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Abstract
The incidence of septic acute kidney injury (AKI) is increasing, it has become a major threat to human health because of its acute
onset, poor prognosis, and high hospital costs. Themost common cause of AKI in critical-care units is sepsis. Septic AKI is a complex
and multi-factorial process; its pathogenesis is not fully understood. In sepsis, the destruction of mucosal barriers, intestinal flora
disorders, intestinal ischemia/reperfusion injury, use of antibiotics, and lack of intestinal nutrients lead to an inflammatory reactions
that in turn affects the metabolism and immunity of the host. Such changes further influence the occurrence and development of AKI.
New technology is enabling various detectionmethods for intestinal flora. Clinical application of these methods in septic renal injury
is expected to clarify the relationship among pathogenesis, disease progression mechanism, and intestinal flora.
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Introduction

The trillions of microorganisms in the human intestinal
tract are in a symbiotic relationship with the human body
and play an important role in immunity, metabolism,
digestion, and other processes. The gut flora also
participates in information exchange between the brain
and intestinal tract. Currently, it is thought that micro-
organisms are gathered outside the host itself and the body
forms super symbionts.[1] Moreover, microbial genomes
are considered the second genomes in our cells. Decompo-
sition and transformation of food constituents by the
intestinal flora produces a series of materials that are
involved in host energy metabolism, immune regulation,
neuroendocrine activity, and other physiological activities.
The intestinal flora can be viewed as a virtual organ with
important functions in human physiology.[2] There are
various technologies available for characterizing the
intestinal flora, which should facilitate the treatment of
critical diseases.
Septic Acute Kidney Injury (AKI)

Septic AKI, a clinical syndrome with many possible causes
and symptoms, is a common and serious disease in
intensive-care units (ICU).[3] The most common cause of
AKI is sepsis. Septic AKI is a complex, multifactorial
process and its pathogenesis is not fully understood. In
sepsis, destruction of mucosal barriers, imbalance of the
Access this article online

Quick Response Code: Website:
www.cmj.org

DOI:
10.1097/CM9.0000000000000724

842
intestinal flora, intestinal ischemia/reperfusion injury, use
of antibiotics, and lack of intestinal nutrients can lead to an
inflammatory reaction, which in turn affect host metabo-
lism and immunity, thus promoting AKI.[4] Some studies
have reported an incidence of AKI in the ICU of 10.8% to
67.0%. The death rate of AKI patients receiving renal
replacement therapy (RRT) exceeds 50%. Great progress
has been made in medical care for AKI and RRT
technology, but the reported death rate for the disease
among hospitalized adult patients remains high, at 14%–
60%.[5] Several studies have shown a relationship between
the intestinal flora and renal insufficiency, which by
extension shows the close relationship between the kidney
and the gastrointestinal tract (known as the gastrointesti-
nal axis).[6] Therefore, studies on the intestinal flora and
sepsis-induced kidney injury are of importance to guide
follow-up treatment and reverse gastrointestinal dysfunc-
tion in patients with kidney disease.
Intestinal Flora and Kidney Injury

The intestinal flora shows changes under conditions of
kidney injury. In particular, most patients with end-stage
renal disease exhibit intestinal dysfunction.[7] There are
several reasons why septic AKI patients show obvious
changes in the intestinal flora, as follows. (1) Metabolic
waste cannot be fully excreted by the kidneys and
accumulates in the body during kidney injury, eventually
changes the structure, quantity, and distribution of the
intestinal flora, resulting in a serious imbalance in
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intestinal microecology that may manifest in a decrease in
probiotic bacteria and overgrowth of saprophytic bacteria.
(2) The type and quantity of intestinal flora are closely
related to vitamin K, a deficiency of which in patients with
renal injury can lead to changes in intestinal microecology.
(3) Iatrogenic factors may be involved in AKI,[8,9] whereby
the intestinal flora plays a vital role in the development and
treatment of kidney diseases; this is currently a hot topic of
research.

Methods to Characterize Intestinal Flora in Sepsis-induced
Kidney Injury

Probiotics and synbiotics

Studies reporting benefits of probiotics

The word probiotic is derived from the Greek “beneficial
to life.” Li et al[10] found that supporting enteral nutrition
through probiotics effectively reduces the inflammatory
response, and improves immune function and the serum
albumin index in septic patients. Probiotics can also
improve nutritional status, and shorten the mechanical
ventilation and hospitalization times of patients with
sepsis. Shimizu et al[11] reported on 35 patients who
received synbiotics and 37 patientswho did not, therewas
no significant difference in the incidence of sepsis or
mortality between the two groups, but analysis of fecal
bacteria showed that the amounts of beneficial bifido-
bacteria and lactobacilli were significantly higher in the
probiotic group than in the control group. Moreover, the
concentration of organic acids in the probiotic group,
particularly the amount of acetate during the first week,
was significantly higher than in the control group.
Overall, the results implied that prophylactic probiotics
can regulate host immunity and digestion, balance the
intestinal flora, and decrease the incidence of enteritis and
ventilator-associated pneumonia in patients. Vitetta
et al[12] also investigated the efficacy of probiotics, and
found that Streptococcus thermophilus (S. thermophilus)
is an important regulator of uremic toxins in the intestinal
tract of patients with chronic kidney disease (CKD).
Using probiotics containing S. thermophilus may delay
the progression of CKD by downregulating the proin-
flammatory response of the mucosa. Zhang et al[13]

studied the intestinal microflora of 25 CKD patients
(CKD group) and 25 healthy subjects (control group).
The results showed that the intestinal microflora of the
CKD patients differed significantly from that of the
healthy subjects, and probiotic levels were negatively
correlated with inflammatory factors; moreover, rumen
microflora was positively correlated with inflammatory
factors. Wu et al[14] reported that probiotics alter the
host’s response to bacterial infection by directly regulat-
ing the transmission of mucosal signals. Once intestinal
epithelial cells are exposed, pathogen-induced filaments
are present due to kinin profiles associated with multiple
innate immune signaling pathways. Activation of mito-
gen-activated protein kinase and nuclear factor kappa B
decreased in response to probiotics. Consistent with this,
the gut microbiota of mice fed oral probiotics was not
changed, but the inflammatory response to lipopolysac-
charide (LPS) was reduced. It may be because that
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probiotics inhibit the inflammatory response triggered by
LPS.
Studies reporting no benefits of probiotics

Among critically ill patients, the infection rate was lower in
those who were administered with probiotics, compared
with that than in the patients without, but probiotics had
no effect on mortality, average hospital stay, or the
incidence of diarrhea.[15] More clinical studies are needed
to confirm these findings. Borges et al[16] assigned 46
hemodialysis (HD) patients to S. thermophilus-treated
(n= 23) and placebo (n= 23) groups: probiotics failed to
significantly reduce uremic toxins or inflammatory
markers. Therefore, further study is needed to determine
whether probiotics should be administered to HD patients.
Another study found that a 6-week of administration of
lactobacilli or bifidobacteria before dialysis in patients
with chronic kidney disease reduced levels of uric acid
toxin in plasma and the occurrence of constipation and
systemic inflammatory reactions.[17] However, further
research is needed to determine whether there are long-
term benefits. Suez et al[18] reported that although
probiotics have been widely used, and probiotic coloniza-
tion, activity at the strain level, safety, interactions with the
local microbiome and effects on the host have been
assessed, the clinical outcomes associated with the use of
many probiotic strains and preparations are unsatisfacto-
ry. At present, the clinical data are insufficient to support
the use of probiotics in the perioperative and ICU
environments.[19] More research is needed to understand
the complex two-way relationship between microorgan-
isms and the host. A decrease in the number of beneficial
microorganisms, and an increase in pathogenic bacteria (a
condition known as dysbiosis), in the ICU, may promote
the onset of worsening of intestinal sepsis. Although oral
probiotics prevent nosocomial infections, the underlying
mechanisms remain to be explored.[20] Overall, whether
probiotics are beneficial for severely ill patients still
requires clinical validation.
Next-generation sequencing

With the rapid development of next-generation sequencing
technology, the throughput of genome sequencing has
increased, while the sequencing time and costs continue to
decrease. Due to the close relationship between intestinal
microorganisms and the physiological functions of the
human body such as nutrition, immunity, metabolism,
research of intestinal microbial genomics has good
application prospects in host physiology, disease patholo-
gy, drug pharmacology, and etc.[21] Marker genes have
recently been used in clinical practice to better understand
the structure and function of the microbiota, and the
relationship between the microbiome and disease.[22] The
16S ribosomal RNA gene is commonly used as a marker of
microbial diversity. The highly variable regions within this
gene can be amplified and sequenced. Currently, high-
throughput sequencing involves polymerase chain reaction
amplification of the target region of the genome after
amplifying the DNA of the target region. Then, the
sequence is compared against a database to identify the
species, followed by biological information analysis.[23]
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Muhuawang et al[24] acquired fecal samples from20healthy
adults in Taiyuan, China. DNA was extracted and a
16SrRNA gene clone library was prepared. The high-
throughput sequencing and bioinformatics analyses dem-
onstrated that the intestinal microflora of healthy adults is
complex, but relatively stable. Nycz et al[25] analyzed 16S
rRNA gene sequences to determine the bacteria present in
patients’ feces. The analysis revealed that the gutmicrobiota
was not only related to cancer types and the response to
chemotherapy, but could also be used to predict subsequent
bloodstream infections. Lankelma et al[2] compared the
fecal bacterial compositions of critically ill septic and non-
septic patients with those of controls. The results showed
that bacterial diversity was significantly decreased in half
of the patients compared with the controls. However,
microbial diversity, the thick-walled bacteria/bacteroides
ratio, and the Gram-positive/Gram-negative bacteria ratio
were not associated with complications or survival. Further
study is needed to understand the effect of major changes in
intestinal bacterial communities on short- and long-term
health.
Determination of organic acid concentrations

Carboxylic acids are produced through anaerobic fermen-
tation of carbohydrates, fats, and proteins, particularly
short-chain fatty acids (SCFAs; e.g., formate, acetate,
propionate, and butyrate), which play an important role in
anaerobic digestion.

One study showed that acetic acid improves sepsis-induced
AKI by lowering the ratio of serum creatinine to blood urea
nitrogen and renal myeloperoxidase activity to lipid
peroxide, as well as by restoring the tubular structure.
Moreover, administration of acetate was associated with
an oxidative-antioxidant imbalance in the T cells of
patients with AKI. During AKI, acetic acid inhibits the
activity of nicotinamide adenine dinucleotide phosphate
oxidase 2 and reactive oxygen species, by inhibiting
histone deacetylase activity in T cells.[26] These data imply
that acetate may be able to induce T cells to restore the
oxidative-antioxidant balance in patients with sepsis-
induced AKI.

Weng et al[27] reported that propionate is an independent
predictor of sepsis (odds ratio [OR]: 1.279; 95%
confidence interval [CI]: 1.069–1.530; P = 0.007), ICU
mortality (OR: 1.331; 95% CI: 1.107–1.600; P= 0.002),
28-day mortality (OR: 1.259; 95% CI: 1.046–1.514;
P= 0.015), and 90-day mortality (OR: 1.304; 95% CI:
1.092–1.558; P= 0.003). Thus, propionate can be useful
to diagnose and predict the prognosis of septic shock.

Wang et al[28] evaluated the utility of SCFAs in terms of
survival rate in an LPS-induced septic model. They found
that butyrate (but not acetate or propionate) significantly
reduced the mortality rate of infected mice. Further studies
found that butyrate reduced the inflammatory response
induced by sepsis by upregulating the anti-inflammatory
cytokine interleukin-10. Ty et al[29] showed that carboxylic
acid is an evolutionary precursor of amino acids that
regulates cell proliferation and apoptosis. Preparation
containing butyrate and propionate can be used to study
844
the mechanisms of action of probiotic strains and
metabolomics, and could aid in the development of
innovative drugs.

Hecker et al[30] reported that SCFAs and medium-chain
fatty acids (MCFAs) increase the mitochondrial respiration
capacity under baseline and inflammatory conditions,
without influencing the mitochondrial DNA content or
production of proinflammatory cytokines. Thus, they
concluded that SCFAs and MCFAs are a suitable and safe
energy source under inflammatory conditions, and have
the ability to partially restore mitochondrial respiration.
The influx of urea and other residual toxins affects the gut
microbiota in patients with CKD, resulting in a decrease in
the number of beneficial bacteria producing SCFAs and an
increase in the number of bacteria producing uremic toxins
(e.g., barium sulfate, armor phenol sulfate, and trimethyl-
amine-n-oxide), which further aggravates intestinal wall
inflammation and degradation of tight junctions between
cells, and also accelerates the release of intestinal uremic
toxins into the blood.[31]
Fecal microbiota transplantation (FMT)

Gaines et al[32] found that the intestinal microbiota varied
among experimental mice, and was associated with
phenotypes of peritoneal sepsis in a bacterial inoculation
model (intraperitoneal injection of feces). Wide variation
in bacterial composition among the animals was revealed
by fecal analysis, and the differences in clinical phenotype
disappeared by 16 months after the injections. Wei et al[33]

showed that multiple organ dysfunction syndrome
(MODS) and severe diarrhea were resolved in two
male patients following FMT, and their defecation volume
and body temperature also either decreased significantly
or were restored to normal. These outcomes were in
accordance with significant changes in the bacterial
profiles of the patients; a significant increase in the
symbiosis of Firmicutes and a decrease in the opportunistic
microbial population of Proteobacteria were observed. In
addition, a recombinant bacterial community rich in
Firmicutes was found; however, it lacked Proteobacteria,
which was associated with decreased fecal excretion and
plasma inflammatory markers. In both patients, repairing
the intestinal flora barrier not only reduced infection but
also regulated the immune response. These findings lay the
foundation for further research on FMT as a new
treatment for microbial-related diseases, includingMODS.
Analysis of volatile organic compounds (VOCs) in feces

Fecal VOCs reflect the composition and activity of
intestinal microbial communities. Berkhout et al[34] hy-
pothesized that VOCs could serve as non-invasive
biomarkers of late-onset sepsis (LOS) at the pre-clinical
stage in septic patients. Notably, VOC spectral analysis is
clinically feasible, but the utility of this technique for early
detection of LOS needs to be confirmed in future studies.
Discussion and Prospects

Lankelma et al[35] determined that although broad-
spectrum antibiotics may disrupt the intestinal flora, the
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innate immune response in healthy individuals during
endotoxemia is not affected. Metabolites produced by the
intestinal microflora, especially SCFAs, are proven to
improve kidney diseases by reducing inflammatory
response, antioxidant, anti-fibrosis; regulating blood
pressure and metabolism; and enhancing immune func-
tion.[36] However, the effects of different types of SCFAs
on kidney physiology are controversial. New research[37]

suggests that intestinal floral disorders can exacerbate non-
intestinal infectious diseases through the loss of bacterial
and intestinal bacterial diversity and an increase in the
number of virulent bacteria. According to the existing
information, regulating the microbiome is a necessary part
of CKD management. The combination of a low-protein
diet with probiotic and symbiotic supplements is promising
for controlling disease progression and comorbidities,
although validation in large clinical trials is needed.

Powerful metagenomic and metatranscriptome analysis
techniques have provided new insight into microbial
communities. However, the mechanisms underlying the
association of microorganisms with the health and disease
states of the host remain unknown. High-throughput
sequencing technology and correlation analyses of differ-
ent flora revealed a correlation between intestinal flora
and septic renal injury, thus providing a rationale for
interventions targeting the intestinal flora. Probiotics and
FMT can be effective for improving the intestinal micro-
biota of patients with septic renal injury and CKD, but
interventions have mainly been limited to probiotics
targeting certain microbial groups. However, knowledge
is expanding rapidly, and microbial treatments based on
SCFAs, for example, may eventually be included in
strategies for preventing systemic infection. Nevertheless,
clinical data supporting the use of FMT are currently
lacking. The microbiome may play an important role in
the perioperative period and the ICU environment, but
existing data to support this are mostly descriptive.
Better understanding of the imbalance in intestinal flora
in patients with renal diseases will facilitate the develop-
ment of new therapeutic strategies to prevent or reduce
these diseases and their complications.
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