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Abstract: The overexpression of antiapoptotic genes, such as Bcl-xL and survivin, 

contributes to the increased survival of tumor cells and to the development of treatment 

resistances. In the bladder cancer cell lines EJ28 and J82, the siRNA-mediated knockdown 

of survivin reduces cell proliferation and the inhibition of Bcl-xL sensitizes these cells 

towards subsequent chemotherapy with mitomycin C and cisplatin. Therefore, the aim of 

this study was to analyze if the simultaneous knockdown of Bcl-xL and survivin might 

represent a more powerful treatment option for bladder cancer than the single inhibition of 

one of these target genes. At 96 h after transfection, reduction in cell viability was stronger 

after simultaneous inhibition of Bcl-xL and survivin (decrease of 40%–48%) in 

comparison to the single target treatments (decrease of 29% at best). Furthermore, 

simultaneous knockdown of Bcl-xL and survivin considerably increased the efficacy of 

subsequent chemotherapy. For example, cellular viability of EJ28 cells decreased to 6% in 

consequence of Bcl-xL and survivin inhibition plus cisplatin treatment whereas single 

target siRNA plus chemotherapy treatments mediated reductions down to 15%–36% only. 

In conclusion, the combination of simultaneous siRNA-mediated knockdown of 

antiapoptotic Bcl-xL and survivin—a multitarget molecular-based therapy—and 

conventional chemotherapy shows great potential for improving bladder cancer treatment. 
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1. Introduction 

Bladder cancer (BCa) is the sixth most commonly diagnosed malignancy in Europe, with an 

estimated 139,500 new cases, and 51,300 BCa-related deaths in the year 2008 [1]. At initial diagnosis, 

about 70%–75% of the patients present with non-muscle invasive BCa while the remaining 25%–30% 

already have a muscle invasive disease [2,3]. Standard treatment for non-muscle invasive BCa is 

transurethral resection and adjuvant intravesical chemotherapy or immunotherapy [4]. In spite of these 

therapies, approximately 43% of the non-muscle invasive BCa will relapse—i.e., tumors of the same 

stage and grade as the primary BCa will occur—and about 8% will progress to muscle invasive  

disease [2]. Patients with muscle invasive BCa will be treated by radical cystectomy [3].  

Cisplatin-based combination chemotherapy is the standard treatment for metastatic urothelial bladder 

cancer. Although combination chemotherapy produces high response rates, and may even be curative 

in individual cases, overall, long-term survival rates are dismal [3]. Therefore, new strategies are 

needed to overcome resistance to chemotherapy.  

Apoptosis, an essential biological process that mediates the maintenance of tissue homeostasis as 

well as the non-inflammatory elimination of damaged cells, is frequently deregulated in cancer [5]. 

Notably, the up-regulation of antiapoptotic genes contributes to the increased survival of tumor cells. 

Previous studies have shown that in BCa cells particularly the inhibition of the antiapoptotic factor 

survivin (=baculoviral IAP repeat containing 5, BIRC5) mediated direct antiproliferative effects such 

as reductions in cell viability [6,7]. Furthermore, the knockdown of Bcl-xL (=BCL2-like 1, BCL2L1) 

sensitized BCa cells to subsequent chemotherapy [8].  

Survivin is a member of the inhibitor of apoptosis (IAP) family that is overexpressed in almost all 

human cancers, including BCa [9,10]. In contrast, survivin is not expressed in most terminally 

differentiated cells [9]. Survivin executes its antiapoptotic function by interactions with other proteins, 

e.g., the caspase inhibitor XIAP (X-linked inhibitor of apoptosis), thereby increasing the activity of the 

binding partners [11]. For instance, the expression of survivin in BCa tissue of cystectomy patients is 

associated with disease-specific mortality [10].  

Bcl-xL, an antiapoptotic member of the BCL2 family, prevents caspase activation by inhibiting 

cytochrome c release from the mitochondria [12]. Bcl-xL expression in BCa samples is associated with 

elevated tumor stage and grade [13]. 

In this study, we present data showing that simultaneous knockdown of Bcl-xL and survivin in 

combination with subsequent chemotherapy is most effective in inhibiting BCa cell proliferation and 

therefore might represent a promising treatment option for BCa. 

2. Results and Discussion 

Two siRNAs were used against each target gene. The siRNAs targeting Bcl-xL were named “BX-A” 

and “BX-B” and the siRNAs targeting survivin were “S-A” and “S-B”. Simultaneous knockdown of  
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Bcl-xL and survivin was analyzed by two siRNA combination treatments (“M2-A” and “M2-B”). In 

the M2-A combination the siRNAs BX-A and S-A were incubated simultaneously. BX-B and S-B were 

applied together in the M2-B combination (further information is given in the experimental section). 

2.1. Reduction of Bcl-xL and Survivin Expression after siRNA Transfection 

The selected target-specific siRNAs (40 nM) potently decreased the mRNA expression levels of 

Bcl-xL and survivin by 62%–85% in EJ28 and J82 BCa cells 48 h after transfection (Figure 1a). In the 

combination treatments M2-A and M2-B, in which both targets were inhibited simultaneously with 

20 nM siRNA per target, transcript level reductions by 39%–81% were achieved (Figure 1a). Western 

Blot analysis verified Bcl-xL and survivin protein knockdown 48 h after siRNA transfection in both 

BCa cell lines (Figure 1b). 

Figure 1. Effects of siRNA transfection on the expression of Bcl-xL and survivin.  

(a) Relative mRNA expression levels of Bcl-xL and survivin in EJ28 and J82 bladder 

cancer cells, 48 h after transfection. Expression values are normalized to the reference gene 

TBP and are shown relative to the control siRNA “ns-si” (=100%). Values represent averages 

of two independent experiments with their mean deviation; (b) Bcl-xL and survivin protein 

content detected by Western Blotting 48 h after transfection. Bcl-xL and survivin levels are 

shown normalized to the reference protein β-actin and relative to the ns-si control. 
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2.2. Cellular Effects of siRNA-Mediated Inhibition of Bcl-xL and Survivin 

Strong reductions in cell counts, down to 46% compared to the control, were observed after 

knockdown of survivin as well as after simultaneous inhibition of Bcl-xL and survivin 48 h after 

transfection (Figure 2a). Apoptosis induction was highest after combined knockdown of both 

antiapoptotic genes. For example, a 2.7- to 3.0-fold increase in percentage of apoptotic cells was seen 

in the M2-A and M2-B treatments in EJ28 cells (Figure 2b). This is an increase in apoptosis rate from 

10.4% in the ns-si control to 28.1% (M2-A) and to 31.1% (M2-B). In J82 cells, enhancement of 

apoptosis rate was less prominent. However, percentage of apoptotic cells in population increased from 

9% in the ns-si control to up to 16% after M2-B treatment (Figure 2b). The effect of combined  

siRNA-mediated knockdown of Bcl-xL and survivin on cancer cell apoptosis was additive in EJ28 cells. 

Figure 2. Reduction in cell counts and induction of apoptosis after single and combined 

siRNA-mediated inhibition of Bcl-xL and survivin in EJ28 and J82 bladder cancer cells. 

Analyses were performed 48 h after transfection. (a) Cell counts are shown relative to the 

control siRNA “ns-si” (=100%). Values shown are averages of two independent 

experiments with their mean deviation; (b) Percentage of apoptotic cells presented as  

sum of early and late apoptotic cells. Values shown are representatives of two  

independent experiments. 
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No changes in cell cycle distribution were found in both BCa cell lines after Bcl-xL knockdown 

(exemplarily shown for BX-B treatment in EJ28 cells, Figure 3) whereas inhibition of survivin, as well 

as combined knockdown of both target genes, caused polyploidy (Figure 3). For example, 6% and 7% 

of the EJ28 cells showed DNA content of 8N after transfection with the siRNA combinations M2-A 

and M2-B. Viability of EJ28 cells was significantly reduced by 29% in consequence of survivin 

knockdown, 96 h after siRNA transfection (Figure 4). Even stronger, simultaneous inhibition of  

Bcl-xL and survivin mediated cell viability reductions of 40% and 48% (Figure 4). An even greater 

impact on cell viability—40% and 48% reduction—was observed after simultaneous inhibition of  

Bcl-xL and survivin (Figure 4). 

Figure 3. Induction of polyploidy after knockdown of survivin in single target and target 

combination treatments. DNA content of EJ28 cells, 48 h after single and combined 

siRNA-mediated inhibition of Bcl-xL and survivin, is shown. Arrows point at polyploid 

cells with DNA content of 8N. Representative images of two independent experiments  

are shown. 
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2.3. Effects of Combined Treatment with siRNAs and Chemotherapy 

As shown previously, knockdown of Bcl-xL notably increased efficacy of cisplatin and mitomycin C 

therapy in EJ28 BCa cells [8]. For example, while inhibition of Bcl-xL alone only marginally 

increased apoptotic rate from 10% in the control to 12%–16% (Figure 2b), 33%–43% of the cells were 

apoptotic after BX-A or BX-B plus mitomycin C treatment compared to 13% in the ns-si + mitomycin 

C control (Figure 5b). Strongest enhancement of chemotherapy efficacy is mediated by simultaneous 

knockdown of Bcl-xL and survivin. In EJ28 cells, cellular viability decreased down to 6% after M2-B 

+ cisplatin treatment, whereas single target siRNA + chemotherapy treatments mediated reductions 

down to only 15%–36% (Figure 4). In addition, the lowest number of cells, as well as the highest 
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percentage of apoptotic cells in population, were found after M2-A and M2-B treatments in 

combination with subsequent chemotherapy in both BCa cell lines (Figures 5 and 6). For example, 

94% of the EJ28 cells were apoptotic in consequence of M2-B + cisplatin treatment, 72 h after 

transfection (Figure 5a). 

Figure 4. Reductions in viability of EJ28 cells after siRNA-mediated inhibition of Bcl-xL 

and survivin, with or without subsequent chemotherapy (CT). EJ28 cells were transfected 

with a total of 40 nM siRNAs for four hours. Twenty-four hours after transfection start, 

cells were treated with 2.1 µg/mL cisplatin (CDDP) for 24 h or with 0.9 µg/mL 

mitomycin C (MMC) for two hours. Cell viability was examined 96 h after transfection. 

Values shown are relative to the control siRNA “ns-si” (=100%, for all siRNA treatments) 

or relative to untreated cells (only for CDDP and MMC single treatments) and are averages 

of a fourfold determination. Error bars represent the 95% confidence interval. An unpaired 

Student’s t-test was used to compare the differences in cell viability between target-specific 

siRNA and ns-si treated cells (* p ≤ 0.05) as well as between target-specific siRNA + CT 

and ns-si + CT treated cells (# p ≤ 0.05). 
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The ApoTox-Glo Triplex Assay, which was performed exemplarily with EJ28 cells and the 

chemotherapeutic mitomycin C, verified reductions in cell viability mediated by Bcl-xL knockdown as 

well as by simultaneous inhibition of both antiapoptotic genes together with subsequent mitomycin C 

treatment (Figure 7). Moreover, this assay showed strong enhancement of caspase-3/7 activity in these 

samples, e.g., a 2.3-fold increase in caspase-3/7 activity after M2-A and M2-B plus chemotherapy 

treatment, and in consequence an increase of cytotoxicity (Figure 7). 
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Figure 5. Induction of apoptosis and reduction in cell counts after combined siRNA plus 

chemotherapy (CT) treatments in EJ28 bladder cancer cells. Cells were transfected with the 

respective siRNAs for four hours. “CT only” cells were treated with serum-free OptiMEM 

medium during transfection. Twenty-four hours after transfection start, cells were treated 

with 2.1 µg/mL cisplatin for 24 h (a,c) or with 0.9 µg/mL mitomycin C for 2 h (b,d). Rate 

of apoptosis—presented as sum of early and late apoptotic cells—(a,b), as well as cell 

counts (c,d) were determined 48 h and 72 h after transfection start. 
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Figure 6. Apoptosis rate after treatment of J82 bladder cancer cells with siRNAs and 

chemotherapy (CT). Cells were transfected with the respective siRNAs for four hours. “CT 

only” cells were treated with serum-free OptiMEM medium during transfection.  

Twenty-four hours after transfection start, cells were treated with 1.2 µg/mL cisplatin for 

24 h or with 1.0 µg/mL mitomycin C for two hours. Apoptosis rate—presented as sum of 

early and late apoptotic cells—was determined 72 h after transfection start. Values shown 

are averages of two independent experiments. Error bars represent the mean deviation. 
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Figure 7. Analyses of cell viability, cytotoxicity and caspase-3/7 activity after treatment of 

EJ28 cells with siRNAs and subsequent chemotherapy (CT). Cells were transfected with 

the respective siRNAs for four hours. “CT only” cells were treated with serum-free 

OptiMEM medium during transfection. Twenty-four hours after transfection start, cells 

were treated with 0.9 µg/mL mitomycin C for two hours. ApoTox-Glo triplex assay was 

performed 72 h after transfection. Values shown are mean values of duplicates and are 

relative to the control siRNA “ns-si” plus CT treatment (=100%). 
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2.4. Discussion 

Deregulation of programmed cell death, apoptosis, is a hallmark of cancer cells [5]. Antiapoptotic 

members of the BCL2 family as well as the members of the IAP family, which impair the execution of 

cell death processes, are often overexpressed in human cancers, including BCa, and enhance tumor cell 

survival [10,13,14]. Previous studies have shown that the knockdown of antiapoptotic BCL2 (B-cell 

CLL/lymphoma 2) and XIAP did not alter growth characteristics of the BCa cell lines EJ28 and J82, 

whereas inhibition of survivin decreased BCa cell proliferation and reductions in Bcl-xL levels 

increased chemotherapy efficacy [6–8]. Therefore, the aim of this study was to analyze, if the 

simultaneous knockdown of Bcl-xL and survivin might be superior in eliminating BCa cells to the 

single inhibition of these targets.  

Our results show that the combined inhibition of Bcl-xL and survivin caused BCa cell growth 

inhibitory effects comparable to single survivin knockdown at 48 h after transfection (Figure 2a). 

However, 96 h after treatment, reductions in cell viability were strongest after simultaneous inhibition 

of both antiapoptotic factors (Figure 4). Furthermore, targeting of Bcl-xL and survivin at the same time 

increased the effects of anticancer chemotherapy more pronounced than single target inhibitions. The 

tumor cell growth-inhibiting effects of Bcl-xL plus survivin knockdown and subsequent chemotherapy 

were stronger than after simultaneous inhibition of the four antiapoptotic genes BCL2, Bcl-xL, XIAP 

and survivin plus chemotherapy (Figures 4 and 5, and [8]). This is presumably due to the minor 

importance of BCL2 and XIAP in the analyzed BCa cell lines, and to the increased antiproliferative 

effects of survivin knockdown in the M2-A and M2-B treatments with 20 nM per siRNA in 

comparison to the previously conducted treatments in which BCL2, Bcl-xL, XIAP, and survivin were 

inhibited simultaneously by 10 nM siRNA per target gene [8]. For example, 6%–7% of the BCa cells 
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showed a DNA content of 8N after M2-A and M2-B treatment whereas only 2% did after simultaneous 

inhibition of BCL2, Bcl-xL, XIAP and survivin (Figure 3 and [6]). This induction of polyploidy is 

mediated by reduction in cellular survivin levels because survivin, an integral part of the chromosomal 

passenger complex, also regulates chromosome segregation and cytokinesis [15]. The impairment of 

mitosis and cytokinesis is not related to increased levels of apoptosis in the analyzed EJ28 and J82 

BCa cells. While induction of polyploidy after survivin knockdown was observed in both BCa cell 

lines, apoptosis induction occurred only in EJ28 cells (Figure 2b). Formation of polyploidic cells after 

survivin knockdown by siRNAs or antisense oligonucleotides was shown previously in different types 

of cancer [7,16–18]. 

The knockdown of genes that contribute to tumor development and progression shows great 

potential as an anticancer strategy [19]. Furthermore, the overexpression of certain genes, e.g., genes 

encoding drug efflux transporters such as ABCB1 (also known as MDR1), proteins of the human 

nucleotide excision repair such as ERCC1 as well as antiapoptotic proteins, has been shown to 

interfere with the efficacy of chemotherapy [20,21]. Likewise, high levels of specific proteins, e.g., 

IAP proteins and the regulator of cell cycle progression cyclin D1, can mediate resistance of cancer 

cells towards radiotherapy [22,23]. Therefore, the combination of target-specific molecular-based 

treatments with chemotherapy or radiotherapy could increase the efficacy of the conventional therapies 

and reverse acquired treatment resistances. The contribution of each target to malignant proliferation 

or to treatment resistance needs to be evaluated specifically for each tumor entity to omit unsuitable 

target genes while selecting the most relevant ones and in consequence to obtain the best possible 

therapies with minimal side effects. For example, the antiapoptotic proteins BCL2 and XIAP are of 

minor importance in EJ28 and J82 BCa cells, while Bcl-xL and survivin seem to be most  

important [6]. However, in other tumor entities, such as gastric cancer and non-small cell lung cancer, 

siRNA-mediated knockdown of BCL2 and XIAP, respectively, induced apoptosis and reduced tumor 

growth [24,25]. Likewise, even though the phosphatidylinositol 3-kinase (PI3K) p110 isoforms α and 

β are both upregulated in paclitaxel-resistant ovarian cancer cells only the siRNA-mediated 

knockdown of PI3K p110β resensitized these cells towards paclitaxel [26].  

Since the inhibition of a single target might be easily bypassed by cancer cells, e.g., by upregulation 

of other tumor growth-promoting genes [27,28], a multitarget approach seems to be more promising. 

As well, in the combination therapy settings where target-specific inhibitors and conventional 

treatments such as chemotherapy and radiotherapy were applied together, the simultaneous knockdown 

of carefully selected genes can be superior to single target inhibition. For example, the apoptotic rate in 

T24 BCa cells was significantly higher after simultaneous knockdown of livin, XIAP, and survivin in 

combination with mitomycin C than after single target knockdown plus chemotherapy [29]. As well, 

simultaneous targeting of two of the three antiapoptotic targets BCL2, Bcl-xL, and XIAP increased 

radiosensitivity of chondrosarcoma cells to a greater extent than the single inhibition of one gene [30]. 

Di Cresce et al. showed that simultaneous siRNA-mediated inhibition of thymidylate synthase and 

thymidine kinase 1 or 2 sensitized HeLa cells to 5-fluorodeoxyuridine and pemetrexed [31]. PC-3 

prostate cancer cells were sensitized towards TRAIL treatment by combined inhibition of cIAP-1, 

cIAP-2, and XIAP, but not by single target knockdown [32].  

The successful delivery of the negatively charged siRNA constructs in vivo remains the major 

challenge for clinical siRNA application [33]. Particularly, the systemic administration of siRNAs 
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provides several problems such as nuclease-mediated siRNA degradation, kidney filtration, as well as 

transport across the vascular endothelial barrier and the uptake into the target cells [34]. A study by 

Davis et al. showed that these obstacles can be overcome. The authors proved RRM2 target gene 

inhibition in tumor tissue after successful systemic siRNA application using a targeted, nanoparticle 

delivery system in patients with solid cancers [35]. For non-muscle invasive BCa, a possible 

application is the instillation of siRNAs—also together with a chemotherapeutic—after transurethral 

resection of the tumor. This local application should avoid many problems of a systemic siRNA 

delivery. The applicability of this approach was already shown in an orthotopic BCa mouse model. 

The intravesical treatment with liposome-encapsulated siRNAs targeting survivin and PLK1 

successfully reduced the mRNA levels of the targets and reduced tumor growth [36]. 

3. Experimental Section  

3.1. Cell Culture 

The human BCa cell lines EJ28 (University of Frankfurt, Frankfurt, Germany) and J82 (ATCC, 

Manassas, VA, USA)—both derived from muscle invasive bladder cancers—were cultured in 

Dulbecco’s modified Eagle’s medium (4.5 g/L glucose) containing 10% fetal calf serum, 1% MEM 

non-essential amino acids and 1% HEPES (all from Life Technologies, Darmstadt, Germany) under 

standard conditions (37 °C, humidified atmosphere containing 5% CO2). 

3.2. siRNA Transfection 

Two siRNAs against each target were selected and synthesized by Eurogentec (Seraing, Belgium). 

The siRNA target sequences were CAGCUGGAGUCAGUUUAGU (=BX-A) as well as 

GGGACAGCAUAUCAGAGCU (=BX-B) for Bcl-xL, and GAAGCAGUUUGAAGAAUUA (=S-A) 

as well as CCAACAAUAAGAAGAAAGA (=S-B) for survivin. All siRNAs had 3'-dTdT overhangs. 

Twenty-four or 72 h after seeding, cells were transfected for 4 h in serum-free OptiMEM (Life 

Technologies, Darmstadt, Germany) with a total of 40 nM siRNAs using DOTAP liposomal 

transfection reagent (ratio 1:30, w/w) according to the manufacturer’s instructions (Roche, Mannheim, 

Germany). In the siRNA combination “M2-A” the siRNAs BX-A and S-A (20 nM each) were 

incubated simultaneously. Accordingly, the constructs BX-B and S-B (20 nM each) were used in the 

treatment “M2-B”. Cells were transfected with 40 nM of the negative control siRNA (ns-si, reference: 

SR-CL000-005, Eurogentec) as control and for normalization. After 4 h, transfection medium was 

replaced by fresh culture medium and cells were incubated for a further 20 h to 92 h. For analyses, 

cells were harvested by trypsin treatment (0.05% trypsin/0.02% EDTA, 5 min, 37 °C). Detached and 

adherent cells were pooled and analyzed together. 

3.3. Treatment with Chemotherapy 

Cisplatin and mitomycin C were used as chemotherapeutics. Cisplatin-based combination 

chemotherapy is standard in the treatment of metastatic bladder cancer and might also be used in 

patients with localized muscle-invasive tumors before or after cystectomy [3]. Mitomycin C is applied 

as adjuvant intravesical chemotherapy after transurethral resection of non-muscle invasive bladder 
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cancers [4]. Since the siRNAs might also act as chemosensitizers for improving the prevention of 

recurrence and progression of non-muscle invasive bladder cancers, we also analyzed if the selected 

siRNAs are able to increase mitomycin C efficacy. This was done as preliminary test using the EJ28 

and J82 bladder cancer cell lines that are derived from muscle invasive tumors. 

If cells were treated with chemotherapeutics after siRNA transfection the following protocol was 

applied. Firstly, cells were transfected as described above. Secondly, chemotherapeutics were added  

24 h after the start of transfection. Final concentrations of cisplatin and mitomycin C were 2.1 µg/mL 

and 0.9 µg/mL, respectively, for EJ28 cells. For J82 cells, 1.2 µg/mL cisplatin and 1.0 µg/mL 

mitomycin C were used. Cisplatin was incubated for 24 h, and mitomycin C for 2 h. Following this, 

cells were washed once with PBS and were further cultivated with fresh culture medium. The  

ns-si + chemotherapy combination was used as control to evaluate the siRNA-mediated effects of  

the treatment. 

3.4. Cell Counts and Cell Viability 

Cells were counted using the Coulter Z2 Particle Count & Size Analyser (Beckman Coulter, 

Krefeld, Germany). Examination of cellular viability was performed in quadruplicates using the cell 

proliferation reagent WST-1 (Roche, Mannheim, Germany). Cells were seeded into 96-well culture 

plates and treated with siRNAs with or without subsequent chemotherapy as described above. After 

treatment, cells were incubated with 100 µL fresh culture medium. At 96 h after transfection start, 

10 µL WST-1 reagent were added to the cells. After incubation for 1–3 h, absorbance was measured 

with a spectrophotometer (Anthos labtec, Krefeld, Germany) at 450 nm and at 620 nm as reference. 

3.5. Apoptosis Detection and Cell Cycle Analyses 

Apoptosis was assessed by annexin V/propidium iodide (PI) staining, 48 h and 72 h after 

transfection start, using flow cytometry (Annexin V-FITC Apoptosis Detection Kit I, BD Biosciences, 

Heidelberg, Germany). In brief, after treatment, 1 × 105 cells were washed with cold PBS and 

resuspended in 100 µL binding buffer. Subsequently, 5 µL annexin V-FITC and 5 µL PI were added. 

Cells were incubated for 15 min at room temperature in the dark. After addition of a further 400 µL, 

binding buffer cells were analyzed by flow cytometry (FACScan, BD Biosciences, Heidelberg, 

Germany). Percentage of early (annexin V-FITC positive, PI negative) and late (annexin V-FITC 

positive, PI positive) apoptotic cells were determined by quadrant analysis of annexin V-FITC/PI plots 

using WinMDI2.8 software [37]. The CycleTest Plus DNA Reagent Kit (BD Biosciences, Heidelberg, 

Germany) was used according to the manufacturer's instructions for cell cycle analysis, 48 h after 

transfection, by flow cytometry. 

3.6. ApoTox-Glo Triplex Assay 

The ApoTox-Glo Triplex Assay (Promega, Mannheim, Germany) enables the consecutive 

determination of cell viability, cytotoxicity, and apoptosis in the same sample. Cells were seeded into 

black 96-well culture plates with clear bottoms and were treated with siRNAs with or without 

subsequent chemotherapy as described above. After treatment, cells were incubated with 100 µL fresh 
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cell culture medium. At 72 h after transfection start, 20 µL Viability/Cytotoxicity Reagent were added 

to the cells. Following incubation for 1 h, fluorescence was measured with the microplate multimode 

reader Mithras LB 940 (Berthold Technologies, Bad Wildbad, Germany) at 355Ex/495Em for 

quantification of cell viability and at 485Ex/535Em for determination of cytotoxicity. Afterwards, 

100 µL Caspase-Glo 3/7 Reagent were added to each well. Following incubation for 30 min, 

luminescence was measeured with the microplate multimode reader. 

3.7. RNA Isolation, cDNA Synthesis, and Quantitative PCR 

Total RNA was isolated using the InviTrap Spin Cell RNA Mini Kit (Invitek, Berlin, Germany) 

according to the manufacturer’s instructions. Afterwards, RNA was reverse transcribed into cDNA 

(SuperScript II Reverse Transcriptase; Life Technologies, Darmstadt, Germany). Transcript amounts 

of Bcl-xL, survivin and the reference gene TBP (TATA box binding protein) were determined by 

quantitative real-time PCR (qPCR) using the primers, probes, and kits listed in Table 1. 

Table 1. Sequences of primers and probes for quantitative PCR. 

Target Sequence 5'→3' 

Bcl-xL 1 target-specific Real-Time Reagent Mix (AJ Roboscreen, Leipzig, Germany) containing the 
appropriate primers and probes 

survivin 2 Primers: for: GAACTGGCCCTTCTTGGAG, rev: AAGTCTGGCTCGTTCTCAGTG  
Probe: Universal ProbeLibrary Probe #86 (Roche, Germany, cat.no. 04689119001) 

TBP 1 Primers: for: GAATATAATCCCAAGCGGTTTG, rev: ACTTCACATCACAGCTCCCC  
Probes: TTTCCCAGAACTGAAAATCAGTGCC-FL,  
LC-TGGTTCGTGGCTCTCTTATCCTCATG-PH 

1 LightCycler FastStart DNA Master Hybridization Probes (Roche); 2 LightCycler TaqMan Master (Roche); 

abbreviations: FL—fluorescence dye fluorescein; LC—fluorescence dye LC Red640; PH—phosphorylated 

3'-end. 

3.8. Western Blot 

Cells, 5 × 104 per sample, were lysed in 20 µL loading buffer (20% glycerol, 2% SDS, 125 mM 

Tris pH 6.8, 5% β-mercaptoethanol, bromophenol blue). After incubation at 95 °C for 5 min, proteins 

were separated on 8%–16% Precise Protein Gels (Fisher Scientific, Schwerte, Germany) and 

transferred onto PVDF membranes (GE Healthcare, Freiburg, Germany). Membranes were incubated 

with primary antibodies against Bcl-xL (1:100; clone 2H12; QED Bioscience Inc., San Diego, CA, 

USA) or survivin (1:1,000; NB500-201; Novus Biologicals, Littleton, CO, USA). Beta-actin detected 

by a monoclonal anti-β-actin antibody (1:20,000; Sigma-Aldrich, St. Louis, MO, USA) served as a 

loading control. The secondary polyclonal swine anti-rabbit immunoglobulins HRP-linked antibody 

(1:1,000, Dako, Glostrup, Denmark) for survivin, and the polyclonal rabbit anti-mouse 

immunoglobulins HRP-linked antibody (1:1,000; Dako, Glostrup, Denmark) for Bcl-xL and β-actin as 

well as the Enhanced Chemiluminescence Kit (GE Healthcare, Freiburg, Germany) were used for 

visualization. Content of the respective proteins was quantified by densitometry using Quantity One 

Basic software (Bio-Rad Laboratories, Munich, Germany). 
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3.9. Statistics 

Data are presented as mean ± mean deviation. Cell viability results are expressed as mean ± 95% 

confidence interval. An unpaired Student’s t-test was used to compare the differences in cell viability 

between cells treated with target-specific siRNAs vs. cells treated with ns-si (* p ≤ 0.05) as well as 

between cells treated with target-specific siRNAs + chemotherapy vs. cells treated with ns-si + 

chemotherapy (# p ≤ 0.05). 

4. Conclusions  

In conclusion, the simultaneous inhibition of multiple tumor-relevant genes in combination with 

conventional therapies—such as the siRNA-mediated knockdown of Bcl-xL plus survivin together 

with subsequent mitomycin C or cisplatin therapy—represents a promising option for improving 

bladder cancer treatment. 
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