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Abstract: Herein, coverslips were used as solid supports for the synthesis of gold nanoparticles
(AuNPs) in three steps: (i) detergent cleaning, (ii) evaporation of 4 nm gold film and (iii) exposure
at high annealing temperature (550 ◦C) for 3 h. Such active gold nanostructured supports were
investigated for their stability performances in aqueous saline buffers for new assessments of chemical
sensing. Two model buffers, namely saline-sodium phosphate-EDTA buffer (SSPE) and phosphate
buffer saline (PBS), that are often used in the construction of (bio)sensors, are selected for the optical
and microscopic investigations of their influence over the stability of annealed AuNPs on coverslips
when using a dropping procedure under dry and wet media working conditions. A study over five
weeks monitoring the evolution of the localized surface plasmon resonance (LSPR) chemosensing of
1,2-bis-(4-pyridyl)-ethene (BPE) is discussed. It is concluded that the optimal sensing configuration
is based on annealed AuNPs exposed to saline buffers under wet media conditions (overnight at
4 ◦C) and functionalized with BPE concentrations (10−3–10−11 M) with the highest LSPR spectra after
two weeks.
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1. Introduction

Metallic nanoparticles are attractive active supports for various optical (bio) sensing
applications [1–3]. For instance, gold nanoparticles (AuNPs) are responsible for improved sensitivity
and stability of optical sensing properties [4–6] and imaging [7]. Thus, AuNPs represent excellent
nanoplatforms in the development of various configurations of sensing chemicals and biomolecules
including viruses [8,9]. In this context, the localized surface plasmon resonance (LSPR) approach is
often used in (bio)sensing diagnostics by monitoring the changes in AuNPs size, shape, composition,
inter-particle distance, dielectric constant (refractive index) of the surrounding medium [8,10] and
the linear and/or non-linear optical properties [11]. However, before home-made AuNPs can be
successfully used in clinical studies, several issues should be addressed in terms of reproducibility,
reliability and stability.

In general, the most common synthesis method of AuNPs is to chemically reduce the metal salt
in a solution containing a stabilizer, thereby limiting the nanoparticle’s grain growth, controlling its
shape and improving its stability [12]. Reducing agents, such as hydrogen, hydrazine, alcohol, carbon
monoxide, Li AlH4, NaBH4 or R4N+ (Et3BH−), have been used to control the nano-size range [13].
For instance, colloidal AuNPs were synthesized by reacting chloroauric acid solution (HAuCl4) with
sodium citrate solution as the reducing and stabilizer agents [14–16]. Furthermore, on the basis of
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the particle diameter and the dielectric function of AuNPs, resonance elastic light scattering (RELS)
was used to monitor the ligand-exchange processes of the interactions of AuNPs with homocysteine,
cysteine and glutathione biomarkers.

Although chemical reduction is convenient for synthesizing nanoparticles, it also has certain
disadvantages. In addition to simplicity, this method requires extreme conditions such as high
temperature and pressure, and it takes a long time to complete the reaction. The most important
drawback is the nature of the reactants used in the reaction system. They are usually toxic chemicals
that present potential hazard to the environment and health [17,18].

On the other hand, the aggregation of colloidal AuNPs has been used for colorimetric [19],
electrochemical [20] and atomic force microscopy [21] investigations. In such applications, the choice
of buffer composition is crucial for analytical performances of the sensing scheme. For example, SSPE
and PBS saline buffers have been widely for dissolving, diluting or storing active biomolecules [22–24].
In other cases, buffers were used to study the effect of electrocatalytic performances of modified
electrodes for electrochemical biosensing [25–28]. However, the effect of saline buffers on the size and
dispersion stability of nanoparticles on solid supports has not yet been studied.

The present paper reports on the influence of the aqueous buffers SSPE and PBS over the stability
of high-annealed 4 nm gold film-coated coverslips using on optimized AuNPs synthesis protocol [29].
As it is stated in the experimental section, the annealed gold coverslips exhibit either pinkish colors
when uniformity is formed or blue colors when aggregated after buffer exposure. SEM and atomic
force microscope (AFM) imaging of AuNPs are collected and analyzed after dry and wet media
working conditions. Furthermore, an example of BPE (1,2-bis-(4-pyridyl)-ethene) chemical sensing
under optimal conditions is also discussed.

2. Materials and Methods

2.1. Chemicals

Liquid detergent Decon 90 (Decon Laboratories™ Decon 90™) was provided by Fisher Scientific
(Göteborg, Sweden). Sodium chloride (NaCl, purity 99.5%), sodium phosphate monobasic and dibasic
(purity 99.0%) and ethylenediaminetetraacetic acid (purity 99.0%) were provided by Sigma-Aldrich
(St. Louis, MO, USA), while trans 1, 2-bis-(4-pyridyl)-ethene (BPE) was purchased from Sigma-Aldrich
(Schnelldorf, Germany). Other chemicals were of analytical grade purity. Squared glass coverslips
were provided by Carl Roth GmbH +Co. KG, (Karlsruhe, Germany).

In the preparation of saline buffers and cleaning of coverslips, ultrapure distilled water
(18.2 MΩ·cm) was used, here named dd-water and produced by a Millipore Milli-Q water purification
system (Molsheim, France).

2.2. Instruments

Metal evaporation was performed with Plassys MEB 400 (Bestek, France) while a hot plate
(Thermo Fisher Scientific, Waltham, MA, USA) was used for thermal annealing of gold films under
clean room conditions.

Nanostructured coverslips were characterized with a scanning electron microscope (SEM)
(FEG-SU8030, Tokyo, Japan) and an atomic force microscope (AFM) (Bruker ICON, Billerica, MA, USA)
with cantilever ScanAsyst-Air in silicon nitride with a tip height of 2.5–8.0 mm. A spring constant
of 0.4 N/m and a reflective aluminum coating on the backside in standard ScanAsyst-Air mode were
used to characterize the morphology of AuNPs. The AFM PeakForce mode was employed for the
topographical characterization of annealed coverslips.

LSPR measurements (Figure 1) were performed with a Ø = 50 µm fiber QP50-2-UV-BX
(Ocean Optics, EW Duiven, The Netherlands) coupled with an optical spectrophotometer Maya 2000 Pro
and using a white exciting light source (DH-2000-BAC, Ocean Optics, EW Duiven, The Netherlands).
All spectra were recorded with a 10× objective.
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2.3. Data Analysis 
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parameters inform about the roughness of coverslips after different buffer treatments and count the 
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Ra is defined as the average roughness in µm describing the overall profile height characteristics 
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Figure 1. Set-up for localized surface plasmon resonance (LSPR) investigations of annealed gold
nanoparticles (AuNPs) on coverslips exposed to drops of aqueous and saline buffers. Once the different
drops of buffers were collected from the coverslips, three areas were observed and named a1 (under
the drop), b1 (in the vicinity of the drop) and c1 (far from the drop).

2.3. Data Analysis

SEM images were used for estimation of the size distribution of annealed nanoparticles using
the Public Domain ImageJ software developed by the National Institutes of Health based on the
SEM images.

Collected AFM images (1 µm × 1 µm) were analyzed using the Gwyddion software that
adjusts the colour scale according to the maximum and minimum height per line scan. This causes
regions on nanostructured glass coverslips to appear darker (i.e., lower) between nanoparticles.
In addition, two parameters (Ra and Rrms) were used to estimate the surface roughness of the annealed
coverslips either in air for naked AuNPs or after exposure to water or aqueous buffers (SSPE and PBS).
These parameters inform about the roughness of coverslips after different buffer treatments and count
the distance between nanoparticles and valleys. Larger distances correspond to rougher surfaces.

Ra is defined as the average roughness in µm describing the overall profile height characteristics
(less sensitive to large structures and valleys), while Rrms is the root mean square roughness of the
annealed surface averaged between the height deviations and the mean line/surface taken over the
evaluation length/area.

2.4. Preparation of Saline Buffers

The stock 20× SSPE buffer contains 3 M sodium chloride, 0.23 M sodium phosphate dibasic and
25 mM ethylenediaminetetraacetic acid dissolved in dd-water, pH 7.4. For all experiments, 1× SSPE
buffer was freshly prepared.

PBS buffer contains 1.5 M sodium chloride, 81 mM sodium phosphate dibasic and 19 mM sodium
phosphate monobasic dissolved in dd-water, pH 7.4. Five concentrations of BPE solutions (10−3,
10−5, 10−7, 10−9 and 10−11 M) were prepared from 97% concentrated BPE stock using dd-water as the
diluting solvent.

2.5. Preparation of Annealed Gold Nanostructures on Coverslips

There are three main steps for the fabrication of gold nanostructures on coverslips. (i) detergent
cleaning: squared glass coverslips were degreased with an aqueous solution of Decon90
detergent (2:8 v/v, dd-water/detergent) in an ultrasonic distilled water bath Elmasonic S30H
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(Elma Schmidbauer GmbH, Singen, Germany) at 50 ◦C for 15 min, followed by three times
ultrasonication in a dd-water bath for 5 min at 50 ◦C [29]. Further, each coverslip was extensively
rinsed with dd-water, dried under a nitrogen stream and placed on a hot plate at 100 ◦C for 10 min.
(ii) gold evaporation: the cleaned substrates were fixed on a circular evaporation plate, subsequently
scotch-labelled at the bottom and used for coating with gold thin (4 nm) films in an evaporator (Plassys
MEB 400) using a high purity 99.99% gold source (Neyco, Vanves, France) under 1 × 10−6 Torr pressure
at 25 ◦C with an evaporation rate of 0.01 nm/s. (iii) annealing: the 4 nm gold-coated coverslips were
thermally annealed on a hot plate at 550 ◦C for 3 h.

2.6. Effect of Buffers over the Stability of Annealed Gold on Thin Glasses

The influence of drops of water (2 µL), and 1× SSPE (2 and 5 µL) and PBS (5 µL) buffers on
annealed gold nanostructures on coverslips was investigated using two approaches with a common
step, an overnight exposure at 4 ◦C, in the presence of either (i) humid chamber petri dish—named
“wet media”— or (ii) no petri dish—named “dry media” (Figure 2).
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Figure 2. Naked-eye coverslips coated with annealed gold nanoparticles and exposed to wet and dry
media for an overnight at 4 ◦C.

3. Results and Discussions

3.1. Characterization of Annealed Gold Coated Coverslips—Bare AuNPs

Microscopic (SEM, AFM) and optical (LSPR) characterizations of annealed 4 nm gold-coated
coverslips were performed (Figure 3). The SEM and AFM images depict a homogeneous distribution
of spherical nanoparticles that are confirmed by the size distribution in the range of 4–16 nm,
where a majority of AuNPs (82%) exhibit a diameter of 8–10 nm.

The AFM image and recorded LSPR spectra also confirm the homogeneity of AuNPs from the
line profile analysis with 1.410 nm Ra and 1.785 nm Rrms roughness values and from the overlapping
of five LSPR spectra collected from five different areas of an annealed coverslip with the maximum
plasmonic resonance at 542 nm.
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Figure 3. SEM (i), atomic force microscope (AFM) (ii) and LSPR (iii) characterizations of annealed gold
nanostructured (AuNPs) coverslips. The size distribution of AuNPs (based on SEM image) and line
profile analysis (based on AFM images) are also presented in the middle panel. The SEM, AFM and
LSPR measurements were performed under cleanroom conditions at 21 ◦C.

3.2. Influence of Water and Saline Buffers over the Stability of Annealed AuNPs on Coverslips

3.2.1. Study of Water Solvent

Several surface characterization techniques were employed for the nanostructured coverslips
exposed to dd-water drop (2 µL) for several hours at 4 ◦C: SEM imaging with emphasized AuNPs
size distribution, AFM imaging with the height profile analysis and LSPR collecting spectra (Figure 4).
More specifically, on the coverslip, three areas were characterized: a1, just under the drop, b1, in the
vicinity of the drop, and c1, far from the drop.

It is noticed from the SEM imaging (Figure 4i) very similar morphologies of nanoparticles whatever
the tested position. Thus, the nanoparticles are spherical and homogeneously distributed. This is
confirmed by the AuNPs size distribution analysis, for which no significant differences were observed.
The diameter of the nanoparticles is in the majority 8–10 nm and the distribution is quite narrow.
The deposition of the water drop has no significant effect on the geometry of nanoparticles and does
not influence their stability on the coverslip substrate.

These observations are also confirmed by the AFM imaging (Figure 4ii) with very similar Ra (nm)
(a1-2.01; b1-2.2.06; c1-2.05) and Rms (nm) (a1-2.53; b1-2.57; c1-2.55) roughness values of the three
selected areas. Concerning the LSPR spectra (Figure 4iii), a similar plasmonic peak evolution (λmax

at 559.78 nm) of the a1, b1 and c1 areas with optical density (OD) maximum values of 0.183 for NPs
(a1-0.182; b1-0.182; c1-0.179) was recorded.
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Figure 4. SEM (i), AFM (ii) and LSPR (iii) characterizations of annealed gold nanostructured (AuNPs)
coverslips exposed to water drops, air dried and with three investigated areas: a1 (under the drop),
b1 (in the vicinity of the drop) and c1 (far from the drop). The size distribution of AuNPs (based on
SEM image) and line profile analysis (based on AFM images) were acquired for a1, b1 and c1 (dd-water,
pH = 7.0). The SEM, AFM and LSPR measurements were performed under cleanroom conditions
at 21 ◦C.

3.2.2. Study of SSPE Buffer

The SEM images in area a1 show that AuNPs form worm-like aggregates of almost ten AuNPs
particles when dropped with 1× SSPE buffer under dry media (2 and 5 µL), whereas they form smaller
aggregates under wet media (5 µL).
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The SEM images in area b1 show a similar morphology under dry media than this one observed
under wet media in area a1. AuNPs are almost absent on the substrate for the highest buffer
concentration under the dry condition. Under the wet condition, the aspect of the AuNPs is very
similar to this one observed for the annealed AuNPs in Figure 2.

The SEM images (Figure 5i) in area c1 show a similar morphology for 1× SSPE buffer under dry
media (A) and for the wet media (C) than was also observed for the annealed AuNPs in Figure 2.
For the 5 µL buffer under dry media (B), the images evidence some aggregates.
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Figure 5. SEM (i), AFM (ii) and LSPR (iii) characterizations of annealed gold nanostructured (AuNPs)
coverslips exposed to three drops of SSPE per coverslip with three areas investigated for each
deposited/removed drop (a1, under the drop, b1, in the vicinity of the drop, and c1, far from the drop).
Two approaches were tested (A) 2 µL SSPE drop and (B) 5 µL SSPE drop on coverslip for an overnight
at 4 ◦C under dry media; (C) 5 µL SSPE drop on coverslip for an overnight at 4 ◦C under wet media
(1× SSPE buffer, pH = 7.4). The SEM, AFM and LSPR measurements were performed under cleanroom
conditions at 21 ◦C.

To conclude, the dropping of 1× SSPE buffer clearly affects the morphology and the stability of
annealed AuNPs on coverslips, especially under dry media and strongly in the presence of 5 µL buffer
under wet conditions.
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The size distribution of AuNPs (based on SEM image) and line profile analysis (based on AFM
images) (Figure 5ii) were also acquired for the a1, b1 and c1 areas. Moreover, the variation in the Rrms

values (data not shown), that are similar for the dry (b1—4.977 nm) and wet media (b1—3.852 nm),
showed no further changes on area c1 but strongly affected area a1 for both conditions. The highest
Rrms value is observed for the buffer content of 2 µL 1× SSPE in dry condition in area a1—7.638 nm,
probably due to the faster evaporation of the drop.

As expected, similar LSPR resonant spectra with a maximum of extinction versus wavelength
were obtained for the naked AuNPs presented on the c1 area of samples under dry and wet media.
For the b1 area under dry media, no plasmonic peak spectra are recorded contrary to a well-defined
spectrum for the sample under wet media. Concerning the a1 zone for all tested samples, no LSPR
peak was possible (Figure 5iii).

In conclusion, the protocol of annealed AuNPs under wet media shows good particle stability on
coverslips and it was used for PBS buffer study.

3.2.3. Study of PBS Buffer

Three drops of 5 µL PBS buffer were placed on annealed AuNPs and kept under wet media
for overnight at 4 ◦C. The SEM images (Figure 6i) depict a similar behavior of agglomeration of
nanoparticles in chains (a1 area) close to those images obtained in the presence of SSPE buffer (5 µL),
but under dry media. Very few AuNPs are observed in the b1 area, suggesting a stronger destabilization
effect of the PBS buffer over the annealed NPs. These observations are also confirmed by AFM imaging
(Figure 6ii) and the corresponding line profile analysis with Rrms roughness values of 6.33 for a1,
1.94 for b1 and 2.91 nm for c1.
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Figure 6. SEM (i), AFM (ii) and LSPR (iii) characterizations of annealed gold nanostructured (AuNPs)
coverslips exposed to three drops of PBS (5 µL) per coverslip under wet media with three areas
investigated for each deposited/removed drop: a1, under the drop, b1, in the vicinity of the drop,
and c1, far from the drop (10× PBS buffer, pH = 7.4). The SEM, AFM and LSPR measurements were
performed under cleanroom conditions at 21 ◦C.
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The LSPR spectra were collected from annealed AuNPs after the deposition of three PBS drops
with three tested areas (a1, b1 and c1) per drop. A resonant plasmonic peak was recorded from area c1,
while no peaks were noted for areas a1 and b1 (Figure 6iii).

3.3. Sensing of Chemical BPE Molecules in Aqueous Solution with SEM, AFM and LSPR Characterization

Based on the previous results on the stability of annealed AuNPs on coverslips in the presence of
a water solvent, the functionalization of AuNPs in the presence of model BPE molecules in aqueous
solution was investigated.

The SEM images (data not shown) show dense, homogeneous and spherical AuNPs after
treatment with BPE solutions. The NPs size distribution is distributed in a narrow range from 4
to 16 nm. For instance, the 8 nm AuNPs are the mostly formed particles on the coverslips (52.8%)
and further modified by exposure to five BPE concentrations: 10−3 M (30.3%), 10−5 M (49.8%),
10−7 M (48.3%), 10−9 M (50.6%) and 10−11 M (46.6%). Other NPs sizes varied from 10 > 12 > 16 nm for
both exposed and not exposed to BPE concentrations. No significant size differences between the naked
and BPE-exposed AuNPs are observed. However, as the BPE concentration increased, the presence of
gaps between the nanoparticles was observed.

The AFM imaging of the BPE-modified AuNPs (Figure 7) confirms the homogeneous surface
morphology of AuNPs on the coverslips shown with SEM images, with no large Rrms differences
(3.53 to 4.55 nm) for the five BPE concentrations but higher than the naked AuNPs (Rrms = 2.55).

Bioengineering 2020, 7, x FOR PEER REVIEW 11 of 14 

(48.3%), 10−9 M (50.6%) and 10−11 M (46.6%). Other NPs sizes varied from 10 > 12 > 16 nm for both 

exposed and not exposed to BPE concentrations. No significant size differences between the naked 

and BPE-exposed AuNPs are observed. However, as the BPE concentration increased, the presence 

of gaps between the nanoparticles was observed.  

The AFM imaging of the BPE-modified AuNPs (Figure 7) confirms the homogeneous surface 

morphology of AuNPs on the coverslips shown with SEM images, with no large Rrms differences (3.53 

to 4.55 nm) for the five BPE concentrations but higher than the naked AuNPs (Rrms = 2.55).  

 

 

Figure 7. AFM images of annealed AuNPs modified by different concentrations of BPE model 

molecules, cross-section analysis was based on the profile line analysis. (a) 10−3 M BPE; (b) 10−5 M BPE; 

(c) 10−7 M BPE; (d) 10−9 M BPE; (e) 10−11 M BPE. The AFM measurements were performed under 

cleanroom conditions at 21 °C. 

Figure 7. AFM images of annealed AuNPs modified by different concentrations of BPE model
molecules, cross-section analysis was based on the profile line analysis. (a) 10−3 M BPE; (b) 10−5 M BPE;
(c) 10−7 M BPE; (d) 10−9 M BPE; (e) 10−11 M BPE. The AFM measurements were performed under
cleanroom conditions at 21 ◦C.
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The evolution of LSPR spectra of annealed AuNPs exposed to BPE concentrations over five weeks
was investigated (Figure 8). Moreover, the values of the maximum resonant wavelength length with its
corresponding maximum optical density (ODmax) are reported in Table 1. Additionally, reproducible
LSPR spectra were collected from larger coverslip areas (about 1 cm2).

Bioengineering 2020, 7, x FOR PEER REVIEW 12 of 14 

The evolution of LSPR spectra of annealed AuNPs exposed to BPE concentrations over five 

weeks was investigated (Figure 8). Moreover, the values of the maximum resonant wavelength length 

with its corresponding maximum optical density (ODmax) are reported in Table 1. Additionally, 

reproducible LSPR spectra were collected from larger coverslip areas (about 1 cm2). 

Table 1. Evolution of LSPR spectra of AuNPs functionalized with different BPE concentrations over 

five weeks. The LSPR measurements were performed under cleanroom conditions at 21 °C. 

[BPE]  
Fresh 

Functionalization 

After One 

Week 

After Two 

Weeks 

After Three 

Weeks 

After Four 

Weeks 

After Five 

Weeks 

10−3 

M 

λmax 

(nm) 
548.210 549.904 550.792 553.910 552.660 552.660 

ODmax 0.13240 0.16940 0.18220 0.17680 0.16668 0.16760 

10−5 

M 

λmax 

(nm) 
548.566 549.814 550.260 553.110 552.660 552.660 

ODmax 0.12480 0.16760 0.18100 0.17440 0.17420 0.17540 

10−7 

M 

λmax 

(nm) 
550.706 549.636 548.566 553.110 559.780 552.660 

ODmax 0.12300 0.14680 0.15720 0.14320 0.13960 0.14600 

10−9 

M 

λmax 

(nm) 
551.864 551.062 550.440 553.288 559.780 559.780 

ODmax 0.10820 0.13380 0.14560 0.12980 0.14600 0.14680 

10−11 

M 

λmax 

(nm) 
551.864 539.290 542.412 548.654 559.870 552.660 

ODmax 0.10740 0.13020 0.14540 0.13940 0.12640 0.13140 

The lower tested concentration 10−11 M of BPE is detectable using annealed AuNPs on coverslips. 

The ODmax values increased from the day of nanoparticle functionalization with five BPE 

concentrations up to 14 days. After two weeks, the ODmax values were decreasing but were still higher 

than those obtained in the day of functionalization (named Fresh). It is noticed that λmax values 

increased as expected from 10−11 to 10−3 M BPE with the coated annealed AuNPs from the preparation 

day to the third week. After the third and fourth weeks, the plasmonic properties are strongly 

degraded. 

 

Figure 8. Evolution of maximum optical density (ODmax) of annealed AuNPs functionalized with five 

BPE concentrations over five weeks (fresh—the day of functionalization). The coverslip was 

evaporated with 4 nm Au and annealed at 550 °C for 3 h. 

To conclude, by comparing both plasmonic parameters (λmax, ODmax), two weeks testing is 

recommended for an LSPR investigation of the stability of BPE functionalized Au NPs on coverslips. 

Figure 8. Evolution of maximum optical density (ODmax) of annealed AuNPs functionalized with five
BPE concentrations over five weeks (fresh—the day of functionalization). The coverslip was evaporated
with 4 nm Au and annealed at 550 ◦C for 3 h.

Table 1. Evolution of LSPR spectra of AuNPs functionalized with different BPE concentrations over
five weeks. The LSPR measurements were performed under cleanroom conditions at 21 ◦C.

[BPE] Fresh
Functionalization

After One
Week

After Two
Weeks

After Three
Weeks

After Four
Weeks

After Five
Weeks

10−3 M
λmax (nm) 548.210 549.904 550.792 553.910 552.660 552.660

ODmax 0.13240 0.16940 0.18220 0.17680 0.16668 0.16760

10−5 M
λmax (nm) 548.566 549.814 550.260 553.110 552.660 552.660

ODmax 0.12480 0.16760 0.18100 0.17440 0.17420 0.17540

10−7 M
λmax (nm) 550.706 549.636 548.566 553.110 559.780 552.660

ODmax 0.12300 0.14680 0.15720 0.14320 0.13960 0.14600

10−9 M
λmax (nm) 551.864 551.062 550.440 553.288 559.780 559.780

ODmax 0.10820 0.13380 0.14560 0.12980 0.14600 0.14680

10−11 M
λmax (nm) 551.864 539.290 542.412 548.654 559.870 552.660

ODmax 0.10740 0.13020 0.14540 0.13940 0.12640 0.13140

The lower tested concentration 10−11 M of BPE is detectable using annealed AuNPs on coverslips.
The ODmax values increased from the day of nanoparticle functionalization with five BPE concentrations
up to 14 days. After two weeks, the ODmax values were decreasing but were still higher than those
obtained in the day of functionalization (named Fresh). It is noticed that λmax values increased as
expected from 10−11 to 10−3 M BPE with the coated annealed AuNPs from the preparation day to the
third week. After the third and fourth weeks, the plasmonic properties are strongly degraded.

To conclude, by comparing both plasmonic parameters (λmax, ODmax), two weeks testing is
recommended for an LSPR investigation of the stability of BPE functionalized AuNPs on coverslips.

4. Conclusions

In this work, high-annealed AuNPs were prepared on thin coverslips at a large scale, showing
homogeneity and well-defined plasmonic resonant peaks. Knowing the important roles of biological
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buffers (for instance SSPE and PBS) in the aliquots and (bio) functionalization preparation steps,
SEM/AFM/LSPR studies of nanoparticles stability in the presence of these buffers are herein reported.
The influence of tiny drops of dd-water and BPE aqueous solutions for sensing on an annealed gold
nanoparticles surface is also investigated. Dry and wet media working configurations were tested by
dropping buffers on AuNPs. No effect in the presence of dd-water was remarked, while SSPE and
PBS destabilized the annealed AuNPs under dry media. However, the AuNPs are less affected by
saline SSPE and PBS buffers under 4 ◦C wet media. LSPR sensing of 10−11 M BPE was also possible on
AuNPs with good plasmonic signal stability over two weeks.
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