
Possible Immunotherapeutic
Strategies Based on
Carcinogen-Dependent Subgroup
Classification for Oral Cancer
Jiwei Sun1,2,3†, Qingming Tang1,2,3†, Junyuan Zhang1,2,3, Guangjin Chen1,2,3, Jinfeng Peng1,2,3

and Lili Chen1,2,3*

1Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China, 2School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 3Hubei
Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China

The oral cavity serves as an open local organ of the human body, exposed to multiple
external factors from the outside environment. Coincidentally, initiation and development of
oral cancer are attributed to many external factors, such as smoking and drinking, to a
great extent. This phenomenon was partly explained by the genetic abnormalities
traditionally induced by carcinogens. However, more and more attention has been
attracted to the influence of carcinogens on the local immune status. On the other
hand, immune heterogeneity of cancer patients is a huge obstacle for enhancing the
clinical efficacy of tumor immunotherapy. Thus, in this review, we try to summarize the
current opinions about variant genetic changes and multiple immune alterations induced
by different oral cancer carcinogens and discuss the prospects of targeted
immunotherapeutic strategies based on specific immune abnormalities caused by
different carcinogens, as a predictive way to improve clinical outcomes of
immunotherapy-treated oral cancer patients.
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INTRODUCTION

Oral squamous cell carcinoma (OSCC) serves as one of the most important subtypes in head and
neck squamous cell carcinoma (HNSCC), diagnosed cases of which have mounted to more than
600,000 worldwide, along with 50,000 new cases each year (Rahman et al., 2019). Unlike many other
types of cancers whose pathogenesis is mainly explained by innate genetic alterations, OSCC is
mainly related to some classical environmental risk factors such as tobacco and alcohol (Solomon
et al., 2018). This phenomenon is easy to understand as the oral cavity is an open organ exposed to
the outside environment and has broad interactions with environmental factors. On the other hand,
with the development of oncogenic studies, the role of abnormality in the tumor microenvironment
has been identified to be more and more important (Binnewies et al., 2018). Recently, many types of
immune cells, such as M2 macrophages, regulatory T (Treg) cells, and myeloid-derived suppressor
cells (MDSCs), were discovered to exert a pro-tumor influence on oral carcinogenesis (Dar et al.,
2020; Li et al., 2020). The cell–cell communications mediated by extracellular vesicles have been
identified as crucial mechanisms contributing to tumor progression in many types of carcinomas.
Similarly, extracellular vesicles from multiple origins could get involved in many tumor-associated
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processes, including proliferation, metastasis, and drug resistance
during oral cancer development (Xie et al., 2019). The above clues
together indicated whether environmental risk factors could
promote OSCC progress via deregulation of the tumor
microenvironment. In the perspective of tumor therapy,
immunotherapies, including check-point therapy and
molecule-targeted strategy, have been making significant
advances and improving the prognostic outcome of tumor
patients to a great extent (Kennedy and Salama, 2020).
However, immunotherapy has failed to be the prior strategy
for OSCC treatment, partly due to the heterogeneity of OSCC
patients, as multiple types of risk factors, for example, smoking
and drinking, were involved in the initiation and progression of
OSCC. Considering the fact that the huge financial burden and
surgical complications are the main blockades for favorable
clinical outcomes of OSCC patients, a therapeutic strategy
based on patient-specific risk factors is extremely necessary to
direct the application of different types of immunotherapies to
different patients. This kind of strategy might overcome the
heterogeneity of OSCC patients and realize individual-based
diagnosis and therapy for OSCC patients, paving the way for
the future of OSCC immune therapies.

POSSIBLE CARCINOGENS FOR THE
DEVELOPMENT OF OSCC

Exogenous carcinogen-induced tumorigenesis acts as a
significant feature of OSCC, distinguishing it from other
cancers. Until now, multiple kinds of substances were
regarded as possible OSCC carcinogens.

Among all the possible carcinogens for OSCC, cigarette,
alcohol, and areca nuts were the most prevalent and well-
acknowledged carcinogens (Kumar et al., 2016). Lots of
clinical and epidemiological research has identified the strong
relationship between smoking and OSCC. Results of a study
based on 1,114 participants showed that the risk of OSCC among
non-drinkers amounted to the quantity of smoking (Blot et al.,
1988). In different regions, such as East Asia, Iran, and Brazil,
OSCC patients all exhibited a high percentage of smoking habits,
indicating a general influence of smoking on OSCC initiation
(Razavi et al., 2015; Bezerra et al., 2018; Hashibe et al., 2019).
Furthermore, OSCC patients with a smoking habit showed more
aggressive disease features and poorer prognostic outcomes than
non-smoking OSCC patients, indicating that smoking might also
contribute to the progression and aggression of OSCC (Al Feghali
et al., 2019). Alcohol abuse has been implicated as a high risk
factor in many types of cancers, including OSCC (Ng et al., 1993),
esophageal cancer (Castellsagué et al., 1999), larynx cancer
(Bosetti et al., 2002), colorectal cancer (Cho et al., 2004), and
pancreatic cancer (Korc et al., 2017). For OSCC, alcoholic
beverages have been implicated as an important carcinogen in
the etiology of oral cancer since the 1980s (Kabat and Wynder,
1989). Risk of OSCC among non-smokers was also confirmed to
increase along with alcohol consumption (Blot et al., 1988).
Specifically, a combination of alcohol abuse and smoking
could enhance the carcinogenic effect of each other, suggesting

a synergistic effect of alcoholism during OSCC development
(Castellsagué et al., 2004). It is well known that the habit of
chewing areca nuts is widely popular in Southeast Asia, and its
positive role in the development of oral precancerous lesions and
OSCC has been fully accepted as well (Li et al., 2016). As the areca
nut industry was growing fast worldwide, more and more public
and medical sources were paid due to betel chewing–induced
OSCC (Hu et al., 2017).

Besides the above carcinogens, periodontal infection was also
reported to be associated with OSCC development. Lower
frequency of tooth-brushing and fewer dental visits, which
were highly related with periodontal infection, were all
associated with OSCC development. The poorer overall
survival of OSCC patients with poor periodontal hygiene
further suggested possible roles of periodontal infection in
OSCC. With the development of society and subsequent
changes in traditional concepts, the frequency of oral sexual
behavior has mounted to a high level, especially in young
adults (Holway and Hernandez, 2018). This behavior shift
makes the oral cavity exposed to a totally new environment.
Clinical trials have revealed that changes in sexual behaviors
trend toward a higher incidence of oral human papillomavirus
(HPV) infection (Chaturvedi et al., 2015). This phenomenon just
coincides with the conclusion that the percentage of HPV-
positive oropharyngeal carcinomas has risen from 16.3% in
the 1980s to 72.7% in the 2000s (Chow, 2020). Obviously, oral
sex–mediated HPV exposure has become a newly emerging risk
factor for oral and pharyngeal carcinomas.

In addition, some novel perspectives about OSCC-related external
carcinogens have been implicated. The presence of some unhealthy
components inside the oral cavity, including residue dental roots and
crowns, as well as improper dental prothesis, was identified to
promote the malignant transformation of the normal oral
epithelium due to its persistent physical stimulus. Besides, global
nutrition deficiency might also be related to OSCC. Deficiency of
vitamin A was identified to have a correlation with the occurrence of
oral leukoplakia, a type of oral precancerous lesion (Sankaranarayanan
et al., 1997). Loss of vitaminDmight also act as a contributor toOSCC
progression (Verma et al., 2020). Persistent intake of hot water and
food is an acknowledged risk factor for esophagus carcinoma, and this
stimulus, along with other stimulatory factors including pungent
passing through the oral cavity, might also promote the formation
of malignant oral lesions. In some special regions of the world, for
example, New Zealand, where strong illumination exists throughout
the year, UV radiation was also considered a possible carcinogen for
skin carcinoma and OSCC (Yakin et al., 2017).

ABNORMALITY OF GENOME LANDSCAPE
IN OSCC

Traditional concepts claimed that initiation and development of
oral cancer are due to a sum of self- or risk factor–induced genetic
changes that would lead to alterations in the activation of
oncogenes and inactivation of tumor suppressor genes (Pérez-
Sayáns et al., 2009; Irimie et al., 2016). Multiple types of genes
controlling cell proliferation, DNA repair, angiogenesis, and

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 7170382

Sun et al. Specific Immunotherapies for OSCC Patients

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


other pro-tumor biological processes have manifested significant
variations between OSCC and normal oral tissues.

ABNORMALITY OF IMMUNE
MICROENVIRONMENT IN OSCC

The current hot spot in cancer oncology research, apart from
genetic variations, mainly lies in the tumor microenvironment,
which contributes a lot to local tumorigenesis by promoting
cellular proliferation, metabolism, metastasis, and so on (Casey
et al., 2015). In the perspective of OSCC, although the
heterogeneity of immune cell infiltration in the OSCC
microenvironment makes it difficult to describe the total
immunological landscape, more and more studies have been
dedicated to figuring out this challenge.

Abnormal Production of Cytokines
Abnormal expression of chemokines plays an important part in
the immunomodulation of the tumor microenvironment as
recruitment and activation of immune cell subtypes are largely
mediated by the interaction between chemokines and chemokine
receptors (Nagarsheth et al., 2017). The chemokine-mediated
regulating network exhibited its complexity via bidirectional pro-
tumor and anti-tumor functions (Figure 1).

IL-2 functions as an important growth factor for T cell
subpopulations, and activation of CD4+ T cell differentiation
by IL-2 has been verified. In addition, effector and memory CD8+

T cell responses could also be induced by IL-2 (Spolski et al.,
2018), indicating its crucial role in the T cell–mediated anti-
tumor process.

A large amount of evidence indicated crucial roles of IL-10 in
the anti-tumor process. CD8+ T cell function and memory could
be ignited by IL-10 exposure (Foulds et al., 2006). Elevation of
granzyme B and activation and interferon-γ (IFN-γ) expression,
along with subsequent CTL infiltration, have also been identified
(Emmerich et al., 2012). Direct stimulation of NK cells by IL-10
would contribute to its anti-tumor effects (Lauw et al., 2000),
while IL-10 could also indirectly mediate NK cell activation via
inhibition of ROS secretion by TAMs (Mocellin et al., 2004).

IL-35 is another commonly acknowledged regulator in the
tumor microenvironment. As a member of the IL-12 family, its
immune suppressive role would render a pro-tumor status. Pro-
tumor neutrophils induced by IL-35 could result in malignant
progression of local tumor tissues (Zou et al., 2017). In addition,
Tregs accumulated in tumor sites are the main resource of IL-35,
and anti-IL35 treatment showed a similar effect to that of the
depletion of Tregs. Inhibition of Th17 cell growth and function by
IL-35 were also discovered (Niedbala et al., 2007), indicating that
IL-35 might inhibit anti-tumor effects partially through a Th17
blockade.

IL-6 is a crucial chronic inflammatory mediator, higher levels
of which have been observed in multiple types of cancers. Several
major pro-tumor activities, including growth, invasion, and
angiogenesis, have been identified to be closely correlated with
IL-6 overexpression. In addition, the blockade of type 1 immune
response (Tsukamoto et al., 2018), elevation of Treg cells (Kato

et al., 2018), expansion of MDSCs, and activation of stromal
fibroblasts could also be induced by IL-6, thus contributing to
tumor development (Hanazawa et al., 2018).

IL-8 normally acts as a kind of chemokine, recruiting the
accumulation of leukocytes (Alfaro et al., 2017). While in the
tumor microenvironment, the high affinity of IL-8 to CXCR1 and
CXCR2, the activation of which has been demonstrated to play an
important role in tumor progression (Campbell et al., 2013; David
et al., 2016), would contribute a great deal to the malignant
process. Besides, an IL-8–induced increase in MDSC recruitment
would accelerate the chronic inflammatory status of local tumor
sites (Chi et al., 2014).

Similarly, IL-17 also played pro-tumor roles during tumor
progression. Chronic exposure of IL-17 would lead to a pro-
tumor microenvironment via production of inflammatory
mediators, mobilizing myeloid cells and a phenotypic switch
of stromal cells (Zhao et al., 2020).

TNF-α is a key pro-inflammatory cytokine, which exhibited a dual
function in tumor progression. Stromal cells and cancer cells could
both be sources of TNF-α. On the one hand, high levels of cytotoxic
potential from TNF-α could render destruction of tumor vasculature,
necrosis and apoptosis of cancer cells, and facilitation of drug
accumulation inside tumor sites. On the other hand, studies also
showed that TNF-α secreted by host cells surrounding tumor tissues
could instead construct an inflammatory status and promote tumor
progression (Egberts et al., 2008; Sethi et al., 2008).

As for OSCC, differential production of some types of
chemokines is significantly associated with carcinogenesis.

When it comes to chemokines, accumulations of CCL20,
CCL18, CCL4, and CCL2 were identified to promote tumor
progression in OSCC (Li et al., 2014; Lee et al., 2017; Wang
et al., 2017; Lien et al., 2018). Meanwhile, gene polymorphisms of
CCL4 and CCL5 were highly associated with OSCC susceptibility
(Weng et al., 2010; Lien et al., 2017). These deregulated
chemokines have been shown to play roles in
microenvironmental immunomodulation via recruitment of
Treg cells, macrophages, MDSCs, and so on (Nagarsheth et al.,
2017). As for inflammatory cytokines, interleukin (IL) 6, IL-8,
and tumor necrosis factor-alpha (TNF-α) have been identified in
terms of their potential roles as diagnostic biomarkers for OSCC
(Sahibzada et al., 2017). Association between the gene
polymorphism of IL-2 and OSCC has also been discovered
(Singh et al., 2017). IL-23 could contribute to the progression
of premalignant oral lesions to OSCC (Caughron et al., 2018),
while IL-17 was significantly linked to the overall survival status
of HNSCC (Lee et al., 2018). It is widely acknowledged that
complex interacting networks of inflammatory cytokines could
control recruitment, activation, and suppression of immune cells.
Thus, the discussed abnormality of inflammatory cytokines in
OSCC might result in a pro-tumor immune landscape in OSCC.

Abnormal Tumor-Infiltrating Immune Cells
Tumor-infiltrating cells are those immune cells located in the
local tumor microenvironment, which have been identified to
play crucial roles in either pro-tumorigenesis or anti-
tumorigenesis and have significant prognostic value in cancer
development (Shang et al., 2015). Immune cells inside the tumor
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microenvironment could commonly be divided into two groups,
the myeloid cell subgroup and the lymphocyte subgroup, all of
which work together to form a comprehensive and interactive
immune regulating network to influence the complexity of the
tumor immune microenvironment.

Tumor-Related Myeloid Cells
Traditionally, myeloid cells acted as major components for host
protection. They have changed evolutionally as barriers against
variant infections and contributors to tissue remolding. However,
during tumor development, myeloid cells would play complicated
roles (Gabrilovich, 2017).

Myeloid-Derived Suppressor Cells
Myeloid cells which are CD11b- and Gr-1–positive and exhibited
a strong immune suppressive effect have now been defined as
myeloid-derived suppressor cells (MDSCs). Main subtypes of
MDSCs are polymorphonuclear (PMN-MDSCs) and

mononuclear (M-MDSCs). Although the suppressive effect of
MDSCs could cover multiple types of immune cells, T cells are
their main targets (Gabrilovich et al., 2012). Production of NO
and variant cytokines induced by M-MDSCs could efficiently
suppress T cell activity, as a NO-associated T cell receptor
blockade would reduce the antigen presentation process
(Koehn et al., 2015), while formation of antigen-specific T cell
tolerance is a main mechanism for PMN-MDSCs (Gabrilovich
et al., 2012). Besides, production of reactive oxygen species (ROS)
is also essential for this process. On the other hand, MDSCs could
also participate in the remolding process of the tumor
microenvironment and tumor angiogenesis via VEGF, bFGF,
and MMP9 (Casella et al., 2003; Shojaei et al., 2009).

Neutrophils
Neutrophils are the first line against multiple infections of the
host. However, their plasticity in the tumor microenvironment
puts them into both pro-tumor and anti-tumor roles (Giese et al.,

FIGURE 1 | Immune cells and cytokines associated with OSCC progression. This figure depicts the main types of immune cells and cytokines associated with
progression of OSCC development. During OSCC progression, immune cells and cytokines could be divided into two groups, the pro-tumor part and the anti-tumor
part. Immune cells, including PD-1+ and CTLA4+ T cells and TAMs, have been identified to play roles in tumor progression through multiple pathways, as discussed
above. Similarly, immune cells contributing to the anti-tumor process, Th1 cells and NK cells, for example, were also listed inside. A complete overview of immune
cells involved in tumor development would help us better understand the complexity of immune regulation of OSCC.
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2019). Generation of ROS, reactive nitrogen species (RNS), and
hydrogen peroxide could direct cancer cell–specific death, which
is the main mechanism for neutrophil-induced anti-tumor roles
(Granot et al., 2011), while in addition to their cytotoxic effect,
abnormal production of ROS and RNS would result in oxidative
DNA damage and genetic variations (Güngör et al., 2010). It is
also well known that neutrophil-extracellular traps (NETs)
generated in the tumor microenvironment would result in
migration and invasion of cancer cells (Park et al., 2016).
Secretion of MMPs from neutrophil granules might promote
malignant development via migration, proliferation, and
angiogenesis (Ardi et al., 2007; Das et al., 2017).

Dentritic Cells
Dendritic cells (DCs) are commonly regarded as the activator of
T cells via transporting cancer-associated antigens. Initiation,
polarization, and direction of T cells in the tumor
microenvironment as well as recycling lymph nodes by DCs
are the main mechanisms for DC-induced tumor suppression,
during which the CD8+T cell is their main target (Gardner et al.,
2016). However, suppression of DCs in the tumor
microenvironment would block this process, rendering a non-
immunogenic DC phenotype switch. Thus, stimulatory and
suppressive signals in the tumor microenvironment aiming at
DCs, cytokines, and cell–cell communication, for example, would
regulate DC-related T cell immunogenic functions.

Tumor-Associated Macrophages
Tumor-associated macrophage (TAM) is a subtype of infiltrating
macrophage contributing to local tumor growth, metastasis, and
neovascularization (Zhu et al., 2017). Infiltrating TAMs in OSCC
is also associated with tumorigenesis. CD163, a common marker
for TAMs, was observed to be elevated in OSCC tissues
(Stasikowska-Kanicka et al., 2018a), suggesting its possible
relationship with oral carcinogenesis. Coincidentally, the same
phenomenon was observed in oral precancerous lesions (Boas
et al., 2013). Besides, CD204, another TAMmarker, was shown to
be linked to the progress from oral premalignant lesions to OSCC
(Kouketsu et al., 2019). Using a xenograft model, irradiation-
induced M2 macrophage accumulation showed the potential to
promote oral tumor recurrence via enhancement of
neovascularization (Okubo et al., 2016). The in vitro
experiment remodeling the tumor environment confirmed the
mutual promoting effect between oral cancer cells and TAMs
(Essa et al., 2016), and the Gas6/Axl signaling pathway was
further confirmed to enhance the epithelial-mesenchymal-
transition of oral cancer cells (Lee et al., 2014). Apart from
M2 macrophages, M1 subtype TAMs also played a positive
role in OSCC (Xiao et al., 2018). In the early tumor stage,
local resident macrophages act in cooperation with other
innate immune cells to initiate inflammatory responses to
reduce tumor progression, through some direct effects, for
example, ROS generation, and some indirect pathways, such as
regulation of Th1 responses (Joyce and Pollard, 2009; Murray and
Wynn, 2011). It could be concluded from the above that TAM is
significantly involved in the pathogenesis of OSCC.

Tumor-Related Lymphocytes
CD8+T Cell
The CD8+T cell is a generally recognized anti-tumor defender of
the host and serves as one of the most crucial effector cells in anti-
cancer immunity, dysfunction of which would result in a severe
barrier for cancer elimination (He et al., 2019). Loss of
CD8+T cells has contributed to tumorigenesis in many types
of cancers. In OSCC, the CD8+T cell was shown to decrease in
either OSCC tissues or precancerous lesions (Stasikowska-
Kanicka et al., 2018a). High CD8+T cell percentage could also
predict a better overall survival and disease-specific survival rate
in OSCC (Shimizu et al., 2019). Immunological staining further
revealed an increase in CD8+T cells in OSCC with better
prognosis (Stasikowska-Kanicka et al., 2018b). The expression
level of PD-L1, an immune checkpoint blockade targeting
cytotoxic T cells, was highly unregulated in OSCC
(Stasikowska-Kanicka et al., 2018a; Stasikowska-Kanicka et al.,
2018b), indicating a loss-of-function status of T cells in OSCC. In
the translational medical perspective, the anti-tumor effect of
radiotherapy in OSCC was also verified to be partly attributed to
the activation of CD8+ T cells (Suwa et al., 2006). These clinical
experimental results together come to the conclusion that CD8+

T cells play an anti-tumor role in OSCC, the abnormality of which
would help in tumorigenesis.

CD4+T Cells
T cells expressing CD4 glycoprotein are another crucial T cell
subtype called the CD4+T cell, and their functions in the tumor
microenvironment are extremely complicated, due to multiple
subgroups of CD4+T cells, including Th (T helper)1 cells, Th2
cells, Th9, Th17, Th22, and T regular cells (Treg).

Th1 cells show some anti-tumor effects mainly via their large
amount of IFN-γ production, along with some chemokines to
recruit and prime effector CD8+T cells. Also, NK cells and M1
macrophages could be recruited and activated by Th1 cells in
local tumor sites for tumor elimination (Nishimura et al., 1999).
By targeting of tumor stroma and subsequent angiogenesis
blockade, tumor growth could be inhibited in an IFN-
γ–mediated way by CD4+T cells (Qin and Blankenstein, 2000).

Th2 cells have been verified to play some contradictory roles in
tumor progression. Secretion of IL-4 by Th2 cells would mediate
transport of macrophages and eosinophils into tumor sites for
anti-tumor actions (Tepper et al., 1989), and this immune
transfer function is the main mechanism for the Th2-mediated
anti-tumor effect. On the other hand, antigen-specific effector
Th2 cells have been reported to promote cancer development,
and IL-5 secreted by them might be the reason behind this pro-
tumor effect (Tatsumi et al., 2002).

Th17 cells are an important subgroup participating in the anti-
infection process. A pro-inflammatory microenvironment
induced by secreted IL-17a and IL-23 would promote tumor
progression via elevating angiogenesis and inhibiting infiltration
of CD8+T cells. Only a small amount of Th17-associated cytokine
exposure could remarkably facilitate cancer progression (Lee
et al., 2012), while some studies support that a high level of
IL-17 would result in an anti-tumor immune status (Numasaki
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et al., 2005). This contradictory phenomenon suggested that the
role of Th17 in tumor progression largely depends on the host
status and local context.

Treg is a negative regulator in the adaptive immune system,
suppressing the activation of immune responses andmaintaining the
immune balance (Sakaguchi, 2004). During tumor progress,
excessive upregulation and activation of Treg cells would result in
immune deficiency and subsequent immune escape of tumor cells,
thus facilitating the development of tumorigenesis (Smigiel et al.,
2014). In OSCC patients, elevated levels of Treg cell–associated
cytokines were observed in peripheral blood (Gaur et al., 2014), while
a higher frequency of Treg cells was also discovered in OSCC
samples (Schwarz et al., 2008). Animal experiments using mice
and dogs further verified an increase in Treg cells in OSCC
(Horiuchi et al., 2010; De Costa et al., 2012). In tongue
squamous cell carcinoma, a higher level of expression of Treg
cells was significantly associated with a poorer survival rate, and
accumulation of Treg cells was used to predict bad prognosis of
patients (Hanakawa et al., 2014). Compared with healthy donors,
levels of circulating Treg cells were also much higher in OSCC
patients, along with a higher level of TGF-β, a Treg-associated
cytokine (Lim et al., 2014). The above evidence together
confirmed the pro-tumorigenesis value of Treg cells in OSCC.

Natural Killer Cells
The anti-tumor immunity of natural killer (NK) cells has long
been regarded as a predominant effector against metastasis or
hematological cancers, and more and more efforts have been
applied to fully understand properties of NK cells (Guillerey et al.,
2016). Escape of NK cell immune surveillance in OSCC tissues
and inactivation of the NK cell status in peripheral circulation of
OSCC patients has been recorded in clinical research (Dutta et al.,
2015). Similarly, the downregulated NK cell status was also
observed to be linked to higher invasive oral tumor areas
(Türkseven and Oygür, 2010). A newly published meta-
analysis indicated the possibility of the NK cell marker being a
prognostic marker, considering the negative correlation between
NK cell markers and the OSCC patient survival rate (Huang et al.,
2019). The successful curative effect of NK cell immunotherapy in
OSCC identified in an in vivomodel further confirmed the crucial
anti-tumor role of NK cells in OSCC (Greene et al., 2020).

OSCC CARCINOGEN-INDUCED IMMUNE
ABNORMALITIES

As predominant contributors to the progress of OSCC, multiple
OSCC-related carcinogens, including smoking, drinking alcohol,
chewing areca nuts, periodontal infection, and oral sexual
behavior, have all been proven to be related to local immune
abnormality to a great extent. A complete understanding of the
immune status induced by carcinogens would help in possible
recognition of the immune landscape of carcinogen-induced OSCC.

Cigarette
Cigarettes are a well-known risk factor for many oral diseases,
including periodontitis (Kinane et al., 2017), halitosis (Jiun et al.,

2015), oral leukoplakia (Granero Fernandez and Lopez-Jornet,
2017), and OSCC (Blot et al., 1988). Previous studies about the
effect of smoking on carcinogenesis mainly focused on aberrant
genetic alterations brought on by harmful compounds inside
cigarettes. Accumulation of DNA adducts and oxidative DNA
damage induced by tobacco smoking have been identified for a
while (Phillips, 2002), and the subsequent genetic mutational
signatures, such as TP53, P73, and MDM2 (Misra et al., 2009),
were listed clearly, using sequencing methods (Alexandrov et al.,
2016). However, little attention was cast onto the influence of
microenvironmental changes caused by tobacco. The oral cavity
is a local microenvironment whose stability would be extremely
changed due to tobacco smoking (Figure 2). Thousands of
reactive oxygen species (ROS) are generated in burning
cigarettes (Huang et al., 2005), and ROS-attacked epithelial
cells and cancer cells in the oral cavity would secrete lots of
inflammatory mediators, thus leading to imbalance of host
immunity in the oral cavity. It is evidenced that cigarette
smoke could result in upregulation of IL-8 (Barnes, 2016) and
downregulation of IL-12 by the oral epithelium (Vassallo et al.,
2005a). As IL-12 is a main inducer of the Th1 response
(Trinchieri, 2003), the phenomenon coincides with the
observation that cigarette smoking would result in suppression
of Th1 responses and generation of Th2 inflammatory reaction

FIGURE 2 | Mechanisms of smoking-related immune regulation in
OSCC. This figure depicts several main immune-regulating activities
associated with smoking. As one of the most important OSCC carcinogens,
smoking could directly or indirectly regulate immune activities through
activation of epithelial cells and immune cells and the production of ROS.
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(Cozen et al., 2004), and excessive Th2 response would break the
balance between Th1 and Th2. As has been known, Th2 immune
polarization might result in some unexpected effects in
carcinogenesis. CCL5-mediated recruitment and differentiation
of Th2 cells enhanced the primary tumor burden and pulmonary
metastases of luminal breast cancer (Zhang et al., 2015). NLRP3-
activated polarization of Th2 cells also had a tumor-promoting
impact on pancreatic cancer (Daley et al., 2017), further
identifying the immunosuppressive role of Th2 in
carcinogenesis. On the other hand, patients with higher
accumulation of Th1 exhibited better and prolonged survival
(Tosolini et al., 2011), precise evidence for the anti-tumor effect of
Th1. Furthermore, some chemotherapies targeted at the tumor
microenvironment also aim to enhance Th1 cytokine levels as an
anti-tumor pathway (Berlato et al., 2017). Thus, smoking-
induced imbalance of Th1/Th2 might be speculated to play a
role in development of OSCC from an immunological
perspective. Besides, IL-8 could act as a pro-tumorigenesis
cytokine with its promotion of tumor proliferation, migration,
and maintaining of stemness (Chen et al., 2014; Huang et al.,
2015; Ding et al., 2017). As reported, the release of IL-8 induced
by cigarette smoke (CS) was mainly from macrophages
(Facchinetti et al., 2007) and airway epithelial cells (Mio et al.,
1997). Interestingly, several research studies have reported that
IL-8 was induced in oral squamous cell carcinoma cells (Tsunoda
et al., 2016) and gingival epithelial cells (Mahanonda et al., 2009).
Thus, upregulation of IL-8 by CS might play an important role in
CS-induced tumorigenesis.

CS could also impose a great influence on immunological
functions of dendritic cells. It has been reported that some
components of CS, such as ROS, nicotine, and other chemicals
inside, were involved in the influence on DCs (dendric cells),
causing the suppression of DC-induced T cell activation and
proliferation (Vassallo et al., 2005b; Kroening et al., 2008;
Vassallo et al., 2008). DCs are considered to be main
activators for both innate immunity and adaptive immunity,
being highly efficient in generating fast and fierce
immunological responses (Constantino et al., 2017). However,
under the immunosuppressive influence of the tumor
microenvironment, DCs always show a biological dysfunction
in the cancerous background, as a way to help tumor evasion
(Tang et al., 2017). Due to its central role in the initial phase of
immunity activation, DC-based immunotherapy has been used in
clinical trials since the mid-1990s and has been applied in many
types of cancers such as melanoma, prostate cancer, malignant
glioma, and renal cell carcinoma (Anguille et al., 2014). Thus, CS-
induced dysfunction of DCs is considered as a contributor to the
malignant development of the tumor microenvironment. In
addition, CS extract has also been found to suppress
production of antiviral cytokines from DCs (Mortaz et al.,
2009). In nasopharyngeal carcinoma, CS extract has been
proved to promote the infection of the Epstein–Barr virus
(EBV), the enhancement of which is closely associated with
the malignant development of nasopharyngeal carcinoma
(Huang et al., 2017). The proportion of HPV-related OSCC
has increased in the past 30 years in a longitude clinical survey
in America (Chaturvedi et al., 2008), emphasizing the importance

of HPV infection in OSCC development. Thus, it could be
speculated that the decrease in antiviral capacity caused by CS
might promote the colonization and replication of HPV in the
oral cavity.

Smoking was found to increase the aggregation of alveolar
macrophages but impair the normal functions of macrophages
(Kotani et al., 2000; Hodge et al., 2003). The same phenomenon
was identified in vitro (Kirkham et al., 2004). As is known to all,
dysfunction of macrophages might help to promote the
development of tumors. In addition, smoking could induce the
polarization of M2 macrophages in alveoli (Bazzan et al., 2017).
In an in vivo mouse model, smoking was identified to induce the
polarization of tumor-associated macrophages and promote the
development of pancreatic cancer in this way (Kumar et al.,
2015). Thus, the dysfunction and M2 polarization of
macrophages caused by smoking might partly explain the
malignant transformation of the tumor microenvironment,
leading to OSCC development as a result.

On the other hand, CS is a crucial modulator of host response
to pathogens (Nuorti et al., 2000). Smokers are shown to be more
likely to get infection of Streptococcus pneumoniae and
Tuberculosis (Padrao et al., 2018). This feasibility of pathogen
colonization might suggest a dysfunction of host immunity and
destruction of microbial balance, leading to a low resistance to
extraneous pathogens. Recently, the relationship between oral
microbial dysbiosis and tumor development has been a hot topic,
and a lot of evidence has revealed microbial dysbiosis as a
contributor to carcinogenesis. Smoking was strongly identified
to be involved in oral microbial variations through some clinical
trials with large amounts of samples (Wu et al., 2016; Yu et al.,
2017). Microbial diversity was decreased in smokers, and there
were a reduction of phylum Proteobacteria and genera
Capnocytophaga, Peptostreptococcus, and Leptotrichia and
enhancement of Atopobium and Streptococcus. These abnormal
changes of host microbial composition caused by smoking might
be one of the reasons for the CS-induced effect of carcinogenesis.

Alcohol
Alcohol abuse has been implicated as a high risk factor in many
types of cancers, including OSCC (Ng et al., 1993), esophageal
cancer (Castellsagué et al., 1999), larynx cancer (Bosetti et al.,
2002), colorectal cancer (Cho et al., 2004), and pancreatic cancer
(Korc et al., 2017). Alcohol dehydrogenase (ADH) and aldehyde
dehydrogenase (ALDH) play crucial roles in the regular
conversion of ethanol to acetate. When it comes to
carcinogenesis, traditional opinions about alcohol-induced
carcinogenesis support the abnormal metabolism of ethanol
caused by variations of ADH- and ALDH-encoding genes
serving as main contributors (Jelski et al., 2009). For example,
this abnormality of ethanol metabolism could lead to increased
generation of ROS from epithelial cells, which then activates
cellular pathways, such as the nuclear factor κB (NF-κB) pathway
and the mitogen-activated protein kinase (MAPK) pathway (Wu,
2006; Morgan and Liu, 2011), causing the malignant
transformation of tumor cells. In addition, the RNS level of
the epithelium was also elevated by alcohol stimulation.
Accumulation of ROS and RNS would indirectly modify the

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 7170387

Sun et al. Specific Immunotherapies for OSCC Patients

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


immune microenvironment via its suppressive effect on T cells,
NK cells, and macrophages (Figure 3). Besides this direct
carcinogenic effect of alcohol, the function of host immunity
is also under significant burden due to alcohol intake, which
might partly explain the carcinogenesis of alcohol.

Alcohol intake, either acute or chronic, poses a great burden
on NK cells. Alcohol abuse has long been regarded as a promoter
for the development of hepatic diseases, such as hepatitis viral
infection and liver fibrosis. It is reported that chronic ethanol
consumption would accelerate virus-induced hepatitis through
suppression of NK cell accumulation and cytotoxicity ability (Pan
et al., 2006). Similarly, ADH3, a crucial enzyme in the metabolic
process of alcohol, has great correlation with the development of
hepatic fibrosis due to its suppression of NK cells (Yi et al., 2014).
Abrogation of the antifibrotic effect of NK cells caused by alcohol
was seen to increase the severity of alcoholic liver fibrosis (Jeong
et al., 2008). In alcoholic hepatitis, a decreased frequency and
reduction of the degranulation capacity of NK cells were also
observed compared with healthy ones (Støy et al., 2015). When it
comes to cancer development, alcohol abuse could also explain its
carcinogenesis through NK cell variation, as acute alcohol
ingestion has been demonstrated to cause a marked reduction
of NK cell activity and, in this way, promote the tumor metastasis
in vivo (Ben-Eliyahu et al., 1996). Metastasis of colon cancer cells
into the liver was also increased by treatment of chronic alcohol
consumption in a preclinical model (Im et al., 2016). In

perspective of the count variation of NK cells, alcohol
consumption has been identified to decrease the number of
NK cells in the spleen (Blank et al., 1991) and peripheral
lymph nodes (Zhang et al., 2011). Furthermore, the balance of
thymus-derived and bone marrow–derived NK cells was also
destroyed by alcohol intake (Zhang andMeadows, 2008). Besides,
cytotoxicity and cell activity of NK cells was downregulated by
treatment of alcohol (Wu et al., 1994), and enzymatic activity of
granzyme A and B expressed by NK cells was suppressed,
resulting in the loss of cell viability of NK cells (Spitzer and
Meadows, 1999). On the other hand, some research focused on
the explanations for alcohol-induced suppression of NK cells.
Alcohol consumption could render a variation of the autonomic
nervous system and reduction of pro-inflammatory cytokines
from neuroendocrine and immune cells, leading to suppression of
NK cell cytolytic activity (Boyadjieva et al., 2006; Chen et al.,
2006). Downregulation of IL15 induced by alcohol consumption
seemed like a way to suppress the availability of NK cells (Zhang
et al., 2017), and this observation has been confirmed by a rescue
experiment (Zhang and Meadows, 2009). Moreover, activity of
the NF-κB pathway in NK cells, a crucial pathway for immune
activation, was also suppressed by alcohol treatment (Zhou and
Meadows, 2003).

T cell function is also under the influence of alcohol drinking.
Alcohol-derived acetaldehyde has been proved to pose severe
toxicity to the immune system, and recent study has confirmed its
role in the downregulation of T cell function via inhibiting
aerobic glycolysis and hampering the energy source of T cells
(Gao et al., 2019). An in vivo experiment using ethanol-fed mice
proved that ethanol could enhance the antibody-induced CD4+

T cell immunosuppression and thus promote tumorigenesis
(Hunt et al., 2000). A chronic alcohol treatment was identified
to accelerate the immunosenescence process of CD8+ T cells of
rhesus macaques (Katz et al., 2015). Besides, an in vitro
experiment showed that alcohol consumption could inhibit the
T cell proliferation rate compared with water consumption, and
an increase in some pro-tumor immune groups of cells, such as
Treg cells and MDSCs, might also impair the function of T cells
(Zhang and Meadows, 2010). The apoptosis of T cells would also
be activated by the alcohol treatment via downregulation of the
vitamin D receptor (Rehman et al., 2013).

Areca Nuts
It is well known that the habit of chewing Areca nuts has been
widely popular in Southeast Asia, and its positive role in the
development of oral precancerous lesion andOSCC has been fully
accepted as well (Li et al., 2016). Apart from its genotoxicity, the
areca nut might also affect the progress of oral malignant
transformation via immunomodulation (Figure 3). For
lymphocytes, the DNA synthesis process was identified to get
inhibited long before (Yang et al., 1979). This phenomenon posed
the hypothesis that areca nuts might decrease the immunity of
lymphocytes. Further study confirmed that T cell activation and
IFN-γ production were suppressed by areca nut treatment
through induction of oxidative stress (Wang et al., 2007).
When it comes to immune cell function, the phagocytosis of
neutrophils (Hung et al., 2006), the adhesion and migration of

FIGURE 3 | Immune activities caused by alcohol and areca nut
consumption in OSCC. This figure depicts the immune-regulating networks
induced by alcohol and areca nuts during OSCC development according to
related studies. Specifically, inhibition of NK cells, T cells, DCs, and
neutrophils, several main anti-tumor immune cells, was a remarkable feature
of immune abnormalities induced by alcohol and areca nuts, indicating that
immune inhibition might be excessively crucial in OSCC associated with these
two carcinogens.
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mononuclear leukocytes (Chang et al., 2014), and the
differentiation of dendric cells from monocytes (Wang et al.,
2012) were all proven to decrease due to areca nuts. In the
perspective of inflammatory cytokines, treatment of human
immune cells using areca nut extract was identified to increase
multiple inflammatory cytokines, such as TNF-α, IL6, IL8,
cyclooxygenase-2 (COX2), and prostaglandin E2 (PGE2)
(Chang et al., 2009; Chang et al., 2013; Faouzi et al., 2018), as
well as decrease the level of IL2 production by spleen cells (Selvan
et al., 1991). As for oral keratinocytes, production of PGE2,
Prostaglandin I2 (PGI2), IL-6, and TNF-a was also enhanced
due to areca components (Jeng et al., 2000; Jeng et al., 2003).
Expressions of IL-2 and IL-2 receptor by CD8+ cytotoxic T
lymphocytes (CTLs) and tumor-infiltrating lymphocytes (TILs)
were also reduced under the influence of PGE2, while PGE2
induced CD4+ Th2 cell activation (Wustrow and Mahnke, 1996;
Li et al., 2013). As mentioned above, TILs are lymphocytes that
migrate from the blood to the tumor, playing crucial roles in
either pro-tumorigenesis or anti-tumorigenesis. Among them,
CD4+Th2 cells promote tumor growth, while CTLs inhibit
tumorigenesis (Lauerova et al., 2002; Farhood et al., 2019). In
other words, PGE2 serves as an immunosuppressor contributing
to the induction of CD4+ Th2 cells and the pro-tumor efficacy of
TILs. Circulating the immune complex, known to exhibit an
immunosuppressive effect on NK cells and CTLs, was detected to
accumulate more frequently in areca chewers than in healthy
controls (Remani et al., 1988). A large-population experiment
using flow cytometry and immune-staining reveals that IL-17 was
highly expressed in areca chewers (Quan et al., 2020). Exposure of
areca extracts was shown to induce the increasing secretion of IL-
6 and IL-8 by peripheral blood mononuclear cells (Chang et al.,
2006). In an animal model, arecoline receivers exhibited a low
splenic lymphocyte proliferation rate and a high apoptosis rate
(Dasgupta et al., 2006). Similarly, production of IL-8 from oral
squamous cancer cells was also increased due to exposure of
arecoline (Cheng et al., 2000). PBMC isolated from areca chewers
exhibited a higher level of DNA damage markers in circulating
lymphocytes (Liu et al., 2004).

Periodontal Infection
Periodontitis, one of the most common diseases inside the oral
cavity, is largely caused by poor oral hygiene status and oral
microbial dysbiosis (Lertpimonchai et al., 2017; Meuric et al.,
2017). Periodontitis is featured by the dysbiotic inflammatory
status (Hajishengallis, 2015), which is highly associated with
inflammatory microenvironmental abnormality (Figure 4).
Most of pathogenic oral bacteria are Gram negative ones,
sharing a similar ability to induce higher concentration of
cytokines from oral epithelial cells, such as IL-6, IL-1β, TNF-
α, and IL-8 (Ha et al., 2016; Cardoso et al., 2018), and
overexpression of these inflammatory cytokines contributes to
the abnormality of the microenvironment as discussed above. In
particular, some periodontal pathogenic microbiota has been
reported to impose immunosuppression on the local focus. F.
nucleatum, a common periodontitis-associated bacterium, was
identified to recruit MDSCs, a kind of tumor-infiltrating immune
cell with anti-immunity ability (Kostic et al., 2013). M2

polarization, leading to the differentiation of tumor-associated
macrophages, was also observed to be induced by F. nucleatum
(Chen et al., 2018). TIGIT, a membrane protein of many immune
cells, such as NK cells and T cells, could also be modulated by F.
nucleatum, resulting in loss of function of NK cells and cytotoxic
T cells (Gur et al., 2015). Another common periodontal pathogen,
P. gingivalis, is also involved in immunomodulation. P. gingivalis
was identified to silence innate immune response partly by
inactivating DCs (Abdi et al., 2017). In vivo experiment
exhibited that P. gingivalis infection promoted the expansion
of MDSCs (Su et al., 2017). Disturbance of the Th1/Th17 balance
was also induced by P. gingivalis (Monasterio et al., 2019), while
suppression of IL-2 accumulation in T cells (Khalaf and
Bengtsson, 2012) and reduction of CXCL10 expression caused
by P. gingivalis infection (Jauregui et al., 2013) might be used to

FIGURE 4 | Immune landscape in oral pathogen–related OSCC. This
figure depicts the immune landscape caused by oral pathogens, including
bacteria and viruses, in OSCC development. Immune regulation was the main
activity upon oral pathogen exposure. As infectious factors have been
proven to be more and more important in OSCC initiation and progression,
immune activities induced by OSCC-related pathogenic bacteria and viruses
might also be a crucial part contributing to OSCC progression.
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partly explain this phenomenon. M2 polarization was also elicited
by P. gingivalis and could promote carcinogenesis in HNSCC
(Utispan et al., 2018).

Oral Sexual Behavior
With the development of society and subsequent changes in
traditional concepts, the frequency of oral sexual behavior has
mounted to a high level, especially in young adults (Holway and
Hernandez, 2018). This behavior shift makes the oral cavity
exposed to a totally new environment. Clinical trials have
revealed that changes in sexual behaviors trend toward a
higher incidence of oral HPV infection (Chaturvedi et al.,
2015). This phenomenon just coincides with the conclusion
that the percentage of HPV-positive oropharyngeal carcinomas
has risen from 16.3% in the 1980s to 72.7% in the 2000s (Chow,
2020). Obviously, oral sex–mediated HPV exposure has become a
newly emerging risk factor for oral and pharyngeal carcinomas. It
is worth noting that HPV infection has been identified to play a
crucial role in local immune disruption (Figure 4). Studies have
revealed that HPV+ HNSCC patients are more likely to exhibit an
abnormal tumor immune microenvironment (Gameiro et al.,
2018). A meta-analysis concludes that dysfunction of T cells plays
a great part in HPV-induced immune deficiency, while the
abnormality of macrophages, Tregs, and MDSCs remains
unclear (Lechien et al., 2019). Viral protein E7 could reduce
expression of TAP1, as a way to inactivate cytotoxic T cells
(Einstein et al., 2009). Infection of HPV would result in
downregulation of pro-inflammatory cytokines and
upregulation of anti-inflammatory cytokines, such as IL-10
(Mota et al., 1999). In cervical cancer, another HPV-associated
carcinoma, loss of T cell cytotoxicity, increase in
immunosuppressive Th cell infiltrating, and secretion of
immunosuppressive cytokines are all associated with HPV
infection (Piersma, 2011). In HNSCC, a large-population
transcriptome analysis revealed a T cell dysfunction and T cell
exhaustion signatures in HPV-positive patients (Krishna et al.,
2018). Furthermore, overexpression of PD-1 and CTLA-4 was
observed in HPV-positive HNSCC tissues, which indicated a loss-
of-function status of CD8+ T cells due to HPV infection (Kansy
et al., 2017). In short, abnormality of the T cell status induced by
HPV infection might be closely related to OSCC development.

RISK FACTOR–BASED
IMMUNOTHERAPEUTIC STRATEGY

Until now, surgical operation is still the first choice for OSCC
treatment. Heterogeneity acts as one of the main traits in head
and neck squamous cell carcinoma (HNSCC) (Schubert et al.,
2020), and poor clinical outcomes of radiation and chemical
treatment were partly due to the heterogeneity of OSCC patients
(Kagohara et al., 2020). Immune phenotypes of HNSCC classified
by the heterogeneity of immune landscapes among HNSCC
patients have been built up successfully (Feng et al., 2020).
This result further indicated that immune heterogeneity of
HNSCC might be summarized into a statistical rule, which
might be used for classification of HNSCC patients with

different immune statuses. A recent study has identified that
smoking could exert an immunosuppressive effect on the
HNSCC tumor microenvironment with the help of multi-
omics analysis (de la Iglesia et al., 2020). This discovery just
coincides with the above hypothesis that oral cancer–related risk
factors might greatly account for the abnormality of the immune
status. In the perspective of tumor therapy, immunotherapeutic
strategies for OSCC ought to be dependent on intratumor
heterogeneity to achieve better clinical outcomes (Mroz et al.,
2020). Thus, in consideration of the correlation between risk
factors and immune variations, a new concept is brought out that
combination of patient risk factor information and immune
status detection might be valuable for directing individual-
based immunotherapy for OSCC patients (Figure 5).

Check Point Blockade Therapy
Anti–PD-(L)1 Treatment
Programmed death ligand 1 (PD-L1) is often expressed on the
surface of antigen-presenting cells (APCs), tumor cells, etc., and it
can bind to PD-1 on the surface of activated T cells, leading to the
exhausted status of T cells (Goodman et al., 2017). Anti–PD-(L)1
treatment could be applied due to its role in reducing T cell
apoptosis and enhancing recruitment of T effector cells to tumor
sites (Dong et al., 2002). Downregulation of T cell function is a
significant feature in OSCC, which is a plausible reason for
possible application of anti–PD-(L)1 treatment in OSCC. As
reported, anti–PD-1 (aPD1) immunotherapy has been proven
to be effective in lymphomas (Goodman et al., 2017), melanoma
(Wang et al., 2016), and non–small-cell lung cancer (Xia et al.,
2019). Increased expression of PD-1 and PD-L1 was observed in
oral lesions progressing to OSCC compared to non-progressing
dysplasia (Dave et al., 2020). In addition, several reports revealed
that recurrent/metastatic HNSCC patients treated with anti-PD1
showed a significantly prolonged survival compared with
standard treatment (Ghanizada et al., 2019). Additionally, high
expression of PD-1 was observed in exhausted NK cells, and anti-
PD1 therapy could reverse this condition in many cancers
(Romero, 2016; Li et al., 2018). So the anti–PD-(L)1 method
might also be used as the NK cell–targeted method in alcohol-
related OSCC. Subsequent clinical experiments identified that
anti-PD1 therapy achieved a better prognostic outcome in HPV+

cancer patients than HPV- controls (Ferris et al., 2016). Besides, a
systemic meta-analysis confirmed that HPV+ HNSCC patients
could benefit more from anti-PD1 immunotherapy, further
ensuring the role of the PD1 blocking method in the
treatment of HPV+ OSCC patients (Galvis et al., 2020). In
conclusion, anti–PD-(L)1 treatment is an optional method for
all subgroups of OSCC discussed above.

Anti–CTLA-4 Treatment
The cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) is a
critical receptor for the negative regulation of T cell activation
(Rowshanravan et al., 2018). Although elimination of CTLA-4
can result in several diseases including autoimmune diseases,
effective anti-tumor immunity sometimes requires the blockade
of CTLA-4 (Brunner-Weinzierl and Rudd, 2018; Hosseini et al.,
2020).
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Wang et al. (2019) found that syngeneic animal models of
tobacco-associated oral cancers have higher response rates to
anti–CTLA-4 immunotherapy than to anti-PD1 treatment.
Anti–CTLA-4 treatment could also increase IFN-γ–producing
CD4+ Th1 cells, which is necessary for overcoming the imbalance
of Th1/Th2 caused by smoking (Chen et al., 2009). On the other
hand, downregulation of T cell function was also observed in
alcohol-drinking patients. Depending on this point, anti–PD-(L)
1 and anti-CTLA4, two common check-point inhibitors for
T cells, could be used as discussed above. In addition, based
on the overexpression of CTLA-4 observed in HPV+ HNSCC
tissue samples, a combination of anti-PD1 and anti–CTLA-4
therapies might be likely to achieve a better clinical outcome in
HPV-related OSCC patients.

Anti-TIGIT Treatment
The T cell immunoreceptor with immunoglobulin and ITIM
domain (TIGIT) is a promising new target along with PD-(L)1
and CTLA-4 for cancer immunotherapy, and the blockade of
TIGIT and PD-L1 were found to act synergistically on T cells and
NK cells’ effector functions (Johnston et al., 2014). Zhang et al.
(2018) found that the inhibition of TIGIT could prevent NK cell
exhaustion and promote NK cell–dependent tumor immunity in

several tumor mouse models. Since the dysfunction of NK cells
plays an important pathogenic role in drinking patients, anti-
TIGIT therapy might be effective in the treatment of alcohol-
related OSCC. In addition, due to the binding ability of F.
nucleatum to TIGIT and subsequent downregulation of NK
cells and T cells, some anti-TIGIT antibodies, MK-7684, for
example, might work against the tumorigenesis effect of F.
nucleatum specifically. As anti-tumor therapies targeting
TIGIT have achieved great success recently, this method might
also be useful in OSCC patients with high F. nucleatum
abundance (Solomon and Garrido-Laguna, 2018).

Immune Agonist Therapies
Although many patients have benefited from checkpoint-
blockade immunotherapies, and the overall survival of patients
was significantly prolonged due to these therapies, substantial
patients do not respond to these strategies, and several drug-
resistance mechanisms have been identified (Dempke et al.,
2017). To overcome low efficiency of checkpoint-blockade
immunotherapies for some OSCC patients, more and more
investigations begin to focus on co-stimulatory agents. Toll-
like-receptor (TLR) agonists could promote innate immune
cells (e.g., macrophages and plasmacytoid DCs), while PD-1

FIGURE 5 | Immunotherapeutic strategies based on the specific carcinogen-related immune status. This figure depicts multiple types of immunotherapeutic
strategies and subsequent OSCC subgroups suitable for each kind of strategy. As discussed in this manuscript, carcinogens would result in a specific aberrant immune
status for OSCC patients, which just explained drug resistance and individual variations of immunotherapeutic responses. Thus, possible personalized
immunotherapeutic strategies based on different carcinogen-induced types of the OSCC local immune status were listed above and might achieve a better clinical
outcomes.
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inhibitors act on adoptive immune cells (e.g., activated T cells).
Sato-Kaneko et al. (2017) identified that combination therapy
with TLR agonists and anti–PD-1 increased antigen-presenting
functions of TAMs and the infiltration of IFNγ+CD8+T cells in
head and neck tumors, thus suppressing tumor growth. CD40 is a
TNF receptor superfamily member expressed on both immune
and non-immune cells, and CD40/CD40L agonists could
upregulate antigen presentation machinery, enhance T cell
proliferation and cytokine production, thus acting in the
regression of tumors (Bennett et al., 1998; Mayes et al., 2018;
Vonderheide, 2020). Considering the contribution of CS-induced
dysfunction of DCs to the development of smoking-related
OSCC, these immunotherapies might be effective strategies
targeted at these subgroups.

Cytokine Therapy
Exogenous Cytokines
IL-2 was the first approved cytokine for boosting NK cells clinically
(Floros and Tarhini, 2015) and was mainly used to produce
lymphokine-activated NK cells. Similarly, IL-15 and IL-12 were
also pro-inflammatory cytokines playing important roles in the
development, homeostasis, and cytotoxicity of NK cells (Floros and
Tarhini, 2015). For OSCC patients with a drinking habit, a great
burden onNK cells was a significant feature, and these cytokines were
the most commonly applied cytokines for NK cell activation,
clinically. Apart from their roles in the maturation of NK cells, IL-
15 and IL-12 can also lead to IFNγ production (Berraondo et al.,
2019). Both type I and type II IFNs have been reported to induce the
anti-tumor activities of almost all immune cells, especially the
maturation of DCs for antigen presentation and the negative
regulation of MDSCs (Parker et al., 2016). Besides, oncolytic virus
talimogene laherperepvec (T-VEC), which could express myeloid cell
growth and survival factor GM-CSF (Andtbacka et al., 2019), might
also be used to ameliorate the loss of DCs in smoking OSCC patients.
Considering that inactivation of DCs and induction of MDSCs were
both related to high abundance of P. gingivalis and areca-chewing
habits, these cytokines mentioned above might be effective for those
OSCC patients. In addition, owing to the significant decrease in IL-2
induced by areca-chewing, an extraordinary supplementation of IL-2
might also help to some extent.

Anti-Cytokine Therapy
Anti-cytokine therapy here refers to blockades of cytokines,
cytokine receptors, and the subsequent signaling pathways.
Overexpression of some crucial pro-inflammatory cytokines,
including IL-6, IL-8, and IL-1β, was a shared phenomenon
during periodontitis. These cytokines were reported to
promote tumorigenesis (Kumari et al., 2016; Berraondo et al.,
2019), so monoclonal antibody therapy against them or their
signaling downstream molecules such as STAT3 and MAPK
might help a lot (Johnson et al., 2018).

Tumor-associated macrophages (TAMs), which contribute to
local tumor growth, often express some angiogenesis-promoting
factors (e.g., EGFR ligands and VEGF) and immune-suppressing
factors (e.g., TGF-β and IL-10), contributing to tumor growth and
metastasis. Thus, monoclonal antibody therapies targeting these
molecules could relieve the tumor burden to some extent.

Inhibition of CSF1/CSF1R could suppress proliferation,
differentiation, and survival of monocytes and macrophages
and has been examined through multiple types of cancers
(Strachan et al., 2013; Chitu and Stanley, 2017). In addition,
CCR2 inhibition and PI3K inhibition, which could be used to
restrict TAM recruitment into tumor sites (Okkenhaug, 2013; Le
et al., 2018), might also reduce the recruitment and accumulation
of TAMs into OSCC local lesions. Since TAMs tend to get
accumulated inside tumor sites in OSCC patients with a
smoking habit or high abundance of F. nucleatum, the
strategies targeting TAMs discussed above were necessary.

Adoptive Cell Therapy
Adoptive cell therapy (ACT) is a new form of immunotherapy in
which autologous immune cells (mainly T cells) from peripheral
blood were engineered ex vivo to express tumor-specific transgenic
antigen receptors such as chimeric antigen receptors (CARs) or
T cell receptors (TCRs) (Wang and Cao, 2020). Despite the
application of CD19-directed CAR-T cells having shown
remarkable success in the treatment of CD19+ B cell
malignancies, there are some obstacles to this method for solid
tumors due to the heterogeneity of antigens expressed in solid
tumors (Chan et al., 2021) and the immunosuppressive tumor
microenvironment (Yeku et al., 2017). However, investigations
into its solutions never stop. CAR-T cell therapy targeting ErbB
family receptors has attracted a lot of interest in the treatment of
head and neck cancer and was evaluated in ongoing phase I clinical
trails (van Schalkwyk et al., 2013; Yeku et al., 2017). In addition,
engineered T cells expressing the dendritic cell growth factor Flt3L
were reported to overcome the clinical problem of antigen-negative
tumor escape following ACT (Lai et al., 2020). Besides, many
scholars demonstrate that the combination of ACT and
approaches targeting immune check-point receptors would
enhance anti-tumor immunity in vivo (Liu et al., 2017; Chan
et al., 2021). Similarly, other therapies, such as NK cell adoptive
transferring and NK cell manufacture, which have not been broadly
used, might also be applied in clinical treatment in the future. In
conclusion, ACT,mentioned above, has a promising future in OSCC
treatment and helps solve the T cell and NK cell exhaustion in TME
even though more scientific research studies are still necessary.

DISCUSSION

In this review, an abnormal immune status during the progress of
OSCC was depicted first. Complete analysis of immune
abnormalities caused by different oral cancer–related
carcinogens was then accomplished. Based on different types
of immune abnormalities induced by different carcinogens,
possible individual immunotherapeutic strategies dependent on
carcinogen-induced immune abnormalities were figured out as a
way to possibly overcome heterogeneity of OSCC patients and
enhance clinical efficacy of immunotherapies.

Nowadays, surgical resection still remains the predominant
method for treatment of OSCC. However, the heavy financial and
physical burden of surgical operation has become an
insurmountable hurdle for lots of OSCC patients (Hamoir

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 71703812

Sun et al. Specific Immunotherapies for OSCC Patients

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


et al., 2014). In this condition, some alternative treatment
methods, including immunotherapy, deserve further attempts
during the treatment process of OSCC. Heterogeneity among
different cancer patients acts as a main obstacle for common
applications of immunotherapies among multiple cancers, OSCC
included (Caswell and Swanton, 2017). Until now, multiple
studies have focused on creating personalized therapies for
HNSCC (Baird et al., 2018), and subgroup division seems to
be an effective way for this. Until now, some subgroup division
standards based on HPV status, age, and cetuximab history have
failed to contribute greatly to enhancing the efficacy of
immunotherapy in OSCC (Cramer et al., 2019). Different
types of local immune abnormalities caused by different
carcinogens suggest that subgroup division standard based on
carcinogens, in combination with specific judgment of the patient
immune status, might help achieve individual-targeted
immunotherapy and improve the clinical outcome of
immunotherapy-treated patients to a great extent.

Nevertheless, lack of systemic studies for influence of different
carcinogens on the OSCC local immune status is a defect for our
review, so we could only predict possible immune alternations
and corresponding therapeutic strategies for OSCC. Further
studies are still necessary to verify these possibilities. Besides,
occurrence of OSCC depends not only on carcinogens but also
genetic abnormalities, which means carcinogen-based
immunotherapies might not completely explain and overcome
heterogeneity of OSCC patients. In addition, a specific OSCC
patient might be under the influence of more than one type of
carcinogen, which might render the local immune
microenvironment more complex and harder to be predicted.
Multiple factor–associated OSCC has long become a challenge for

chemotherapy, as different types of carcinogens would produce a
complex network regulating patterns, making it an extreme
dilemma for researchers. Until now, studies about OSCC
chemotherapy have all focused on the influence of a single
carcinogenic factor, while no such clinical study aimed at
figuring out multiple factor–induced immune variations has
been completed yet. Based on this research status, efforts were
made in this manuscript to describe and summarize immune
status variations induced by every specific OSCC carcinogen and
changes of a specific immune status associated with multiple
types of OSCC carcinogens. Thus, our review only aimed at a
complete analysis and summarization of current knowledge
about single-carcinogen–induced immune abnormalities in
OSCC. Obviously, more clinical experiments focused on this
issue ought to be conducted to confirm our assumption,
constructing a better strategy to expand application of
immunotherapies during the OSCC treatment process.
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