent M1 subverts DC-C1q functions [30] and the
virus evades multiple host immune defenses.

In another mutated influenza A protein example, a single aa substitution (glutamic
acid(−) (Glu), lysine(+) (Lys)) at position 627 of the vRNP PB2 subunit correlates with host
Se status. Pathogenic avian influenza H5N1 virus [31], with virulent PB2-Lys627 [32], was
recovered from dead waterfowl at Lake Qinghai, Qinghai Province, China [33]. While
water quality Se assays for Lake Qinghai were not reported, the surrounding geologic
landscape is nearly devoid of this essential micronutrient [34, 35]. H5N1-infected dead
birds were also found in Hubei Province [36], known for localized regions of poor Se
bioavailability [19, 37]; virulence was not detected, however, among asymptomatic H5N1-
infected birds of poultry farms and markets of Hong Kong [38]. Asymptomatic bird species
infected with influenza A strains 1918 and 2009 H1N1, H2N2, H3N2, and H5N1 carry
PB2-Glu627 [27].

Kuzahara et al. [39] determined PB2-Lys+627 lies within an “f-loop” of the PB2 subunit,
which they calculate, strengthens PB2 affinity to other vRNP units to increase viral
replication. Human pandemic influenza A strains 1918 H1N1, H2N2, H3H2, and H5N1
each contain virulent PB2-Lys627 [27].

Superimposing information of these ROS-induced changes, the immune system cascade
becomes interrupted by Se-deficient oxidative stressed host conditions:

Influenza virus-laden sneeze    Se-deficient host inhales virus     HA infects lung epithelium (14)     ROS-

induced inflammation (fever) 

M1 gene mutation / M1 protein (21,30)

stimulates proinflammatory cytokines & chemokines     induces DCs, but C1qa blocked (30)

antibody (IgG)(30) -specific T-cells(13, 15)              IFN-   (6) of viral replication.  Uninhibited, PB2-

Lys627 (39), escorted by M1 protein, freely aids viral replication in upper and lower respiratory tracts,

viral persistence     pathogenesis.

SARS Coronavirus

Virulence of SARS in humans begins with pulmonary cell entry of the novel coronavirus,
SARS-CoV. The envelope “Spike” (S) glucoprotein of SARS-CoV exhibits two single aa
residues, at positions 360 and 479, which both “determine” entry and neutralize host
antibody receptor at the host cell surface [40, 41]. Palm civet (Paguma larvata) is the
intermediary host for SARS-CoV [42], and civet-CoV retrieved from low-Se Hubei
Province more closely relates to human SARS-CoV at determinant aa positions 360 and 479
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than does the civet-CoV variant originating from “Se-adequate” Guangdong Province [40].
SARS/civet-like CoV originated in the Chinese horseshoe bat (Rhinolophus macrotis), and
genomic sequencing found 71% of the bats assayed in Hubei Province carry the SARS-CoV
precursor civet-like coronavirus [43]. That the most successful Spike glucoprotein mutation is
retained pre-human infection may exemplify viral “adaptive evolution” stability [44].

HIV

The 1980 origin of pandemic HIV-1/AIDS was traced to specific chimpanzee populations
infected with simian immunodeficiency virus (SIVcpz) in southern Cameroon [45]. Contact
or use of the infected primates as a food source may have facilitated transfer and evolution
of the virus in humans [46].

Asymptomatic, SIV-infected primates carry several viral regulatory genes, including a
poorly pathogenic SIV variant of the multifunctional nef gene. Benign nef gene, when
transferred via SIVcpz [47] to vulnerable humans, mutates, resulting in virulent nef proteins
which interfere with host T cell functions and promote rampant virus replication [48].
Although the host vulnerability condition and genetic/biochemical mechanisms prompting
conversion of benign SIV nef variant to HIV-1 virulence are yet to be identified, Hurwitz et
al. [49] find that dietary supplementation of 200 mcg Se per day to HIV-infected subjects
increased blood Se levels, increased T cell count and decreased viral load. Further, a 5-year
randomized, double-blind placebo-controlled clinical trial in Tanzania found a 5% decrease
in risk of mortality with each increase of 0.01 μMol Se/L blood from dietary
supplementation in HIV-infected pregnant women [50].

EBOV

High mortality (~80%) Ebola hemorrhagic fever erupts episodically (1976–1979, 1994–
1996, 2001–2005, 2007), spatially and temporally correlated with droughts [51] and
subsequent diminished food production in the Congo Basin [3]. The challenge to find food
during lean spells takes human and non-human primates to remote highland fruit bat habitat
where several bat species host the Ebola virus (EBOV) [52, 53]. Though outwardly
asymptomatic, EBOV-infected bat contact with primates, including humans, is highly
virally infectious and contagious, and pathogenic die-off from Ebola hemorrhagic fever
during these episodes is severe. The “wild type” (wt) Ebola virus protein 35 (VP35)
functions to inhibit host production of interferon transcription factors (INF-3 and INF-7)
and aid viral replication [54]; critical to wt VP35 protein virulence are both the interferon
inhibitory domain “fold” [54], created by an aa arginine residue at VP35 position 312 [55],
and the wt Ebola VP35 use of the host transcription mechanism for interferon production to
block immunity against the virus [56].

While the effect of host Se status on Ebola virus virulence is not yet verified,
asymptomatic EBOV-infected bats and human survivors of the disease produce virus-
specific IgG antibodies [57, 58], whereas T cells and their induced immunoglobulins and
INF-γ are undetected in symptomatic EBOV-infected mammals, including humans, which
succumb to the systemic disease [59]. This pattern of disabled T cell function is reminiscent
of Se-deficiency effects on influenza virus-infected T cells [6, 13–15]. The hunger
experienced during the above-described climatic dry spells could be caloric, but if
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prolonged, also an individual expression of undernutrition and malnutrition, including Se
deficiency.

Conclusions

Regions of the globe are void of Se bioavailable from soils for food crop uptake [23] and
adequate human nutrition. Worldwide, soils average 0.4 mg Se/kg of soil; “Se-poor” soils in
China range between 0.004 and 0.48 mg Se/kg, but Se bioavailability to crops, regardless of
soil concentrations, is controlled by biogeochemical factors including soil mineralogy,
acidity, oxidation potential, and presence of organic matter [19, 37, 60]. Wide variability in
Se accumulation in grains grown on adjacent heterogeneous source rocks in Hubei Province
demonstrates this influence [19]:

Rice, 0.079, 0.017, 0.063 mg Se/kg grain
Wheat, 0.087 0.018, 0.052 mg Se/kg grain
Corn, 0.050, 0.015, 0.048 mg Se/kg grain

In Africa, the African Soils Information Service reports degraded, nutrient-depleted
conditions for >500 million hectares of SSA soils, and that one third of the population there
is “chronically hungry” [61]. For example, though relatively urbanized, and researched,
50% of children in South Africa consume less than half the caloric and nutrient
requirements needed for sound health; 70% of a surveyed population “perceive their
households to be food insecure and 30% of the households report that their children went to
bed hungry, a percentage that increases as incomes decline” [62]. Undernutrition and Se
deficiency, especially during pre-natal and childhood periods, have lasting adverse effects
which influence physiologic development of immature immune systems and subsequent
impaired immunocompetence in post-adolescent years [63, 64]. These dietary and
antioxidant Se-deficient nutritional conditions contribute to the physiologic oxidative stress
conducive to impaired immune systems and RNA viral mutations, which can be virulent
and pathogenic. Table 1 synopsizes the known geographic, ecologic, edaphic, and
epidemiologic factors contributing to the VIDs discussed.

The Future

Despite the emergence of the above-described diseases in China and SSA, and the 2007
outbreaks of both poliomyelitis in Nigeria (353 cases) [65] and Ebola “Uganda” [66],
etiological origin of infectious RNA viral virulence is not restricted to these geographic
regions. Epidemic optic and peripheral neuropathy in Cuba during the early 1990s was
traced to infection by otherwise benign Coxsackievirus A9 during an extended period of
food shortages, prompting virulence [67].

Etiology of these VIDs suggests that vulnerable populations in any geographic region
enduring chronic nutritional Se deprivation, for any reasons, could become spawning grounds
for virulence of innate benign but opportunistic RNAviruses. If infectious, the virulent virus can
be transferred even to individuals with Se-adequate status. Monitoring incipient hot spots for
immune system biomarkers, agricultural productivity, and adequate and nutritious food supply to
local populations, is a small order for helping to tame local or global RNAviral virulence.
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