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The kinetochore is responsible for accurate chromosome

segregation. However, the mechanism by which kineto-

chores assemble and are maintained remains unclear.

Here we report that de novo CENP-A assembly and kine-

tochore formation on human centromeric alphoid DNA

arrays is regulated by a histone H3K9 acetyl/methyl

balance. Tethering of histone acetyltransferases (HATs) to

alphoid DNA arrays breaks a cell type-specific barrier for

de novo stable CENP-A assembly and induces assembly of

other kinetochore proteins at the ectopic alphoid site.

Similar results are obtained following tethering of CENP-

A deposition factors hMis18a or HJURP. HAT tethering

bypasses the need for hMis18a, but HJURP is still required

for de novo kinetochore assembly. In contrast, H3K9

methylation following tethering of H3K9 tri-methylase

(Suv39h1) to the array prevents de novo CENP-A assembly

and kinetochore formation. CENP-A arrays assembled de novo

by this mechanism can form human artificial chromosomes

(HACs) that are propagated indefinitely in human cells.
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Introduction

The kinetochore is responsible for accurate chromosome

segregation. During mitosis, kinetochores assemble on

specialized centromere chromatin (Cleveland et al, 2003;

Allshire and Karpen, 2008) composed of nucleosomes

containing the essential histone H3 variant CENP-A

(Earnshaw and Rothfield, 1985). Recent studies have

identified several factors, including the Mis18 complex and

HJURP (Hayashi et al, 2004; Camahort et al, 2007; Fujita et al,

2007; Mizuguchi et al, 2007; Stoler et al, 2007; Pidoux et al,

2009; Williams et al, 2009), involved in the deposition of

newly synthesized CENP-A at pre-existing CENP-A chromatin

regions (Okada et al, 2006; Fujita et al, 2007; Jansen et al,

2007; Dunleavy et al, 2009; Foltz et al, 2009). However, the

mechanism by which centromere chromatin assembles and is

stabilized at specific genomic loci remains unclear.

Centromeric DNA sequences are competent to form

de novo functional kinetochores in yeasts, mouse and some

human cell lines (Clarke and Carbon, 1980; Hahnenberger

et al, 1989; Harrington et al, 1997; Ikeno et al, 1998; Moralli

et al, 2006; Okada et al, 2007). Human centromeric alpha-

satellite (alphoid) DNAs can induce high efficiency de novo

CENP-A and functional kinetochore assembly and

subsequent human artificial chromosome (HAC) formation

when introduced into HT1080 human fibrosarcoma cells.

HAC kinetochore formation is highly dependent on regular

arrays of alphoid DNA sequences with CENP-B binding

capacity (Ohzeki et al, 2002; Okamoto et al, 2007),

although de novo kinetochore assembly is not a simple

DNA-protein reaction.

Chromatin modifications are thought to regulate functional

kinetochore assembly and maintenance by an epigenetic

mechanism. Recent studies of normal centromeres also

suggest a possible involvement of canonical histone H3-

containing nucleosomes in kinetochore function. In humans,

CENP-A nucleosomes are localized to only a portion of the

megabase-sized alphoid DNA arrays, where they are orga-

nized as multiple clusters interspersed with histone H3

nucleosomes (Blower et al, 2002; Sullivan and Karpen,

2004; Ribeiro et al, 2010). Canonical H3 nucleosomes co-

purify with CENP-A in oligonucleosomes (Ando et al, 2002),

and some classes of CENPs (e.g. CENP-T, -W) are suggested

to bind only to H3 nucleosomes (Hori et al, 2008). Thus,

epigenetic CENP-A-mediated kinetochore assembly could

also be affected by the surrounding H3 chromatin state.

Thus, functional kinetochore formation and maintenance

may be influenced by additional factors that determine the

modification status of centromeric chromatin.

The fundamental question addressed by this study is how

different chromatin fates are generated on alphoid DNA in

human cells and what kind of chromatin directs functional

centromere/kinetochore assembly. We found that compe-

tency for stable CENP-A assembly and de novo kinetochore

assembly are correlated with the acetylation status of H3K9

on alphoid DNA in several different cell types. We therefore

decided to manipulate H3K9 modifications during de novo

kinetochore assembly using a synthetic alphoid DNA array

carrying multiple tet operator (tetO) sequences that allow

the tethering of chromatin modifiers into the array as tet

repressor (tetR) fusions (Nakano et al, 2008; Cardinale et al,

2009; Bergmann et al, 2011).
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Tethering of tetR-EYFP-p300 or tetR-EYFP-PCAF, two

histone acetyltransferase (HAT) domains that promote acet-

ylation of H3K9, results in assembly of newly synthesized

CENP-A on exogenous alphoid DNA arrays. Remarkably, HAT

induction of de novo CENP-A chromatin assembly requires

HJURP but bypasses the need for hMis18a, and sponta-

neously nucleates assembly of an outer kinetochore on the

artificial DNA arrays. Indeed, in a technological break-

through, these HAT-induced de novo CENP-A arrays can

even lead to the formation of stable HACs that are maintained

indefinitely in human cell lines that have previously proven

refractory to HAC formation. Together, our data reveal that

CENP-A assembly appears to be controlled by a histone

H3K9ac/me3 balance that acts upstream of HJURP.

Results

Cell-type-dependent chromatin assembly on

transfected human alphoid DNA

De novo kinetochore assembly is efficient in HT1080 cells.

However, neither stable de novo kinetochore formation nor

CENP-A assembly on exogenous alphoid DNA occurs in

many other commonly used human cell lines, including

HeLa (Figure 1A and Supplementary Figure S1).

Surprisingly, HeLa cells, TIG7 human fetal primary, hTERT-

BJ1 immortalized fibroblasts and U2OS osteosarcoma cells,

all efficiently assemble CENP-A chromatin de novo, but

CENP-A levels declined rapidly during subsequent cell

culture (Figure 1B, C, Supplementary Figure S2 and S3C).

The decrease in CENP-A levels on transfected alphoid

DNA in HeLa cells was accompanied by a progressive

increase in the heterochromatin-associated modification,

H3K9me3 (Figure 1C).

Detailed ChIP analysis of the chromatin modification status

at several endogenous centromeres revealed that alphoid

DNA appears more euchromatic in HT1080 cells than in

HeLa (Figure 1D). Using CENP-A and CENP-B as controls,

H3K9ac, a euchromatic modification, was readily detected on

HT1080 alphoid DNA, but was much lower at HeLa centro-

meres (Figure 1D). In addition, HT1080 cells had substan-

tially lower levels of H3K9me3 on alphoid DNA than on other

repetitive DNA sequences, including satellite 2, D4Z4 and

DYZ1. In contrast H3K9me3 levels on alphoid DNA were

significantly higher in HeLa, TIG7, hTERT-BJ1 and U2OS

cells (Figure 1D and SupplementaryFigure S3). The ChIP

data were confirmed by a stronger H3K9me3 staining inten-

sity at mitotic centromeres in HeLa cells (Figure 1E).

Suv39h1 negatively regulates de novo CENP-A

assembly on alphoid DNA at ectopic site

The histone methyltransferase Suv39h1 may be one critical

factor responsible for this difference between HT1080 and

HeLa alphoid DNA chromatin. HT1080 cells express only

50% of the relative level of Suv39h1 mRNA found in HeLa

cells (Figure 2A). Suv39h1 over-expression increased both

levels of the enzyme itself and H3K9me3 on centromeric

alphoid DNAs in HT1080 cells (Figure 2B). These results fit

with the observations that mouse cells doubly null for

Suv39h1 and Suv39h2 (Suv39hdn) have low levels of centro-

meric H3K9me3 (Peters et al, 2001).

Suv39h1 depletion by RNAi revealed a remarkable inverse

correlation between CENP-A and H3K9me3 levels on an

alphoid DNA array integrated ectopically on a chromosomal

arm in HeLa cells (HLW-Int-09; Figure 2C-F).

These results suggest that Suv39h1 suppresses ectopic

CENP-A incorporation, presumably by maintaining

H3K9me3 levels on alphoid DNA. However, Suv39h1

depletion alone and the accompanying transient increase in

CENP-A were not sufficient for functional kinetochore forma-

tion on ectopic alphoid DNA arrays (Okada et al, 2007).

Additional regulatory factors must be required for

functional kinetochore formation de novo on alphoid DNA.

HAT recruitment breaks the barrier for de novo

kinetochore assembly

Several observations suggest that histone acetyltransferases

may be required for functional CENP-A assembly and sub-

sequent kinetochore formation de novo (Nakano et al, 2003;

Okamoto et al, 2007). Furthermore, the acetyltransferases

p300 and PCAF [p300/CBP associated factors (Yang et al,

1996)] both localize at functional, but not at inactive,

centromeres (Supplementary Figure S4) (Craig et al, 2003;

Choi et al, 2009).

To test the hypothesis that histone acetylation might antago-

nize H3K9me3 and promote functional CENP-A assembly, we

expressed tetR-EYFP fused to the histone acetyl-transferase

(HAT) domains of p300 or PCAF in HeLa cells (Figure 3A).

Into the tetR-EYFP expressing cells, we then introduced a

50 kb synthetic DNA array based on the a21-I alphoid

dimer sequence with a tetO site where the CENP-B box

would be on one monomer (pWTO2R; Figure 3A and

Supplementary Figure S5) (Ebersole et al, 2005; Kim et al,

2009). In this system, tetR fusion proteins bound to tetO sites

within the synthetic alphoid DNA arrays can directly modify

the chromatin environment at a single centromere or locus in

human cells.

Tethering of either HAT domain fusion (tetR-EYFP-p300HD

or tetR-EYFP-PCAFHD) to the synthetic alphoid DNA

enhanced H3K9ac modification and CENP-A assembly, as

demonstrated by time-course ChIP assays (Figure 3B, C and

Supplementary Figure S6). In contrast, tethering of the tetR-

EYFP-Suv39h1 fusion increased H3K9me3 levels and also

decreased CENP-A assembly. This raised the question

whether HAT domain recruitment could stimulate de novo

kinetochore formation.

Remarkably, stable HACs bearing the synthetic a21-I

alphoidtetO repeat were detected in HeLa cell lines

expressing tetR-EYFP-p300HD or tetR-EYFP-PCAFHD (in 8

or 14% of cell lines, respectively; Figure 3B, D and E

and Supplementary Figure S7). Importantly, HAC formation

was never detected when the synthetic a21-I alphoidtetO

repeat was introduced into cells expressing tetR-EYFP or

tetR-EYFP-Suv39h1 (Figure 3E). Similarly, alphoidtetO-based

HAC formation was never observed in HT1080 cells expres-

sing tetR-EYFP-Suv39h1 (Figure 3E and Supplementary

Figure S8).

Although exogenous HAT activity is required for initial

de novo kinetochore formation in HeLa cells, once established,

the de novo kinetochores no longer require this exogenous

activity to maintain their structure and function. We initially

observed that HACs were stably maintained in cell clones that

no longer expressed the tetR-EYFP-HAT fusion construct,

presumably due to the silencing of retrovirus integration

sites. We therefore, directly tested whether de novo
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kinetochores remained functional following forced dissocia-

tion of the HAT domain fusions by culturing cells for more

than 60 days in the presence of doxycycline (Figure 3F).

Microscopic and ChIP analyses showed that the HACs

remained mitotically stable and capable of recruiting inner

and outer kinetochore proteins CENP-A, -C, -T, hKNL1, Hec1,

hDsn1 and hMis12 (Supplementary Figure S9A, B) in the

absence of bound exogenous HAT fusion proteins (Figure 3F;

Loss of tetR fusion binding to the HAC was confirmed by

ChIP—Supplementary Figure S9C).

Thus, HAT domain recruitment to the synthetic a21-I

alphoidtetO array renders HeLa cells competent for de novo

kinetochore formation.

Centromere chromatin modifications regulate newly

synthesized CENP-A assembly

Kinetochore maintenance requires the targeting of newly

synthesized CENP-A to centromeres during mitotic exit/

early G1 (Jansen et al, 2007). To test whether the same

chromatin modifiers that potentiate de novo kinetochore

assembly also affect newly synthesized CENP-A assembly at

an established HAC kinetochore, we transiently co-

transfected constructs expressing HA-tagged CENP-A (HA-

CENP-A) plus various tetR-EYFP-fusion proteins into tetO-

HAC containing HeLa cells (HeLa-HAC-R5; Figure 4A and B).

We then asked if HA-CENP-A (a mark for newly assembled

CENP-A) assembled on the HAC and endogenous centro-

meres at 24 h (i.e. one complete cell cycle in HeLa cells)

after transfection.

Tethering of tetR-EYFP alone did not affect the assembly of

newly synthesized HA-CENP-A onto either the HAC or

endogenous centromeres (Figure 4C and Supplementary

Figure S10A). In contrast, tethered tetR-EYFP-Suv39h1

specifically reduced HA-CENP-A assembly on the HAC cen-

tromere (Figure 4C and Supplementary Figure S10B). This

was coupled with destabilization of the HAC, detected as

lagging chromosomes and micronuclei (Supplementary

Figure S10C-G).
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Figure 1 Cell type specific chromatin modifications on transfected and endogenous alphoid DNA. (A) Summary of the HAC formation assay.
The pWTR11.32 plasmid, which contains 60 kb of a21-I 11mer repeat (shown in panel B), was transfected to HT1080 or HeLa cells. Single
transformants were isolated and analyzed for chromosomal events by FISH and microscopy. Examples of HAC and integration are shown as
merged images. Signals in pictures indicate DNA (gray), BAC plasmid DNA (red) and CENP-A (green). (B and C) Time-course ChIP analysis.
The pWTR11.32 or pMTR11.32 plasmid (panel B) was transfected to HT1080 or HeLa cell. Transfectants were cultured under presence of
selective drug (G418), and harvested at 2, 3 and 4 weeks after transfection. ChIP assay was carried out with normal IgG and indicated
antibodies (panel C). Primer set for synthetic 11mer repeats was used for quantitative PCR. Error bars, s.d. (n¼ 2). (D) Chromatin
modifications on human repetitive DNAs. ChIP assay was carried out with normal IgG and indicated antibodies. Primer sets used for
quantitative PCR are specific to 5S ribosomal DNA (5S Ribo), satellite 2 (Sat2), D4Z4 repetitive DNA (D4Z4), DYZ1 repetitive DNA (DYZ1), Alu
elements (Alu), 17 alphoid (17a), 21-I alphoid (21a, 21b), 21-II alphoid (21c), X alphoid (Xa, Xb) and Y alphoid DNA (Ya, Yb, Yc) sequences.
More information for these primers is shown in Supplementary Figure S3A and Supplementary Table S2. Columns indicate non-alphoid
repetitive DNA controls (black), type I alphoid DNA (white) and type II (gray), respectively. Error bars, s.d. (nX3). (E) Examples of metaphase
chromosome staining. Mitotic cell spreads were stained with DAPI (gray), anti-H3K9me3 (green) and anti-CENP-A antibody (red). Scale bar, 3mm.
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Unexpectedly, tethering of p300HD or PCAFHD induced

HA-CENP-A hyper-assembly not only at the HAC centromere,

but covering the entire alphoidtetO signal on the HAC in a

significant proportion of cells (34 and 40% in Figure 4C and

Supplementary Figure S10B).

We next tested whether the known canonical CENP-A

deposition factors hMis18a and HJURP are involved in this

HAT-induced CENP-A assembly. We first depleted hMis18a or

HJURP by siRNA knockdown and then tethered tetR-fused

HAT proteins to the synthetic alphoid array (Figure 4D, E).

hMis18a depletion reduced HA-CENP-A assembly at both

endogenous centromeres and the HAC centromere

(Figure 4F). However, stable HA-CENP-A assembly continued

on alphoidtetO DNA with tethered HAT fusions following

hMis18a depletion, which blocks CENP-A assembly on

endogenous centromeres (Figure 4G, orange bars). The cell

population, which had newly assembled HA-CENP-A on

alphoidtetO DNA but no HA-CENP-A signals on endogenous

centromeres, was relatively increased after hMis18a deple-

tion (Figure 4G, orange bars. Po0.05). These results indicate

that tethering of HAT fusions can partially rescue HA-CENP-A

assembly in the absence of hMis18a.

Importantly, HJURP depletion dramatically reduced

HA-CENP-A assembly both on endogenous host centromeres

and on the HAC. Furthermore, neither was rescued by

tethering of HAT-fusion proteins to the HAC alphoidtetO

array (Figure 4F, G). Thus, HJURP is required for

HAT-mediated CENP-A assembly.

Given that HAT tethering can potentiate de novo kineto-

chore formation on a HAC and induce HA-CENP-A hyper-

assembly covering non-centromeric regions of the HAC

(Figures 3 and 4), we next tested whether HAT-tethering

can induce de novo CENP-A assembly on a chromosomal

arm. We did this using a stable cell line (HeLa-Int-03), which

carries an ectopic alphoidtetO chromosomal integration on

which we have failed to detect any essential kinetochore-

specific proteins other than CENP-B (which binds to the

CENP-B box) (Supplementary Figure S11).

Tethering of tetR-EYFP-p300HD or tetR-EYFP-PCAFHD in-

duced HA-CENP-A hyper-assembly on the ectopic array in 27

and 47% of cells, respectively (Figure 5A-E). A similar effect

was observed after tethering the CENP-A assembly factors,

tetR-EYFP-hMis18a or tetR-EYFP-HJURP (HA-CENP-A hyper-

assembly in 32 and 100% of cells, respectively—Figure 5C-E).

CENP-A assembly at the ectopic site induced by tetR-EYFP-

hMis18a tethering was diminished by HJURP depletion

(Figure 5F,G), consistent with Barnhart et al (2011).
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did not induce HA-CENP-A assembly at the ectopic site

(Figure 5C–E). Moreover, no specific enhancement of the

assembly of newly expressed HA-tagged histone H3.1 nor H3.3

was observed on the ectopic alphoidtetO array by the HAT

tetherings in addition to the usual assembly patterns of those

histone H3 (Figure 5H,I and Supplementary Figure S12).
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Next, we determined when during the cell cycle HAT

tethering induces CENP-A assembly. We tethered tetR-EYFP

fusion proteins for 2 h by controlling the presence and

absence of doxycyline, and detected new CENP-A assembly

using a SNAP-CENP-A pulse labeling technique (Supplemen-

tary Figure S13A, B). Within 2 h of tethering the appropriate

tetR-EYFP fusions, labeled SNAP-CENP-A assemblies were

detected not only on endogenous centromeres but also on an

ectopic alphoidtetO integration site (Supplementary Figure

S13C–E). We determined the cell cycle phase of cells that

had assembled SNAP-CENP-A at the ectopic site by using

Cyclin B staining (Fujita et al, 2007; Silva et al, 2012). SNAP-

CENP-A assemblies induced on ectopic sites by tethering

p300HD, PCAFHD and hMis18a were observed only in

Cyclin B negative (G1) cells (Supplementary Figure

S13C–E). This is the cell cycle phase that is normally permis-

sive for CENP-A assembly at endogenous centromeres (Silva

et al, 2012). HJURP tethering induced ectopic CENP-A

assembly both in the Cyclin B positive and negative cells

(Supplementary Figure S13E). Taken together, HAT activity is

sufficient to trigger the specific assembly of newly synthe-

sized CENP-A on alphoid DNA in G1 phase.
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HAT tethering induces de novo functional kinetochore

assembly at the ectopic site

We next investigated whether ectopic CENP-A assembly

driven by chromatin acetylation or tethered hMis18a or

HJURP can induce assembly of the outer kinetochore in

HeLa cells (Figure 6A).

CENP-A assembled on ectopic alphoidtetO arrays was main-

tained in metaphase cells, where the ectopic HA-CENP-A was
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always detected as an extended region weakly stained with

DAPI (Figure 6B, C). HA-CENP-A-coated arrays were ob-

served in 21 or 77% of metaphase cells expressing tetR-

EYFP-hMis18a or tetR-EYFP-HJURP, respectively (compared

to 32 and 100% in interphase cells). HAT-induced CENP-A

assembly was apparently less stable on mitotic chromosomes

(7% of mitotic cells, compared with 27B47% of interphase

cells—Figures 5E and C).

Remarkably, the essential inner or outer kinetochore

markers CENP-T, -I and -E (Hori et al, 2008; Santaguida and

Musacchio, 2009) assembled on the ectopic array following

CENP-A assembly (red arrowheads, Figure 6B, D and

Supplementary Figure S14). These proteins accumulated at

greater levels than at the centromeres of host chromosomes

(Figure 6B, green arrowheads). Such an induced hyper-

assembly of kinetochore proteins at the ectopic sites appears

to result in bundling of an excess amount of microtubules and

results in aberrant spindle formation. As a result these cells

appear to be arrested in mitosis (Supplementary Figure

S15C). In contrast, kinetochore assembly was not observed

on CENP-A assembled nonspecifically on whole chromoso-

mal arm regions (Supplementary Figure S16), consistent with

Van Hooser et al (2001) and Gascoigne et al (2011).

A HAC assay with a21-I alphoidtetO BAC accompanied by

transient transfection of these tetR-EYFP fusion-expressing

plasmids confirmed that induced kinetochores like in those

shown in Figure 6 can acquire stable maintenance and full

function as stable artificial chromosomes (Supplementary

Figure S17A). In HeLa cells, HAC formation was efficiently

supported by co-transfection with tetR-EYFP-PCAFHD, tetR-

EYFP-hMis18a and tetR-EYFP-HJURP but not with tetR-EYFP

alone (Supplementary Figure S17C). Furthermore, tetR-EYFP-

PCAFHD also supported HAC formation in U2OS cells where

again no HAC formation was seen with tetR-EYFP alone
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(Supplementary Figure S3, S17B and C). Interestingly, HAC

formation was not dramatically increased in HT1080 cells if

the a21-I alphoidtetO BAC was introduced together with a

construct expressing tetR-EYFP-PCAFHD.

These results demonstrate that tethering of HAT activity or

Mis18a can induce HJURP-dependent de novo CENP-A chro-

matin assembly and subsequent assembly of a functional

kinetochore on the alphoid DNA array.

Centromere H3K9 acetylation normally occurs in a short

time window following metaphase

Although forced HAT tethering can induce CENP-A and

kinetochore protein assembly on alphoidtetO DNA, the level

of H3K9 acetylation on endogenous alphoid DNA is normally

very low—almost undetectable in unsynchronized HeLa cells

(Figure 1D). This raises the question of whether CENP-A

assembly induced by acetylation of H3K9 is biologically

relevant. If centromere acetylation does normally occur, it

may be during only a brief cell cycle window—possibly

coinciding with the localization of hMis18a and HJURP to

centromeres. HJURP centromere localization is maximal at

two hours after release from a metaphase arrest, and rapidly

decreases thereafter (Dunleavy et al, 2009).

Indeed, ChIP analysis revealed that H3K9 acetylation

levels increased temporarily on endogenous and HAC cen-

tromere alphoid DNAs at one hour after release from a

metaphase arrest, but fell again by three hours after the

release (Figure 7A–C). The temporary increase in H3K9ac

can be blocked by tethering tetR-EYFP-Suv39h1 and CENP-A

levels also fell following tethering of tetR-EYFP-Suv39h1

(Figure 7E and Supplementary Figure S18; compare

doxycyclineþ /doxycycline-).

These results confirm the presence of intrinsic acetylation

activity on centromere chromatin, and show that this activity is

apparently restricted to a short time window from anaphase

through early G1. Taken together these results indicate that

CENP-A assembly is regulated by the H3K9 acetyl/methyl

balance. If H3K9 is acetylated, the chromatin can bind chaper-

ones such as HJURP and assemble CENP-A chromatin. If it is

trimethylated, CENP-A assembly is inhibited.
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Discussion

Centromeric chromatin acetylation induces de novo

heritable kinetochore assembly

Tethering of histone acetyltransferases (HATs) induces

de novo assembly of CENP-A and functional kinetochore on

ectopic alphoidtetO DNA, and can culminate in de novo

formation of stable human artificial chromosomes (HACs).

HAT-induced de novo CENP-A assembly appears to mimic the

natural process. It requires the activity of specific CENP-A

deposition factor HJURP. The HAT normally responsible for

de novo CENP-A assembly and its key substrates in addition

to H3K9 remain to be identified(Supplementary Figure S19).

Nonetheless, this observation that tethered HAT activity in

canonical H3 chromatin can induce de novo CENP-A and

outer kinetochore assembly by adjusting the modification

status of H3K9 represents a major step towards understand-

ing the epigenetic regulation of kinetochore assembly.

Recent exciting studies demonstrated that tethering of

CENP-C and CENP-T (Gascoigne et al, 2011) or HJURP

(Barnhart et al, 2011) to an ectopic LacO array induced the

assembly of a functional outer kinetochore. However,

whether those kinetochore-like structures were stably

inherited was not tested. Here, we show that kinetochores

formed de novo by targeted induction of CENP-A assembly

direct accurate segregation of the resulting HACs for many

generations without any requirement for continued tethering

of the exogenous HAT. Thus, our data suggest that proper

assembly of CENP-A chromatin is sufficient for long-term

epigenetic maintenance of centromere activity.

H3K9 ac/me3 are positive and negative regulators of

CENP-A assembly, respectively

The notion that CENP-A assembly may normally be linked to

chromatin acetylation (Nakano et al, 2003; Fujita et al, 2007;

Okamoto et al, 2007) is strongly supported by our detection of

a pulse of histone H3 acetylated on lys 9 (H3K9ac) during a

brief window following release from a mitotic arrest. This

timing corresponds remarkably well with the observed

localization of hMis18a and HJURP at kinetochores (Fujita

et al, 2007; Foltz et al, 2009; Dunleavy et al, 2009) and is the

cell cycle window in which CENP-A assembly normally

occurs (Jansen et al, 2007; Silva et al, 2012).

Although Suv39h1 over-expression increased levels of

H3K9me3 on centromeric alphoid DNA, the functions of

endogenous centromeres on host chromosomes were not

impaired. However, tethering of Suv39h1 to the alphoidtetO

kinetochore blocked the pulse of centromeric H3K9 acetyla-

tion normally seen during mitotic exit and interfered with the

assembly of newly synthesized CENP-A on the established

HAC centromere. Thus, although kinetochores do contain

limited H3K9me3-containing chromatin regions (Ribeiro

et al, 2010), the CENP-A chromatin core in the active

kinetochore must be protected from Suv39h1-induced H3K9

tri-methylation during mitotic exit.

Regulation of the balance between H3K9ac (promoting

CENP-A assembly) and H3K9me3 (inhibiting it) may be

critical not only for de novo kinetochore assembly in our

artificial system, but also for genome stability. The extremely

large secondary kinetochores formed by induction of CENP-A

assembly at ectopic sites apparently caused abnormal bund-

ling of spindle microtubules and resulted in a mitotic arrest.

This suggests that kinetochore geometry must be regulated

appropriately on endogenous alphoid DNA—possibly to

avoid formation of merotelic attachments. Adjusting the

balance between H3K9 acetylation and methylation might

provide a modulation mechanism to minimize inappropriate

CENP-A assembly and the formation of ectopic centromeres

on native chromosomes.

The role of centromeric heterochromatin may vary in

different organisms. In fission yeast, heterochromatin is

important not only for sister chromatid cohesion, but also

for de novo CENP-A assembly (Hayashi et al, 2004; Grewal

and Jia, 2007; Ishii et al, 2008; Kagansky et al, 2009).

Understanding this contrast between fission yeast and

human CENP-A assembly clearly requires additional study.

Breaking the HAC barrier

Since the first HAC formation assay, it has been unclear why

de novo kinetochore formation could occur in HT1080 cells

but not in other popular cell lines, such as HeLa. Indeed, in

some quarters, this was taken to suggest that HAC formation

in HT1080 might in some way be an aberrant process. Here,

we suggest a very simple H3K9 acetyl/methyl balance model

to explain this host cell specificity for HAC formation.

Assembly of a core of CENP-A sufficient to establish an

epigenetically stable active centromere appears to require

H3K9ac, and if the balance is tipped in favor of H3K9me3,

then the CENP-A that assembles initially is gradually lost and

stable kinetochores do not form.

We propose that tethering of HAT activity to the input

alphoid DNA array breaks the kinetic barrier provided by

the very brief window of acetylation that occurs during

mitotic exit. This appears to allow sufficient time for CENP-

A to assemble into ‘core’ regions of sufficient size to be stably

maintained (Alonso et al, 2007; Okamoto et al, 2007). Thus

the synthetic tetO-alphoid/tetR-fusion tethering system now

allows us to induce de novo kinetochore assembly on both

newly introduced synthetic alphoid DNA arrays as well as

pre-existing arrays integrated into chromosome arms. This

ability to induce the formation of stable minichromosomes in

HeLa, U2OS and other popular cell lines offers a powerful

approach to analyzing epigenetic centromere/kinetochore

formation and maintenance.

Materials and methods

Cell culture and transfection
HT1080 (tetraploid) and HeLa cells were grown in Glutamax I
(Invitrogen) supplemented with 10% FBS at 37 1C in 5% CO2
atmosphere. For transfections, Lipofectamin 2000 (Invitrogen),
Lipofectamine (Invitrogen) or FuGENE HD (Roche) was used for
siRNA, BAC plasmid DNAs (pWTR11.32, pMTR11.32, pW/M11.64
and pWTO2R) or usual plasmid vectors, respectively. Retrovirus
infection method used for tetR-fusions expression was previously
described (Nakano et al, 2008). For depletion experiments, siRNAs
for Suv39h1 were obtained from Dharmacon as a pool (D-009604-01,
D-009604-02, D-009604-04 and D-009604-06), and siRNA sequence
for hMis18a or HJURP depletion was referred Fujita et al (2007) or
Dunleavy et al (2009), respectively. siRNA sequence for p300 or
PCAF was CAGAGCAGUCCUGGAUUAGTT and GGUGGUAUCUGU
UUCCGUATT, respectively. Control siRNAs were obtained from
Dharmacon (siGFP) and Ambion (siNegative). Cell lines used in
this study are shown in Supplementary Table S4.

ChIP
Cells were trypsinized and harvested in a centrifuge tube. Cells were
washed with PBS and then fixed with 0.61% (for tetR-EYFP or EFYP
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fusions) or 0.3% (for histones) formaldehyde at 25 1C for 10 min.
ChIP procedure was previously described (Ohzeki et al, 2002).
Antibodies used for ChIP are shown in Supplementary Table S1.
Immuno-precipitated DNAs were de-fixed at 65 1C for more than 4 h
and purified by phenol/chloroform extraction following proteinase
K treatment. Purified DNA was quantified by the competitive PCR
(Supplementary Figure S2) or real-time PCR (BIORAD). For real-
time PCR detection, SYBR Green I containing reagent was used
(BIORAD). PCR primer sequences used for ChIP assay are shown in
Supplementary Table S2.

Preparation of mitotic cells and chromosome spreads
For mitotic arrest, cells were treated with 350 nM of the highly
reversible microtubule destabilizing drug, TN-16 (WAKO; Kitagawa
et al, 1995; Perpelescu et al, 2009), for 2 to 6 h in the growth
medium. Mitotic cells were harvested by pipetting, washed with
PBS, incubated in a hypotonic buffer (20 mM Tris pH7.4, 1 mM
EGTA and 40 mM KCl) and then spread on cover glass (Matsunami)
by Cytospin3 (Shandon). Following immuno-staining and/or FISH
were carried out according to the previously described method
(Ikeno et al, 1998; Ohzeki et al, 2002). For ChIP with mitotic or
post mitotic cells (Figure 7), mitotically arrested cells were har-
vested with the method described above, firstly. Then a portion of
the mitotic cells was fixed for ChIP, and the remaining were washed
with PBS two times and plated in petri dish. After 1 h incubation,
unattached mitotic cells were washed out with PBS by pipetting.
Attached cells were harvested for ChIP analysis at each time point.
ChIP procedure is described in above section.

Supplementary data
Supplementary Information are available at The EMBO Journal
Online (http://www.embojournal.org).
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