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Purpose of review

There has been recent debate about the lack of compelling scientific evidence on the efficacy of cognitive
interventions. The goal of this study is to review the current state of cognitive interventions in Alzheimer’s
disease and Parkinson’s disease, present emerging mechanisms, and discuss the role of imaging in
designing effective intervention strategies.

Recent findings

Cognitive interventions appear to be promising in Alzheimer’s disease and Parkinson’s disease. Although
feasibility has been shown in mild cognitive impairment, early Alzheimer’s disease, and mild to moderate
Parkinson’s disease, studies to investigate long-term efficacy and mechanisms underlying these interventions
are still needed.

Summary

There is a need to conduct scientifically rigorous studies to validate the efficacy of cognitive intervention
trials. Future studies will greatly benefit from including longitudinal imaging in their study design. Imaging
can be used to demonstrate the efficacy and mechanisms by measuring brain changes over the intervention
period. Imaging can also be used to determine biological and disease-related factors that may influence
the treatment response, that is, the effect modifiers. Consideration of effect modifiers will allow us to
measure the treatment response in biomarkers and cognition with greater sensitivity and also aid in
designing trials that will lead to better patient outcomes.
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The world population is aging at an accelerated rate.
With increasing life expectancy, more people will be
diagnosed with neurodegenerative disorders such as
Alzheimer’s disease and Parkinson’s disease. These
diseases are characterized by the deposition of
abnormal proteins in the brain that are tied into
specific clinical symptoms and cognitive deficits.
Cognitive deficits in Alzheimer’s disease: the
primary pathological causes of Alzheimer’s disease
are neuritic plaques composed of b-amyloid fibrils
and neurofibrillary tangles composed of hyperphos-
phorylated tau [1]. These disorders cause neuro-
degeneration typically but not always beginning
in the medial temporal lobes. Though early cogni-
tive deficits are related to memory; decline is seen in
all cognitive domains as the disease progresses
[2–4]. Cognitive deficits in Parkinson’s disease: the
primary pathological causes of Parkinson’s disease
are Lewy bodies, which are mainly composed of a
rs Kluwer Health, Inc. All rights rese
characterized by progressive worsening of motor
symptoms, cognitive impairment, and executive dys-
function, in particular, is a common aspect [6–8]. In
those with Parkinson’s disease progressing to mild
cognitive impairment (MCI) (typically multidomain
nonamnestic) and dementia, visuospatial, working
rved. www.co-neurology.com
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KEY POINTS

� Studies to investigate long-term efficacy and
mechanisms underlying cognitive interventions
are needed.

� Imaging can play a key role in demonstrating the
efficacy and mechanisms underlying cognitive
intervention trials.

� Imaging can be used to determine effect modifiers and,
thus, improve treatment response through sample
enrichment, stratification, and intervention optimization.

Neuroimaging
memory, language, and learning and recall deficits
are additionally observed [9].

Observational studies in Alzheimer’s disease and
Parkinson’s disease have provided evidence that non-
pharmacological or behavioral changes are associ-
ated with better disease courses [10]. Although
there is emerging evidence that cognitive interven-
tions may provide neuroprotective, neurorestorative,
and secondary prevention benefits, there has been
debate about the lack of compelling scientific evi-
dence backing their effectiveness [11–15].The goal of
this work is to review the current state of cognitive
interventions in Alzheimer’s disease and Parkinson’s
disease, present emerging mechanisms, and discuss
the role of imaging in designing intervention trials.
COGNITIVE INTERVENTIONS: EXISTING
LITERATURE AND EMERGING
MECHANISMS

Cognitive interventions can be divided into cogni-
tive stimulation, cognitive training, and cognitive
rehabilitation. Cognitive stimulation engages
participants in a range of general activities and
discussions, and is commonly conducted in groups.
It aims at general enhancement of cognitive and
social functioning. Cognitive training focuses on
guided practice on a set of tasks that reflect particu-
lar cognitive functions, such as memory, attention
or problem solving or offers instruction, and prac-
tice of mnemonic approaches such as the method of
loci or visual imagery (i.e., strategy training). Cog-
nitive rehabilitation intends to identify and address
the individual’s needs and goals, which may require
strategies for taking in new information or compen-
satory methods such as using memory aids [13].

This section reviews the existing literature on
cognitive interventions in Alzheimer’s disease and
Parkinson’s disease and possible mechanisms. In
addition to cognitive intervention studies, we have
included literature from the field of cognitive
reserve which is often used to explain the
406 www.co-neurology.com
intersubject variability in cognitive performance
in the face of brain pathology [16]. Cognitive inter-
vention is suggested to increase an individual’s
cognitive reserve [16] and, therefore, mechanistic
interpretations associated with higher vs. lower
cognitive reserve are generalizable to mechanisms
invoked through cognitive interventions.
COGNITIVE INTERVENTIONS IN
ALZHEIMER’S DISEASE

Cognitive stimulation consistently improves global
cognition, primarily in individuals with mild-to-
moderate dementia [15,17]. These benefits appear
to be over and above any medication effects and
remained evident at 3 months follow-up. Significant
benefits were also noted for quality of life and well
being, and on clinical staff ratings of communi-
cation and social interaction. No effects were found
for mood, activities of daily living or challenging
behavior [15,17] (Table 1). However, cognitive train-
ing did not result in any statistically significant
effects in any domain for early stages of Alzheimer’s
disease [12,13]. Cognitive rehabilitation may be
promising for self-rated competence and satisfac-
tion in performing meaningful personal goals,
memory capacity, and general quality of life in
Alzheimer’s disease patients [12]. For general quality
of life, these effects persisted 6 months after the
intervention [12]. However, the authors stated that
more studies are required to obtain definitive evi-
dence (Table 1). In MCI, cognitive training resulted
in small benefits for episodic memory and other
cognitive functions [18,19], although there is debate
about these effects [14]. A recent review concluded
that computerized-cognitive training (CCT) may be
promising for improving attention and executive
functions, and reducing depressive symptoms and
anxiety [20

&

]. Yet, another recent review concluded
that there is not enough evidence to support CCT
alone for improvement or maintenance of cognitive
function in MCI or Alzheimer’s disease [21

&

]. Cog-
nitive stimulation has been less intensively studied
in MCI. Wenisch et al. [22] found small benefits for
an associative memory paradigm but more studies
are needed for definite evidence. Cognitive rehabil-
itation [14] may be beneficial for subjective
measures of cognition and neuropsychiatric symp-
toms [23], whereas a current review suggested that
objective effects on specific cognitive domains were
inconsistent across studies (Table 1) [24].
Underlying mechanisms

In Alzheimer’s disease, studies in transgenic mice
with environmental enrichment have found
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Table 1. Cognitive intervention methods and their effects on neurodegenerative diseases

Cognitive stimulation Cognitive training Cognitive rehabilitation

Alzheimer’s
disease

Improves global cognition No significant effects on
objective measures of cognition

Improves self-rated competence

Improves quality of life
and well being

Improves memory capacity

Improves communication
and social interaction

Increases quality of life

Does not improve activities
of daily living, mood,
or challenging behavior

Mild cognitive
impairment

Insufficient evidence Small benefits for episodic memory
and other cognitive functions
(amnestic subtype)

Beneficial for subjective measures
of cognition and
neuropsychiatric symptoms

Improvements in executive
functioning (nonamnestic
subtype common in Parkinson’s disease)

Inconsistent effects for objective
measures of cognition

Parkinson’s disease
(mild-to-moderate)

Insufficient evidence Improvements in working memory,
processing speed, and
executive functioning

Improvements seen in cognition,
specifically attention

Improves quality of life
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alteration in behavioral, cellular, and molecular
aspects of pathogenesis [25]. Mice raised with social,
physical, and cognitive stimulation showed protec-
tion against cognitive impairment, decreased brain
b-amyloid deposition, and increased hippocampal
synaptic immunoreactivity [26]. However, the liter-
ature in humans based on cognitive reserve studies
is inconsistent. No effect of cognitive reserve has
been found on the underlying Alzheimer’s disease
pathology [27–29] and cognitive reserve is also
suggested to lower the degree of Alzheimer’s disease
pathologies [30–32]. Though the effect of cognitive
intervention on Alzheimer’s disease pathology may
be minimal, measuring amyloid and tau levels using
CSF and PET imaging during the course of the
cognitive interventions will be important in answer-
ing this debated question.

There is sufficient evidence to support that brain
structure and function differ with cognitive reserve
[33–35]. As plasticity is fundamental to the patho-
physiology of Alzheimer’s disease [36], the possible
mechanisms invoked by cognitive interventions
may be through brain structure and function [37].
Though there is some evidence of transient increase
in gray matter with cognitive interventions, there
are no studies that have shown the long-term main-
tenance of these neuronal increases [38,39]. Change
in neural activity is more common than volumetric
increases after cognitive training [39–41]. This
change can be either activation of new regions, or
decreases/increases in neural activity in task-related
structures [39,42]. Alterations of activity following
cognitive training may reflect flexibility in
1350-7540 Copyright � 2016 Wolters Kluwer Health, Inc. All rights rese
deployment of resources because of strategy change
rather than a manifestation of plasticity resulting in
an increase in intrinsic neural or cognitive capacity
[43]. To provide compelling scientific evidence for
efficacy of cognitive interventions, measuring brain
changes is fundamental in long-term trials [44].
COGNITIVE INTERVENTIONS IN
PARKINSON’S DISEASE

Despite their clinical efficacy for motor symptoms,
antiparkinsonian medications can negatively
impact cognition and behavior [45]. Cognitive
interventions that provide clinical benefit without
detrimental side-effects are therefore needed to mit-
igate disabling nonmotor symptoms. Few studies
have examined the effects of cognitive intervention
in Parkinson’s disease and have primarily used cog-
nitive training (Table 1). The combination of cog-
nitive interventions with physical therapies for
Parkinson’s disease makes it hard to discern the
effect of cognitive intervention alone. Cognitive
performance was improved on tests of attention,
information processing speed, executive functions,
semantic verbal fluency, and visuospatial abilities in
Parkinson’s disease patients who received CCT
[46,47] compared with Parkinson’s disease control
patients, and in some cases changes were main-
tained at 6-month follow-up [47]. Another study
examining the effects of CCT focusing on processing
speed in individuals with different subtypes of MCI
[48] found that the single domain, nonamnestic
MCI subtype (common in Parkinson’s disease)
rved. www.co-neurology.com 407



Neuroimaging
showed the greatest improvement compared with
other subtypes or controls and these changes were
maintained over 5 years. A recent meta-analysis of
randomized-controlled trials of cognitive training in
patients with mild-to-moderate Parkinson’s disease
[49

&

] found only seven studies using repeated prac-
tice on cognitively challenging tasks of computer-
ized or paper-and-pencil approaches for at least 4 h.
Large and statistically significant effect sizes were
found for working memory, processing speed, and
executive functioning, but effect sizes were small to
negligible and nonsignificant for memory, atten-
tion, visuospatial abilities, depression, quality of
life, and activities of daily living.
Underlying mechanisms

Similar to Alzheimer’s disease, the mechanism of
action maybe through brain structure and function.
A recent study by Nombela et al. [50] compared the
performance of Parkinson’s disease patients and
healthy controls on a measure of attention and
executive functioning during functional MRI (fMRI)
and found that performance during ‘posttreatment’
scanning showed that only the Parkinson’s disease
patients who received training showed improve-
ment on the task (vs. untrained Parkinson’s disease
and controls), and there were corresponding alter-
ations in brain activation in primarily frontal and
parietal areas.

In addition, dopamine levels probably play an
important role in Parkinson’s disease. Variations in
the dopamine transporter gene (DAT1) appear to be
the key in regulating striatal dopamine availability
[51]. Some investigators have assessed performance
gains across several sessions of working memory
training to examine the influence of the DAT1 poly-
morphism on plasticity [52]. Young adults were
assessed with a cognitive test battery before receiv-
ing 20–25 sessions of CCT over 4 weeks on seven
working memory tasks and were found to have
improved performance, with larger gains observed
in DAT1 9/10-repeat carriers than DAT1 10-repeat
carriers. Given the above assumption, larger training
gains in DAT 9/10-repeat carriers may be related to
lower striatal DAT availability resulting in higher
extracellular dopamine and more active dopamin-
ergic pathways. In normal aging, age-related differ-
ences in presynaptic binding potential for the
dopamine transporter as well as postsynaptic recep-
tor densities account for significant portions of the
age-related variation in executive functioning, epi-
sodic memory, and information processing speed
[53–55], and these associations are seen in striatal as
well as extrastriatal dopamine markers [56,57]. Stud-
ies have demonstrated that cognitive training may
408 www.co-neurology.com
enhance performance on tasks demanding execu-
tive functioning in healthy older adults [58,59] and
that executive plasticity is associated with striatal
increases of neural activity [60]. Working memory
underlies executive functioning [61] (i.e., higher-
order abilities that underlie skills necessary for per-
forming daily activities and commonly affected in
Parkinson’s disease). Changes in the basal ganglia
and executive-control network, that is, dorsolateral
frontal and parietal neocortices, as well as changes
in dopamine receptor density, have been noted
following cognitive intervention in non-Parkinson’s
disease individuals [62].
ROLE OF IMAGING IN COGNITIVE
INTERVENTION TRIALS

Demonstrating efficacy and mechanisms

The key mechanisms of action and efficacy may be
demonstrated by measuring the slower rate of brain
shrinkage (because of pathology) in individuals
undergoing cognitive training vs. those who are
not. Additionally, positive neuroplasticity changes
in the structural and functional connectivity of the
brain (i.e., increased synaptic strengths and synap-
togenesis [63]) have been suggested and are sup-
ported by cognitive reserve imaging studies.
Several MRI acquisitions can be useful in measuring
intervention-related brain structural and functional
changes: structural MRI: recently published meth-
odologies utilize high dimensional normalization
between serial MRI scans and require smaller sample
sizes to see trajectory changes [64–67]. We hypoth-
esize that an effective cognitive intervention may
slow the progression of age and pathology-related
atrophy in disease-specific signature regions. Diffu-
sion tensor imaging: white matter plasticity because
of long-term practice effects (e.g., professional musi-
cians, early blindness, and car racing) [68–71] has
been demonstrated using diffusion tensor imaging.
We hypothesize that cognitive interventions may be
successful in attenuating the rapid decline in frac-
tional anisotropy and diffusivity increases seen in
Alzheimer’s disease and Parkinson’s disease patients
[72,73]. fMRI: exercise-induced functional plasticity
in large-scale systems in the aging brain over 12
months has been measured [74]. In addition to task
fMRI, task-free MRI can aid in measuring local and
global functional plasticity changes [75,76]. How-
ever, the relatively high variability of the method
needs to be considered [77]. Arterial spin labeling:
arterial spin labeling, a perfusion imaging tech-
nique, can detect changes in cerebral perfusion with
good accuracy [78,79] and will be useful in capturing
intervention-related neuronal changes [80–82].
Volume 29 � Number 4 � August 2016
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Effect modifiers: sample enrichment,
stratification, and intervention optimization

Effect modifiers are the main biological and disease-
related factors that may influence the treatment
response in cognitive intervention trials. Therefore,
determining the effect modifiers using molecular,
structural, and functional imaging before the start of
the intervention would greatly improve the inter-
vention practicability. Increasing age and baseline
cognitive status significantly influences the
response to cognitive interventions [83,84]. Edu-
cation levels may also have a significant impact
on the response [34]. The recent emergence of amy-
loid imaging in Alzheimer’s disease has shown that
individuals with higher levels of amyloid show
diminished practice effects [85,86], suggesting
greater strength of trials in amyloid positive indi-
viduals. Another study in individuals with subjec-
tive memory impairment predicted response to
cognitive training by hippocampal volume [87].
They found that larger pretraining hippocampal
volumes were related to better verbal delayed recall
1 week after cognitive training. Further, hippo-
campal subfield volumetry suggested that the effects
on long-term verbal memory change were selective
for the left CA2/3 and CA4/dentate gyrus, which
both play a role in episodic memory [87]. Effect
modifiers impact the overall learning seen in indi-
viduals undergoing cognitive training.

Imaging biomarkers can facilitate stratification
of patients and/or intervention optimization based
on phenotype or genotype. Moreover, enrichment
strategies for recruitment to the intervention (i.e.,
including only those most likely to benefit) can
improve the response rate. A classic example is
the A4 trial where only amyloid positive individuals
are recruited to the antiamyloid treatment trial [88].
An example in the context of cognitive intervention
is the idea that targeting different memory systems
(e.g., episodic memory vs. working memory) will
optimize effects for different memory subtypes and
in different patient groups. There is definitely a link
between a treatment-induced change in the bio-
marker and the desired clinical outcome measure,
as well as a link between the treatment-induced
changes in the biomarker and disease process.
Therefore, accounting for effect modifiers will aid
in measuring the treatment response in biomarkers
and cognition with greater sensitivity and designing
trials that will lead to better patient outcomes.
CONCLUSION

There is a need to conduct scientifically rigorous
studies to validate the efficacy of cognitive
intervention trials. The availability of imaging
1350-7540 Copyright � 2016 Wolters Kluwer Health, Inc. All rights rese
technologies for evaluating molecular, structural,
and functional imaging changes in the brain has
provided us with a unique opportunity to design
rigorous cognitive intervention trials. Imaging can
play a key role in demonstrating the efficacy and
mechanisms underlying cognitive intervention
trials. Additionally, imaging can be used to deter-
mine effect modifiers and thus improve treatment
response through sample enrichment, stratification,
and intervention optimization.
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