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Segment formation in vertebrate embryos is a stunning example of biological
self-organization. Here, we present an idealized framework, in which we
treat the presomitic mesoderm (PSM) as a one-dimensional line of oscil-
lators. We use the framework to derive constraints that connect the size of
somites, and the timing of their formation, to the growth of the PSM and
the gradient of the somitogenesis clock period across the PSM. Our analysis
recapitulates the observations made recently in ex vivo cultures of mouse
PSM cells, and makes predictions for how perturbations, such as increased
Wnt levels, would alter somite widths. Finally, our analysis makes testable
predictions for the shape of the phase profile and somite widths at different
stages of PSM growth. In particular, we show that the phase profile is
robustly concave when the PSM length is steady and slightly convex in an
important special case when it is decreasing exponentially. In both cases,
the phase profile scales with the PSM length; in the latter case, it scales dyna-
mically. This has important consequences for the velocity of the waves that
traverse the PSM and trigger somite formation, as well as the effect of errors
in phase measurement on somite widths.

1. Introduction

A particularly striking example of biological self-organization is that of
segmental patterning in vertebrate embryos. During somitogenesis in vertebrate
species, somite segments, the precursors of vertebrae, form periodically as the
embryo elongates. In mice, chick and zebrafish embryos, cells in the presomitic
mesoderm (PSM) behave like a population of coupled oscillators. Expression of
many genes oscillate in each cell, and cells coordinate their oscillations such that
kinematic waves of gene expression travel from the posterior end of the PSM to
the anterior. The arrival of each wave at the anterior end is correlated with the
formation of a new somite [1-4]. In this paper, we investigate the constraints
that connect these waves to the somite width and the gradient of oscillation
periods across the PSM.

Several genes are known to oscillate in the PSM of vertebrates, most impor-
tantly those in the Notch, Wnt and FGF pathways [5]. The period of oscillations
often depends on the position of the cell along the antero-posterior axis. There is
a region in the tail bud where all cells oscillate synchronously with a time
period characteristic of the species, which can range from ~30 min for zebrafish
to #2 h in mice. The oscillations slow down as one moves from the posterior
end of the PSM (right after the tail bud) to the anterior end [1,4,6]. In mice,
this “period gradient’ is linear—see [4], who find that the posterior-most cells
oscillate with a period ~130 min, linearly increasing to 25-30% higher for the
anterior-most cells.

As mentioned earlier, examining how the oscillations develop over time
revealed travelling kinematic waves of gene expression that move from pos-
terior to anterior. For instance, Lauschke et al. [4] report that the position of
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peak levels of LuVeLu, a Notch signalling reporter, moves
from posterior to anterior in ex vivo cultures of mouse PSM
cells (so-called mPSMs), with a velocity that depends on
the length of the mPSM [4]. Similar waves are observed in
a reporter for the oscillating gene herl in zebrafish [3]. An
important difference between these species is that in zebra-
fish, several waves can simultaneously co-habit the PSM
[3], whereas experiments on mPSMs have found maximally
one wave existing at a time [4]. However, in both cases, as
well as in other species, the formation of the next somite is
coincident with the arrival of a wave at the anterior end, in
the vicinity of the previous somite. The mechanism that trig-
gers the formation of a new somite is still a matter for debate.
It was thought for years to be the classic clock and wavefront
model [7], but this theory has recently been challenged. Cotter-
ell et al. [8] combine theory and experiments to suggest that, in
chick embryos, formation of new somites might be caused by a
reaction—diffusion mechanism in the anterior PSM that inter-
acts with the oncoming wave, while Sonnen et al. [9] suggest
that interactions between two different oscillating pathways
may be what triggers somite formation in mice.

Regardless of the mechanism, some interesting observations
have been made about the periodicity of somite formation
and scaling of the somite widths. In mPSMs, the formation
of a new somite was found to occur when 27 of phase (i.e.
one full wave) was spanning the PSM. That is, when a wave
reached the anterior end, and a new somite formed, the next
wave was just setting out from the posterior end. Furthermore,
each new somite consisted of the anterior-most cells that
contained 21% of the total phase difference across the PSM,
irrespective of the length of the PSM at that time [4]. Although
many different aspects of the coupled oscillating cells in the
PSM have been investigated theoretically, ranging from
models of global wave patterns and morphogen gradients,
to models of the underlying biological clocks and the effect
of couplings on defect-free patterning [8,10-20], nothing is
known about the measurable consequences of such phenomen-
ological observations about the phase of the cells in the PSM. In
the present paper, this is what we seek to illuminate. A second
goal of our work is to understand the interplay between such
oscillations (and travelling waves) and the growth of the PSM.
Across species, the PSM is known to elongate at the posterior
end as the tail bud extends. The length of the PSM is determined
by a combination of this growth at the posterior end, and shrink-
age at the anterior end as new somites are formed. During
somitogenesis, the PSM length typically initially increases,
then may remain steady for a duration and finally decreases
(indicating an eventual decrease in the growth rate at the pos-
terior end). We examine how the period gradient, growth of
the PSM and shrinkage due to somite formation combine to
affect the phases of oscillating cells, and what quantitative con-
straints this places on the somite widths and the timing of their
formation.

The rest of the paper is structured as follows. In §2, we
introduce our model and key assumptions. In §3.1, we
show that the period gradient, the total phase difference
across the PSM at somite formation, the growth rate of the
PSM and the width of the new somite cannot be independent
of each other. We explicitly derive the mathematical con-
straint that connects these quantities and, in §3.1.1, show
that experimental measurements from mPSMs match this
constraint. Section 3.2 calculates the phase profile across the
PSM in the specific situation where the PSM length is in

steady state, i.e. it is shortened by somite formation at the
same rate as it grows at the posterior end, and §3.3 calculates
the constraints on somite widths that exist in a PSM with
steady-state length. Our analysis provides explicit predictions
for how the phase of a cell should depend on the antero-
posterior location of that cell in wild-type embryos that
abide by these constraints (§3.2), and for the expected
change in somite widths in an experiment that would perturb
the period gradient (§3.4). Finally, we examine the case where
PSM growth is arrested, similar to the end of somitogenesis,
and make predictions for how somite widths and the PSM
length change with time in this case (§3.5). Section 4 discusses
the experimental predictions stemming from our analysis and
speculates on the implications for somitogenesis.

2. Theoretical framework for analysing the phase
of the oscillating cells in the presomitic
mesoderm

We focus on the phase of the oscillation in cells rather than
the full waveform of gene expression levels. That is, we
associate with each cell a single dynamical variable taking
values between 0 and 27 representing the phase of the
somitogenesis clock in that cell, and a time period that sets
the rate of change of the phase. In doing so, we make the
implicit assumption that varying the time period simply
scales the oscillation waveform without changing its shape
otherwise. This seems to be consistent with experimental
data (e.g. see fig. 2 in [3]) and is what allows us to character-
ize each cell by a single variable, its phase, and a single
parameter, its time period, that controls how quickly the
phase changes. Furthermore, we simplify the PSM into a
one-dimensional line of cells since the spatial periodicity in
somite formation is along the posterior-anterior axis.

Thus, the system we consider (figure 1) consists of a one-
dimensional line of cells, each associated with a phase and a
time period, pictorially represented by a clock face with the
clock hand showing the current value of the phase. As
observed in embryos, new oscillators are frequently added
at the posterior end of the PSM and, when a new somite is
formed, oscillators are removed from the anterior end of the
PSM. Thus, we allow cells to be added to the posterior end
periodically every T, time units (1/T, is thus the PSM
growth rate),! and removed from the anterior end whenever
a somite is formed. The evolution of the phase of each cell
depends only on the time period of that cell, which in turn
depends only on the location of the cell on the line. Thus,
the period of a cell may change as addition or removal of
cells changes the relative distance of the cell from the
posterior end of the line. Travelling waves can occur in this
set-up. For instance, if the periods of all cells were identical,
but the phases initially decreased progressively from 27 at
the posterior (left) end to 0 at the anterior (right) end, then
over time one would observe that the location of phase 27
(or 0) would move from left to right, corresponding to a tra-
velling wave moving from posterior to anterior (figure 1). In
this purely illustrative scenario, the speed of the wave would
depend only on the initial phase differences between adjacent
cells but, in general, the periods may be different for different
cells, in which case the speed of the wave would depend on
the period gradient as well as the phase differences.
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Figure 1. lllustration of the idealized PSM. (a) Discrete system. The PSM is approximated as a finite number of oscillators on a line. The phase of each oscillator
changes according to a position-dependent oscillation period T(x). The posterior-most cell is located at x = 0, while the anterior-most cell is at x = 1. The relative
position of an oscillator changes as cells are gradually added to the posterior (with period T,), and removed (with period T,) in chunks from the anterior end. As time
progresses, each cell effectively moves toward the anterior; the three insets show, as a function of time, the relative position, oscillation period and change of phase
per time of a cell which is initially located at the posterior-most position. (b) The same as in (a), but in a PSM where the relative position x does not take a finite
number of discrete values, but is taken to be continuous x € [0, 1]. This approximation is justified when the number of cells in the PSM is large. (Online version in

colour.)

2.1. Key assumptions
We make the following assumptions regarding the phases
and periods that characterize the oscillations of each cell:

(A) Cells oscillate with a time period Ty(1 +xA), where x is
the location of the cell relative to the posterior end, nor-
malized to the total length of the PSM (thus x € [0, 1),
and Ty is a species-dependent base time period.

(B) A new cell that is added to the posterior end, whenever
the PSM grows, is assigned a phase identical to its
immediate neighbour, the cell that was until then the
posterior-most PSM cell. Subsequently, of course, the
phases may start to differ as the two cells will have
different time periods.

Assumption (A) posits a linearly increasing period gradi-
ent, similar to observations in mPSMs [4], as discussed

earlier. In §3.2, we show that our key results hold for any
increasing period gradient, but for now we assume that
the period gradient is linearly increasing. Assumption (A)
also implicitly assumes that as new cells are added and
removed, due to growth and somite formation, the morpho-
gen gradient determining the periods is quickly reset in such
a way that the new posterior and anterior ends retain their
periods, Ty and (1+A)T, respectively. This is justified by
observations in real embryos and ex vivo cell cultures in
mice: in embryos, the time period of somite formation,
which also coincides with the time period of the posterior-
most cell, is found to be stable at ~2 h between days 8 and
13.5, during which time more than 60 somites are formed
[21]. In ex vivo experiments, the posterior period has been
found to be stable at ~130 min while the tissue was shorten-
ing periodically, and other cells slowed down their
oscillations as they moved towards the anterior of the
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colony, ending up with periods of length ~170 min [6] when
they were located at the anterior end of the PSM. Note that,
when a new somite is formed, this implies that the period
gradient (in real length units) becomes steeper. If the
phase differences between oscillators in such a resetting
were not altered too much, then such a steepening of the gra-
dient should result in slower travelling waves in the smaller
PSM. This matches experimental observations [4]. Assump-
tion (B) seems reasonable given that cells in the tailbud
and the posterior end of the PSM show stable synchronized
oscillations.

Note that we do not explicitly include inter-cellular coup-
ling between the phases of the adjacent cells. However, we do
implicitly take into account the effects that coupling would
have on the time periods of cells because we use the empiri-
cally observed time period gradient. For a line of coupled
oscillators, the time period of each oscillator will be deter-
mined both by external factors (e.g. morphogen gradients)
that affect the natural (uncoupled) time period, as well as
the coupling to adjacent oscillators. A sufficiently strong
coupling between adjacent oscillators in a one-dimensional
line can lead to complete synchronization of all the oscillators
even if they had substantially different uncoupled time
periods. Since the oscillators do not synchronize their oscil-
lations, the coupling must be relatively weak to allow the
time period to vary across the PSM. Nevertheless, even a
weak coupling might modify the observed time period gradi-
ent from that produced by the morphogen gradient alone. We
therefore proceed with the assumption that such a weak
coupling would have little effect on the dynamics of the
phases of the cells beyond modifying the period gradient
from that produced by the morphogen gradients alone, and
perhaps also mitigating the effects of noise on the phases.
Hence, for our purpose it is sufficient to include the coupling
only implicitly by using the empirically observed period
gradient.

With the assumptions mentioned above, we will attempt
to obtain and study phase profiles ¢(x) that are in steady
state. By steady state, we do not mean that ¢(x) is time
independent, but rather that ¢(x) is the same, modulo 27,
at corresponding times between somite formation (for
example, right before, or right after, a somite forms). This
means that the phase profile exhibits what has been
termed ‘dynamical scaling” in the literature [22], i.e. as the
PSM changes in length the pattern of oscillations across it
scales correspondingly. We will impose the constraint that
new somites are formed from the cells that contain the
anterior-most ¢ of phase. We shall refer to ¢ as the phase
width of the somite. This constraint, and the scaling of
¢(x) with PSM length, are the key observations of recent
experiments [4], the consequences of which we set out
to explore.

3. Results

3.1. The period gradient constrains the somite width
and vice versa

Let ¢(t, x) denote the phase of a cell at time t and location x,
where x €[0, 1] is the distance from the posterior end, nor-
malized by the PSM length. Let A¢(t) = ¢(t, x=1) — ¢(t, x=0)
denote the total phase difference across the PSM at time t.

Assumptions (A) and (B) imply that between somite for- [ 4 |

mations A¢(t) increases linearly in time:

A¢(t) = (pbefore - ¢+%t1 (3.1
where we assume the previous somite formed at time t=0
and left a total phase difference of Ppefore — 65 across the
PSM just after somite formation (¢ is the phase width of
the somite, described previously, and @pesore is the total
phase difference across the PSM before the somite is
formed). If the phase profile is in steady state just before
every somite formation event, it follows that A¢(nT;) is
equal to the same constant, @pefore, fOr any integer value of
n. Therefore, it must be that the total increase in A¢ between
somite formations must exactly match ¢, i.e.:

27Ts A
T() 1+ A

¢ = (3.2)
where T is the time at which the next somite forms. Because
we are considering a steady state, the phase of the anterior-
most cell of the PSM must also be the same (modulo 27)
before each somite formation. Therefore, T, must be a mul-
tiple of T, and we obtain

b= 27rkL, (3.3)

where k is a positive integer. Thus, assuming steady state
implies that the slope of the period gradient, 4, and the
phase-width of the somite, a), cannot be independent. Note
that here we only assume that A¢ is in ‘steady state’—this
does not necessarily imply that the PSM length is a constant
before each somite formation. Assuming that the length is a
constant imposes additional constraints. Note also that the
PSM growth rate does not appear in equation (3.3). Its role
emerges in determining the width (as opposed to the phase
width) of somites. Both these issues will be explored in §3.2.

3.1.1. Comparison with data

In the mouse PSM, the period gradient has been measured in [6]
along with the phase width of the newly formed somites [4].
They find that 1 ~0.275, ¢ =021-27 and T, =Ty=130 min.
All numbers are not provided with experimental error bars
in [4], but even with as low as 5% error, using A=0.275
in equ;}tion (3.3) gives (}Fredicted = 0.216 - 27 + 0.0087, while
using ¢ = 0.21 - 27 in equation (3.3) gives Apredictea = 0.266 +
0.017. Either way, the experimental observations are consistent
with equation (3.3).

3.2. When presomitic mesoderm length is constant
steady-state phase profile is concave in shape

As mentioned, equation (3.3) does not assume that the length
of the PSM right before (or after) each somite formation is a
constant. Adding the assumption that the PSM length is
also in steady state allows us to calculate not just A¢ but
also the entire steady-state phase profile, which we will
denote ¢¢(x). Electronic supplementary material, sections 1
and 2 show this calculation both for the continuum limit,
where the number of cells in the PSM is assumed to be infi-
nite, and for the discrete case where the number of cells is
finite.

Figure 2 shows the steady-state phase profile obtained
from our calculations when T, =Ty, 2 =0.266, <~l> =0.21-2m,
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Figure 2. Steady-state phase profile of a PSM of constant length, ¢(x). The
black curve shows the steady-state phase profile in the continuum limit (cal-
culated from equation (16) in electronic supplementary material, section S2),
when we choose T; = Ty, A = 0.266, @yet0re = 27 and <~l> and T, are chosen
such that the length of the PSM varies in a sawtooth manner as follows:
L(t) = Lp(1 + (t mod T)/(7Tp)). Note that due to the freedom to choose
units of time and length, @(x) will not depend on what spedific values
we choose for Ty and L,. Also plotted are the steady-state phase profiles cal-
culated for PSMs consisting of a finite number of cells; symbols correspond
to PSM lengths after somite formation, N = 7 (cross symbols), 14 (plus symbols)
and 70 cells (filled circles). These profiles are calculated for the case where
T;=T, A=0266 and T, and <~f> are chosen such that the PSM length
varies in a sawtooth manner as N(t) = N + [t/T;| mod N/7. We numeri-
cally approximate the phase profiles the discrete calculation of electronic
supplementary material, section 1 would produce for these parameters, by
simulating a discrete PSM with length varying as above and updating the
phases of each oscillator in time according to equation (7) in electronic
supplementary material, section S1, until steady-state is achieved. Here, @pesyre
is determined by the remaining parameters, and as seen in the plots, converges
to the value obtained in the continuum calculation when N becomes large. Note
the concave shape of all the phase profiles plotted. In section B1 and electronic
supplementary material, section 6, we show analytically that this concave shape
is robust to changes in parameter values and holds for all increasing period
gradients, linear or nonlinear. (Online version in colour.)

PSM lengths just after somite formation are N =7 (cross sym-
bols), 14 (plus symbols) and 70 cells (filled circles), and T, is
chosen such that we obtain maximum PSM lengths of N(1 +
1/7). These parameters, based on the observations of [4]
result in a phase profile with a concave shape. The curve is
concave both immediately before and after somite formation,
since somite formation amounts to removing the anterior-
most part of the pre somite-formation curve, and ‘stretching’
the remaining part to cover the full interval [0, 1], neither of
which changes the concavity.

When N is large enough, the phase profile is indistin-
guishable for different N, which means that the PSM
exhibits scaling—the entire somitogenesis pattern scales
with the real length of the embryo but does not change in
structure otherwise. The calculation for large N also matches

our continuum calculation for a PSM with infinitely many [ 5 |

oscillators, which is shown by the continuous line in figure
2 (see figure 1b for a schematic for the continuous approxi-
mation of the PSM).

A testable prediction from our model is that the steady-
state phase profile is not linear, but concave in shape. This
has consequences for the speed of the travelling waves and
reduces the influence of errors in differentiation decisions
on somite size, which we will return to in the Discussion.
The concave shape is in fact a robust feature of the steady-
state phase profile whenever the PSM length is in steady
state, the growth rate is constant and the time period of
cells T(x) is an increasing (linear or nonlinear) function of x.
We demonstrate this in the next section.

3.2.1. Concavity is a robust property of the steady-state phase

profile for any increasing period gradient
That the steady-state phase profile must be concave in shape
for any increasing T(x), can be seen from the following
general argument.

Suppose that the PSM consists of a very large number of
cells, so we can use the continuous variable x [0, 1] to
describe a cell’s position relative to the posterior (at x =0)
and the anterior end (at x =1). Let T(x) be the period gradient
of the PSM, and let this be increasing from posterior to
anterior. Suppose that one cell has initial position xq gret = x*,
and another has initial position xosecond = X* + €, where 0 <
x* <1, and 0 < € < 1. Let us assume t = 0 to be immediately
after somite formation, and let the phase difference between
the two cells at this time be 8¢, = Pp(x) — Pp(x + €) > 0. We
now examine how the phase difference between these cells
changes between t=0, and the time following the next
somite formation at f=T,. The change in phase difference
between the two cells in this time period is

Ts +Ts
Acbs(t:Ts):J 2m J 2T 4 G4

—dt— | =———d
0 T(t, x*) 0 T(t, xX* 4+ E)
Now, since € < 1, we expand the fraction in the final in’cegral2

[ SR (aT(t,x*))i
Tt x +e Ttx) (Tt x> \ 0x® )Lt

(3.5)

where L, is the length of the PSM at t=0, and L(f) is the
length of the PSM at time t > 0. Inserting this expression in
equation (3.4) yields

I OT(t, x*)\ Lo
A‘f"(t’m’ejo (T¢, x*))z( ox(t) )mdt’ G0

Since T(x) is increasing and positive, and since L(t) is positive
and increasing between successive somite formations,
A¢, > 0. This means that the phase difference between the
two cells increases between the two successive somite for-
mations. The phase difference is the same after the somite
formation at t =T, and because the PSM length is in steady
state, the difference in position between the two cells is still
€ after the somite formation at ¢ = T;;. The convexity or concav-
ity of the phase profile is determined by the second
derivative—a decreasing, concave function has a negative
second derivative, while the second derivative is positive for
a decreasing, convex function. An alternative formulation of
this is that a decreasing, concave function decreases faster at
larger values of the variable it is plotted against, while a
decreasing, convex function decreases slower for larger
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values of the variable. We shall use this formulation to show
generality of the phase profile concavity.

The phase profile gradient between the cells at their initial
position is 8¢, /€, and the phase profile gradient between the
cells at their final position is (8¢ + A¢,)/e. Calculating the
ratio yields

56+ Ab)/e . Ad,
sbje o,

From this, we conclude that the steady-state phase profile
decreases faster as x is increased; or equivalently, the

>1. 3.7)

steady-state phase profile is concave.

3.3. Constraint on phase differences when presomitic

mesoderm length is constant

Now that we have calculated ¢¢(x) we can ask what is the
phase difference across the PSM in this state. Following
exactly the same argument as in §3.1, it must be true that
<2> = 2akA/(1 + A). However, in this case, we can also derive
the actual width of the somite, i.e. the number of cells
removed from the anterior end, which must equal the
number of cells added between somite formations, Ts/Ts.
Since the steady-state phase profile scales with respect to
the PSM length right after somite formation, N, it is of interest
to calculate the fractional width of the somites f=Ts/(NT,)
(i.e. B is defined as the width of the somite divided by the
length of the PSM just after somite formation). Just before
somite formation, this fractional width must satisfy:

by <1 - %) — (D) =¢= Zwkl_i_%. (3.8)
Similar to equation (3.3), this is a constraint between the frac-
tional somite width f, the period gradient and the parameters
that determine ¢ss(x), namely, T, Ty, Ppefore and ¢. See elec-
tronic supplementary material, section 5 for more details on
how the phase width, é’), can be converted to the fractional
width of the somite, §, using this constraint.

Figure 3 shows a heat map of this constraint, derived from
our continuum calculation, when Ts=T, and ¢ = 0.21 - 2.
The colours show the value of @pesore that satisfy the con-
straint equation (3.8) for different values of 8 and A. This
heat map is another prediction of our analysis. Qualitative
features that should be experimentally observable include
the following: the phase difference between posterior and
anterior right before somite formation, @pefore, (i) decreases
with somite size B (for fixed 1), (ii) increases with A (for
fixed p) and (iii) the line S~ /2 corresponds to the special
case Dpefore = 271. Prediction (iii) suggests that any change in
the period gradient in the mPSM ex vivo cultures should
result in exactly the same change in the fractional width of
the somites. Moreover, our calculations predict that this
linear relationship depends on there being exactly one wave
spanning the PSM at a time. If the system exhibited multiple
waves, say Ppefore = 47 corresponding to two waves, then the
relationship between $ and 4 would be nonlinear.

3.4. Variation of somite width caused by perturbing the
period gradient

Assuming that the general constraint of equation (3.3) holds
in embryos that are perturbed in various ways, our frame-
work makes specific predictions for the effect of such

0.90 -45
0.70 3.0
k-
B 0.50 L5 &
£
0.30 0
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0.10 >

0.30 -
0.70 -
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Figure 3. Heat map of logarithm of the total phase difference across the
PSM just before somite formation, @y, in steady-state phase profiles
when the PSM length is constant, as given by the analytical continuum cal-
culation of the constraint equation (3.8). The phase difference is 27z on a line
B~ A/2. (Online version in colour.)

perturbations. A perturbation that could be feasible to
implement experimentally, for instance, by affecting the
Wnt or FGF gradient in the PSM, would be to change the
period of all cells by the same additive amount £T. Equation
(3.3) would then become

MO =27k (3.9)

A
TTATE

In figure 44, we show how the somite phase width varies
with &, assuming all other parameters remain the same. Using
our analytical calculation in the continuum limit of a PSM of
constant length, we can convert the predicted phase width of
somites to an actual fractional width (as described above and
in electronic supplementary material, section S5). The result is
shown in figure 4b. Thus, we predict that increasing (decreas-
ing) the period of the cells in this manner would decrease
(increase) both the phase width and actual width of the
somites. Generally, the fractional width of somites, 8, will be
a non-increasing function of ¢ whenever the steady-state
phase of cells decreases from posterior to anterior.

3.5. Physical somite size and convexity of phase profile
in presomitic mesoderms with no growth

Finally, we consider a case where after the system has reached
the steady-state described above, new cells stop being added
to the posterior part of the PSM but cells continue to be cut
off from the anterior end when new somites are formed.
This approximates the very end of somitogenesis (although
there the rate of addition of new cells decreases continuously
over time rather than falling abruptly to zero). When no new
cells are added to the PSM, but the phase across the PSM is in
steady-state, we find (see electronic supplementary material,
section S3) that the length of the PSM of course decreases
with time, shrinking by a constant multiplicative factor after
each somite formation, which results in an exponential
decrease of PSM length with time.> Nevertheless, our calcu-
lations (see electronic supplementary material, section S3)
show that the phase profile can attain a steady state. This
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Figure 4. Effect of perturbations on somite widths. Assuming T, =T, and
that the constraint expressed in equation (3.3) holds under perturbation of
periods in the PSM, we predict that perturbing all periods by an additive
amount &7y will alter somite width. (a) The phase width of somites
(small dots) will decrease with &, and is described by equation (3.9).
(b) In a PSM of constant length, phase width can be mapped to the
actual spatial width of the somite using the continuum solution plotted in
figure 2. We find that this spatial width also decreases with & as shown
by the big dots. (Online version in colour.)

analytically calculated steady-state profile is plotted in figure
5a (dots), and is much closer to linear, as opposed to the con-
cave shape obtained in the case of a steady-state PSM length.
In fact, it is very slightly convex.* This almost-linear phase pro-
file also scales with the PSM length in the continuum limit.

Also in this case, we can examine the consequence of
perturbing all periods in the PSM by a fixed amount &T.
Electronic supplementary material, section 5S4 shows the cal-
culation of the new somite widths caused by this
perturbation, and figure 5b plots these as a function of &.
We find that the width decreases as the periods get longer,
similar to what we found in the case of constant PSM
length. The exponential decrease of PSM length with time
and the shift to an almost-linear phase profile are both testa-
ble predictions of our model.

4. Discussion

The experimental observation in [4] that the total phase
difference across ex vivo mPSMs is 2z and that 21% of this
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Figure 5. Steady-state phase profile for a PSM that does not grow, but is
shortened periodically by removing the anterior-most 0.21- 27 of phase
when the total phase difference between anterior and posterior is 27z. The
period gradient is linear with 1 =0.266. (a) The points show the steady
state phase profile just after somite formation, and a straight line between
the end points is shown for comparison. The profile is close to linear and is
convex rather than concave in shape. (b) Assuming a perturbation of all
periods by an additive amount &7, we plot the actual somite width as a
function of perturbation size. The physical size decreases as periods get
longer. (Online version in colour.)

phase constitutes the next somite, independent of PSM size,
is a curious one. It is not obvious what the consequences of
this may be for somites, and even more unclear why it
would be necessary or useful (if indeed it is either) for mice
embryos to develop in this way. Our work here shows that
this observation directly results in a constraint that connects
the width of somites and the period gradient across the
PSM during somitogenesis. The constraint applies to what
we term the phase-width of the somite, while in the particular
case where we assume a steady-state PSM length an
additional constraint applies to the actual width of the
somite. This constraint influences the shape of the phase
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profile. For a PSM with steady-state length, we predict that the
phase profile will be concave, while a PSM with no growth
would have an almost linear (slightly convex) phase profile.

The shape of the phase profile is important for at least two
reasons. The first is that it affects how travelling waves develop
over time—for a concave profile, the waves slow down as they
approach the anterior end, while for a convex profile they
speed up. The experiments of Lauschke ef al. are in ex vivo cul-
tures where there is no growth. Our calculations for the no-
growth scenario predict an almost linear phase profile,
which would predict that the waves propagate with close to
constant velocity. This is in fact what [4] observe. By contrast,
slowing down of waves, corresponding to a concave profile, is
visible in kymographs from zebrafish experiments [3]. The
shape of the phase profile thus has a significant effect on the
timing of somite formation, and would therefore be worth
measuring in more quantitative detail in future experiments.

The second reason is reducing the effect of errors in somite
formation. Recent experiments have found that gene-expression
noise increases from posterior to anterior [19] in zebrafish. If
some error were present in the phase width of formed
somites (suppose that the phase width in one instance was
0.23 - 27 instead of 0.21 - 27), then the steepness of the phase
profile would determine the effect of such errors on the
spatial pattern. If the phase profile were steep in the anterior,
phase width would change quickly with spatial location, and
forming a somite with this slightly increased phase width
would alter the physical size of the formed somite very
little. Hence, a steep phase profile in the anterior PSM
diminishes errors in the physical size of somites. A concave
phase profile gets steeper towards the anterior end of the
PSM, ie. the phase difference between neighbouring cells
increases from posterior towards the anterior. The opposite
is true for a convex phase profile which flattens out toward
the anterior end. These considerations suggest that if somite
formation depends on a measurement of phases of the
cells, and if, as is likely, these measurements are error-
prone, then one should observe smaller errors in the somite
widths when the PSM length is steady, compared to later in
somitogenesis when it is decreasing.

The constraint of equation (3.3) also has predictable conse-
quences for perturbation experiments, which might be
experimentally tractable. One study reduced the number of
introns in the Hes7 gene, resulting in more rapid oscillations
[24]. They observed shorter segments, i.e. the opposite behav-
iour of what we expect from our calculations in §3.4 based on
the experiments in mouse ex vivo cultures [4]. So it seems that
the two experiments contradict each other. The experiment of
[24] did not, however, measure the phase difference across the
PSM. So, it would be useful to determine whether the assump-
tion of constant phase difference is violated in this case. It
would be interesting to study when perturbations of this
sort break the assumption of constant difference and when
they do not. If perturbations that do not break the assumption
can be found, they would provide a very useful tool to control
somite width in a precise and predictable manner.

Another type of perturbation that may be feasible exper-
imentally is to alter the steepness of the period gradient by
suitably altering the expression of the morphogen that controls
the time period of the somitogenesis clock. In mPSMs, if such a
perturbation still results in a steady state with a single wave
spanning the PSM at any time, then we predict the change
in fractional somite width should be close to half the fractional

change in the slope of the period gradient (figure 3). Conver-
sely, if the number of waves spanning the PSM increases under
this perturbation, then we predict the relationship between the
change in the fractional somite width and the change in the
slope of the period gradient would become nonlinear.

Our analysis begs the question of how the embryo main-
tains the constant phase difference across the entire PSM just
before each somite formation. Does the embryo ‘know’ that
the peak of a travelling wave has reached the anterior end,
and send a ‘signal’ to the posterior end to start a new wave?
Or is the information transmitted in the other direction, such
that the onset of a new peak at the posterior end ‘causes’ the tra-
velling wave to reach the other end at the same time? A third
possibility is that this is simply a non-causative correlation
caused by some other constraint in the system. We speculate
that inter-cellular coupling between the phases of the oscillating
cells could be responsible for this behaviour. However, as men-
tioned before, inter-cellular coupling cannot be too strong or
else the cells would start to synchronize despite their intrinsi-
cally different time periods, and this has not been observed. It
would be interesting to study what kinds of weak coupling in
a one-dimensional line of oscillators with varying time periods
could produce travelling waves that are constrained in such a
manner. The framework we have introduced here (or the
approach of Ares et al. [25], whose model includes coupling
which produces synchronized oscillations across the PSM)
could be easily extended for this purpose.

These lines of thought also have implications for the
mechanisms of somite formation. The well-known clock
and wavefront model assumes that somites form when an
oscillating cell moves into a sub-threshold region of an exist-
ing morphogen gradient that is tied to the growing posterior
end of the PSM. Such a model does not necessarily need tra-
velling waves of gene expression, but one could postulate
that somites form when the peak of the travelling wave hits
some low threshold of the morphogen gradient. Cotterell
et al. [8] suggest instead that the somite forms due to reaction—
diffusion events in the vicinity of the previous somite when
the oncoming travelling wave interacts with a gradient of
molecules whose source is the previous somite. It is not
clear if there is a simple way to connect such events with
the formation of a new wave peak at the posterior end. In
both cases, somite formation would be triggered by events
at the anterior end and would need some additional mechan-
ism to constrain the total phase difference across the PSM.
Recently, a third mechanism has been proposed in mice:
Sonnen et al. [9] reported that Wnt and Notch pathways oscil-
late out-of-phase in cells in the posterior PSM, and in-phase
in cells at the segmentation front. They found that the Wnt
pathway does not have slow waves travelling periodically
from posterior to anterior like the Notch pathway does.
Instead, fast-travelling, pulse-like waves were reported [9],
which indicates that the Wnt clocks are (nearly) synchronized
across the PSM. Thus, with one clock oscillating with fre-
quency dependent on the spatial position of the cell, while
the other clock is synchronized (or nearly synchronized) for
all cells across the PSM, measuring the phase difference
between the two clocks of a single cell would be equivalent
to measuring the phase difference between the Notch clock
of the posterior-most cell, and the Notch clock of the cell in
question, somewhere else in the PSM. This could serve as a
signal to trigger somite formation directly dependent on a
measurement of the total phase difference across the PSM, a
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mechanism similar to what was reported by Lauschke et al.
[4] and whose consequences we have studied in this paper.

Data accessibility. No data were collected. All calculations are elaborated
in the electronic supplementary material.

Authors” contributions. J.S.J., M.H.J. and S.K. designed the study. J.S.J.
developed the theoretical formalism and carried out the calculations.
J.S.J. and S.K. wrote the manuscript, and M.H.J. contributed signifi-
cantly to this process.

Competing interests. We declare we have no competing interests.
Funding. S.K. thanks the Simons Foundation and the National Centre
for Biological Sciences for funding. J.S.J. and M.H.]. acknowledge
support from the Danish Council for Independent Research and
Danish National Research Foundation through StemPhys Center of
Excellence, grant no. DNRF116.

Acknowledgements. We are grateful to Alexander Aulehla, Andy Oates
and Raj Ladher for discussions.

References

Endnotes

'Qur framework allows T, to vary in time, as it often does during
somitogenesis. However, in this paper, we will examine cases
where T is assumed to be constant.
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“See electronic supplementary material, section S6.2 for more on this
convexity.

Oates AC, Morelli LG, Ares S. 2012 Patterning
embryos with oscillations: structure, function and

explain somite patterning in embryos. Cell Syst. 1,
257-269. (doi:10.1016/j.cels.2015.10.002)

of coupled oscillators. Phys. Rev. E 98, 062412.
(doi:10.1103/PhysRevE.98.062412)

dynamics of the vertebrate segmentation clock. 9. Sonnen KF et al.2018 Modulation of phase shift 18.  Vroomans RM, ten Tusscher KH. 2017 Modelling
Development 139, 625-639. (doi:10.1242/dev. between Wnt and notch signaling oscillations asymmetric somitogenesis: deciphering the
063735) controls mesoderm segmentation. Cell 172, mechanisms behind species differences. Dev.
Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié 1079-1090.e1. (doi:10.1016/j.cell.2018.01.026) Biol. 427, 21-34. (doi:10.1016/j.ydbi0.2017.05.010)
0. 1997 Avian hairy gene expression identifies a 10. Baker R, Schnell S, Maini P. 2006 A dock and 19. Keskin S et al. 2018 Noise in the vertebrate
molecular clock linked to vertebrate segmentation wavefront mechanism for somite formation. Dev. Biol. segmentation clock is boosted by time delays but
and somitogenesis. Cell 91, 639—648. (doi:10.1016/ 293, 116-126. (doi:10.1016/j.ydbi0.2006.01.018) tamed by notch signaling. Cell Rep. 23,
50092-8674(00)80451-1) 1. Jorg DJ, Morelli LG, Soroldoni D, Oates AC, Jiilicher 2175-2185.e4. (doi:10.1016/j.celrep.2018.04.069)
Soroldoni D, Jorg DJ, Morelli LG, Richmond DL, F. 2015 Continuum theory of gene expression waves ~ 20. Glass DS, Jin X, Riedel-Kruse IH. 2016 Signaling
Schindelin J, Julicher F, Oates AC. 2014 A during vertebrate segmentation. New J. Phys. 17, delays preclude defects in lateral inhibition
doppler effect in embryonic pattern formation. 093042. (doi:10.1088/1367-2630/17/9/093042) patterning. Phys. Rev. Lett. 116, 128102. (doi:10.
Science 345, 222-225. (doi:10.1126/science. 12. McHale P, Rappel W-J, Levine H. 2006 Embryonic 1103/PhysRevLett.116.128102)

1253089) pattern scaling achieved by oppositely directed 21. Saga Y. 2012 The synchrony and cydlicity of
Lauschke VM, Tsiairis (D, Francois P, Aulehla A. morphogen gradients. Phys. Biol. 3, 107-120. developmental events. Cold Spring Harbor Perspect.
2013 Scaling of embryonic patterning based on (doi:10.1088/1478-3975/3/2/003) Biol. 4, a008201. (doi:10.1101/cshperspect.a008201)
phase-gradient encoding. Nature 493, 101-105. 13. Jorg DJ. 2015 Nonlinear transient waves in coupled  22. Ishimatsu K, Hiscock TW, Collins ZM, Sari DWK,
(doi:10.1038/nature11804) phase oscillators with inertia. Chaos 25, 053106. Lischer K, Richmond DL, Bessho Y, Matsui T,
Ozbudak EM, Pourquié 0. 2008 The vertebrate (doi:10.1063/1.4919831) Megason SG. 2018 Size-reduced embryos reveal a
segmentation clock: the tip of the iceberg. Curr. 14.  Goldbeter A, Pourquié 0. 2008 Modeling the gradient scaling-based mechanism for zebrafish
Opin. Genet. Dev. 18, 317-323. (doi:10.1016/j.gde. segmentation clock as a network of coupled somite formation. Development 145, dev161257.
2008.06.007) oscillations in the Notch, Wnt and FGF signaling (doi:10.1242/dev.161257)

Tsiairis (D, Aulehla A. 2016 Self-organization of pathways. J. Theor. Biol. 252, 574-585. (doi:10. 23. Tam P. 1981 The control of somitogenesis in mouse
embryonic genetic oscillators into spatiotemporal 1016/j.jtbi.2008.01.006) embryos. Development 65, 103.

wave patterns. Cell 164, 656—667. (doi:10.1016/j. 15. Jensen PB, Pedersen L, Krishna S, Jensen MH. 2010~ 24. Harima Y, Takashima Y, Ueda Y, Ohtsuka T,
cell.2016.01.028) A Wnt oscillator model for somitogenesis. Biophys. Kageyama R. 2013 Accelerating the tempo of the
Cooke J, Zeeman E. 1976 A clock and J. 98, 943-950. (d0i:10.1016/j.bp;j.2009.11.039) segmentation clock by reducing the number of
wavefront model for control of the number 16.  Mengel B, Hunziker A, Pedersen L, Trusina A, Jensen introns in the Hes7 gene. Cell Rep. 3, 1-7. (doi:10.
of repeated structures during animal MH, Krishna S. 2010 Modeling oscillatory control in 1016/j.celrep.2012.11.012)

morphogenesis. J. Theor. Biol. 58, 455-476. NF-xB, p53 and Wnt signaling. Curr. Opin. Genet. 25, Ares S, Morelli LG, Jorg DJ, Oates AC, Jiilicher F.
(doi:10.1016/50022-5193(76)80131-2) Dev. 20, 656—664. (doi:10.1016/j.9de.2010.08.008) 2012 Collective modes of coupled phase oscillators
Cotterell J, Robert-Moreno A, Sharpe J. 2015 A local, ~ 17. Juul JS, Krishna S, Jensen MH. 2018 Entrainment as with delayed coupling. Phys. Rev. Lett. 108,

self-organizing reaction—diffusion model can

a means of controlling phase waves in populations

204101. (doi:10.1103/PhysRevLett.108.204101)

LSP06L0Z 9L awpaauf 0§ Y Jisi/jeulnol/b10°buiysijgndanosiefos H


http://dx.doi.org/10.1242/dev.063735
http://dx.doi.org/10.1242/dev.063735
http://dx.doi.org/10.1016/S0092-8674(00)80451-1
http://dx.doi.org/10.1016/S0092-8674(00)80451-1
http://dx.doi.org/10.1126/science.1253089
http://dx.doi.org/10.1126/science.1253089
http://dx.doi.org/10.1038/nature11804
http://dx.doi.org/10.1016/j.gde.2008.06.007
http://dx.doi.org/10.1016/j.gde.2008.06.007
http://dx.doi.org/10.1016/j.cell.2016.01.028
http://dx.doi.org/10.1016/j.cell.2016.01.028
http://dx.doi.org/10.1016/S0022-5193(76)80131-2
http://dx.doi.org/10.1016/j.cels.2015.10.002
http://dx.doi.org/10.1016/j.cell.2018.01.026
http://dx.doi.org/10.1016/j.ydbio.2006.01.018
http://dx.doi.org/10.1088/1367-2630/17/9/093042
http://dx.doi.org/10.1088/1478-3975/3/2/003
http://dx.doi.org/10.1063/1.4919831
http://dx.doi.org/10.1016/j.jtbi.2008.01.006
http://dx.doi.org/10.1016/j.jtbi.2008.01.006
http://dx.doi.org/10.1016/j.bpj.2009.11.039
http://dx.doi.org/10.1016/j.gde.2010.08.008
http://dx.doi.org/10.1103/PhysRevE.98.062412
http://dx.doi.org/10.1016/j.ydbio.2017.05.010
http://dx.doi.org/10.1016/j.celrep.2018.04.069
http://dx.doi.org/10.1103/PhysRevLett.116.128102
http://dx.doi.org/10.1103/PhysRevLett.116.128102
http://dx.doi.org/10.1101/cshperspect.a008201
http://dx.doi.org/10.1242/dev.161257
http://dx.doi.org/10.1016/j.celrep.2012.11.012
http://dx.doi.org/10.1016/j.celrep.2012.11.012
http://dx.doi.org/10.1103/PhysRevLett.108.204101

	Constraints on somite formation in developing embryos
	Introduction
	Theoretical framework for analysing the phase of the oscillating cells in the presomitic mesoderm
	Key assumptions

	Results
	The period gradient constrains the somite width and vice versa
	Comparison with data

	When presomitic mesoderm length is constant steady-state phase profile is concave in shape
	Concavity is a robust property of the steady-state phase profile for any increasing period gradient

	Constraint on phase differences when presomitic mesoderm length is constant
	Variation of somite width caused by perturbing the period gradient
	Physical somite size and convexity of phase profile in presomitic mesoderms with no growth

	Discussion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


