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Large-scale simulation of detailed computational models of neuronal microcircuits plays

a prominent role in reproducing and predicting the dynamics of the microcircuits.

To reconstruct a microcircuit, one must choose neuron and synapse models,

placements, connectivity, and numerical simulation methods according to anatomical

and physiological constraints. For reconstruction and refinement, it is useful to be able

to replace one module easily while leaving the others as they are. One way to achieve

this is via a scaffolding approach, in which a simulation code is built on independent

modules for placements, connections, and network simulations. Owing to the modularity

of functions, this approach enables researchers to improve the performance of the

entire simulation by simply replacing a problematic module with an improved one. Casali

et al. (2019) developed a spiking network model of the cerebellar microcircuit using this

approach, and while it reproduces electrophysiological properties of cerebellar neurons,

it takes too much computational time. Here, we followed this scaffolding approach and

replaced the simulation module with an accelerated version on graphics processing units

(GPUs). Our cerebellar scaffold model ran roughly 100 times faster than the original

version. In fact, our model is able to run faster than real time, with good weak and

strong scaling properties. To demonstrate an application of real-time simulation, we

implemented synaptic plasticity mechanisms at parallel fiber–Purkinje cell synapses, and

carried out simulation of behavioral experiments known as gain adaptation of optokinetic

response. We confirmed that the computer simulation reproduced experimental findings

while being completed in real time. Actually, a computer simulation for 2 s of the biological

time completed within 750 ms. These results suggest that the scaffolding approach

is a promising concept for gradual development and refactoring of simulation codes

for large-scale elaborate microcircuits. Moreover, a real-time version of the cerebellar

scaffold model, which is enabled by parallel computing technology owing to GPUs, may

be useful for large-scale simulations and engineering applications that require real-time

signal processing and motor control.
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1. INTRODUCTION

Flexibility and efficiency are important factors in large-scale
computer simulation of spiking neural networks (Brette et al.,
2008; Eppler et al., 2009). Flexibility means that spiking neural
networks can be built and updated easily and quickly. To
ensure flexibility, the simulation software should comprise a
number of functional modules that are independent or only
loosely dependent, which in turn introduces redundancy that
can reduce efficiency in terms of greater memory usage and
slower computation. On the other hand, efficiency means
that simulation of spiking neural networks can be carried
out efficiently in terms of memory and network usage, and
computational speed. For example, faster simulation allows us
to study biophysical processes that take a long time for hours
and days in a reasonable time. A milestone of faster simulation
may be real-time simulation. Real-time simulation enables
simulated models to be used for engineering applications that
require realtime signal processing and motor control, including
robot control (Yamazaki et al., in press). To ensure efficiency,
simulation software should be written carefully while integrating
everything in the code tightly to remove redundancy as much
as possible, which in turn could make the code unreadable
and difficult for refactoring. Thus, flexibility and efficiency are
somewhat conflicting concepts in simulations. How can we
compromise between these two factors?

A solution is to use dedicated simulators such

as NEST (Gewaltig and Diesmann, 2007), and
NEURON (Carnevale and Hines, 2006). These simulators
provide integrated environments consisting of easy-to-use

interfaces for flexible modeling and also optimized numerical

codes for efficient simulation. In fact, these simulators
have been used for various projects such as the Human
Brain Project (Amunts et al., 2016) in the EU, and Brain
Initiatives (Ramos et al., 2019) in the US. Nevertheless, due
to large-scale collaborative development, the development of
such simulators would not be fast enough to support the latest
technologies in the field of high-performance computing (HPC).
For example, graphics processing units (GPUs) are becoming
popular as hardware for parallel computing, but the NEST
simulator has not yet supported it. The NEURON simulator
supports GPUs, but the developers had to first extract a module
for numerical simulation (Kumbhar et al., 2019), suggesting that
they took amodular approach. Therefore, an integrated approach
would make the use of the latest HPC technology difficult.

In an intermediate approach known as “scaffolding” (Casali
et al., 2019), simulation software is divided into a number
of loosely connected or functionally independent modules
for neuron and synapse models, connectivity, and numerical
methods. An advantage of this approach is that any module
can be replaced easily for better descriptions and performance
without affecting the other modules. In fact, Casali et al.
(2019) replaced simulation modules from/to PyNEST and
NEURON with Python interface, and while obtained the
same simulation results. Thus, the scaffolding approach is
another solution to finding a compromise between flexibility
and efficiency.

The present study aims to provide one more proof of concept
for the scaffolding approach. In this study, we developed a
simulation module that uses GPUs from scratch, replacing
a cerebellar scaffold model built in a previous study (Casali
et al., 2019), while reusing the other modules as they are. By
replacing the simulation module only, we were able to obtain
the qualitatively similar simulation results, but the simulations
were accelerated by about 100 times, which resulted in
faster-than-real-time simulation. Furthermore, we implemented
synaptic plasticity, and conducted simulation of a behavioral
experiment on eye movement reflex. These results suggest that
the scaffolding approach is a promising method for large-scale
spiking network simulation.

2. MATERIALS AND METHODS

2.1. Overview of the Cerebellar Scaffold
Model
The cerebellar scaffold model (Casali et al., 2019) is a spiking
network model of the cerebellar microcircuit built based on
the scaffolding approach. According to the approach, the model
consists of threemodules: a cell placementmodule, a connectivity
module, and a functional simulation module. These modules
model and place neurons in a 3D space, create structural
connections between pairs of neurons, and simulate dynamics of
the network, respectively. The first two are written in Python,
whereas the simulation module is written in PyNEST and
NEURON. Owing to the modular approach, one can choose
appropriate simulator. In fact, one will be able to even replace
a cell placement module to use multi-compartment neuron
models. The entire circuit includes 7,070 mossy fibers (MFs), 219
Golgi cells (GoCs), 88,158 granule cells (GrCs), 69 Purkinje cells
(PCs), 603 stellate cells (SCs), 603 basket cells (BCs), and 12 deep
cerebellar nuclei (DCNs). GrCs extend ascending axon (AA) and
parallel fibers (PF). All cells are placed in a three-dimensional
volume of 400 × 400 × 900 µm3 (Figure 1A). The neurons are
connected based on known anatomy of the cerebellar circuit
(Figure 1B). The original model assumed that glomeruli provide
excitatory inputs to DCN, GrC, and Goc, whereas in the present
study, we replaced those glomeruli with MFs based on the known
anatomy of the cerebellar circuit (Eccles et al., 1967; Ito, 1984).

MFs are modeled as Poisson spike generators. All neurons
are modeled as conductance-based leaky integrate-and-fire
(LIF) units, and synapses are modeled as conductance-based
exponential decay synapses.

A LIF model is defined as follows:

Cm
dui(t)

dt
= −gL(ui(t)− EL)+ Ie + Isyn(ui(t), t)

t
(f )
i : ui

(

t
(f )
i

)

= Vth (1)
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i →t,t>t
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ui(t) = Vr

where Cm, ui, t, gL, EL, Ie, Isyn, t
(f )
i , Vth, and Vr are

the membrane capacitance, membrane potential of neuron i,
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FIGURE 1 | Spatial arrangement of neurons in the cerebellar scaffold model. (A) Cell placement in a 3D volume of 400× 400× 900 µm3. Dots represent neurons,

where the colors represent cell types: MF terminal (orange), GoC (blue), GrC (green), PC (red), SC (purple), BC (brown), and DCN (pink). The entire volume contains

96,737 neurons and 4,220,752 synapses. We transposed the z axis to the vertical direction for consistency with the standard atlas. The positions were given by the

cell placement module of the original scaffold model (Casali et al., 2019). (B) Schematic of connectivity in the same model. Abbreviations are as in the text.

time, leak conductance, resting potential, endogenous current,
synaptic current, time when neuron i fires the f th spike,
threshold potential, and reset potential, respectively. The first
equation describes how the membrane potential is updated. The

second equation defines the firing time t
(f )
i when the membrane

potential reaches the threshold Vth. The third equation resets
the membrane potential to the reset potential Vr after emitting
a spike. These values are set for each neuron type (Table 1). A
synaptic current and an exponential decay synapse are defined as
follows:

Isyn
(

ui(t), t
)

= −

∑

x

gx(t)
(

ui(t)− Ex
)

τx
dgx(t)

dt
= −gx(t)+

∑

f

∑

j

wijδ

(

t − t
(f )
j − tdelayij

)

(2)

where x is a synapse label representing either inhibitory (inh)
or excitatory (exc), gx, Ex, τx, wij, and tdelayij , are the synapse

conductance, reversal potential, decay time constant, synaptic
weight between the presynaptic neuron j and the postsynaptic
neuron i, and synaptic delay, respectively. Parameters are set as
in Table 2.

In the present study, we reused the cell placement module
and connectivity module with the same set of parameters. We
replaced only the simulation module as in section 2.3.

2.2. Parallel Computing on GPUs
Parallel computing is a way to accelerate numerical calculation
by dividing a problem into a number of smaller problems
and solving them in parallel. GPUs are hardware specialized
for computer graphics, but can be used as parallel computing

TABLE 1 | Neuron-specific parameters.

Type GrC GoC BC SC PC DCN

N.cells 88,158 219 603 603 69 12

Cm [pF] 3 76 14.6 14.6 620 89

gL [ms] 1.5 3.6 1.0 1.0 7.0 1.56

EL [mV] −74 −65 −68 −68 −62 −59

1tref [ms] 1.5 2 1.6 1.6 0.8 3.7

Ie [pA] 0 36.8 15.6 15.6 600 55.8

Vr [mV] −84 −75 −78 −78 −72 −69

Vth [mV] −42 −55 −53 −53 −47 −48

τexc [ms] 0.5 0.5 0.64 0.64 0.5 7.1

τinh [ms] 10 15 2 2 1.6 13.6

Abbreviations are as in the text.

accelerators. A GPU can issue a number of computing entities
called “threads” simultaneously, where these threads execute the
same function with different input parameters. To date, GPUs
play considerable roles in the HPC field.

In this study, we used 4 NVIDIA Tesla V100 GPUs installed
into a DGX Station (NVIDIA, 2020b). Briefly, a V100 GPU
has 5,120 computing cores, and 16 GB of high-bandwidth
memory. The peak performance is 15.7 TFLOPS in single-
precision operations. More detailed information of Tesla V100
GPU architecture is described elsewhere (NVIDIA, 2017).

For GPU programming, NVIDIA provides Compute Unified
Device Architecture (CUDA), which is a parallel computing
platform and a programming model for GPGPU (General-
Purpose computing on GPUs) (NVIDIA, 2020a). Programmers
can write a code for GPUs with C/C + + and CUDA
extensions. In CUDA, CPUs and their memory are called
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TABLE 2 | Synaptic parameters for each connection type.

Connection type (exc/inh) Weight [nS] Delay [ms]

MF-GrC (exc) 9.0 4.0

MF-GoC (exc) 2.0 4.0

GoC-GrC (inh) 5.0 2.0

GoC-GoC (inh) 8.0 1.0

AA-GoC (exc) 20.0 2.0

PF-GoC (exc) 0.4 5.0

SC-SC (inh) 2.0 1.0

BC-BC (inh) 2.5 1.0

PF-SC (exc) 0.2 5.0

PF-BC (exc) 0.2 5.0

SC-PC (inh) 8.5 5.0

BC-PC (inh) 9.0 4.0

AA-PC (exc) 75.0 2.0

PF-PC (exc) 0.02 5.0

PC-DCN (inh) 0.0075 4.0

MF-DCN (exc) 0.006 4.0

Abbreviations are as in the text.

“hosts,” whereas GPUs and their memory are called “devices.”
Functions computed on GPUs are called “kernels.” Programmers
define kernel functions, which are automatically executed by
multiple threads with different input parameters. Moreover,
although all threads compute the same kernel in principle,
when a feature called “streams” is used, different kernels can
be executed simultaneously. More detailed documentation is
available elsewhere (NVIDIA, 2020a).

2.3. A New Implementation of the
Simulation Module on GPUs
We reimplemented the simulation module of the cerebellar
scaffold model, which was written in PyNEST (Eppler et al.,
2009), in C language with CUDA extensions from scratch on
GPUs. In the new simulation module, Equations (1) and (2) were
solved numerically with a forward Euler method with a temporal
resolution (1t) of 0.1 ms, whereas exchanging spike information
and performing product-sum operations for synaptic inputs (the
2nd term in the RHS of Equation 2) were made for each 1
ms. These temporal resolutions are identical with the original
module. Meanwhile, the original module used the 4th-order
Runge-Kutta method instead of Euler method. Euler methods
seem to be sufficient for more complicated models such as
Izhikevich model (Izhikevich, 2003), so do for LIF models. A
flowchart of the calculations is shown in Figure 2.

We used GPUs to perform the above calculation in parallel.
Below, we explain the case of a single GPU, and later we will
explain how to use multiple GPUs. A basic strategy is to assign 1
neuron to 1 thread and calculate membrane potentials in parallel.
During the calculation, the following techniques were used.

First, a connectivity matrix was stored in a compressed sparse
row (CSR) format for each pair of presynaptic and postsynaptic
neuron types. A CSR format is an efficient way to store sparse
matrix. Some other possible formats are coordinates (COO),

ELLPACK (ELL), and list of lists (Shahnaz et al., 2005). Second, to
generate Poisson spikes on each thread, we used a Philox counter-
based random number generator (Manssen et al., 2012). Third,
we overlapped spike propagation that requires data transfer
between host (CPU) and device (GPU) with calculation of
neurons and synapses so as to hide the latency caused by the
data transfer. This was achieved by assuming a delay of 1 ms in
synaptic transmission (Hines et al., 2011; Igarashi et al., 2019).
The overlap of calculation and data transfer was made by using
streams in CUDA.

Furthermore, we applied parallel computing techniques to
calculate synaptic inputs for each neuron. For neurons that are
many and have a small number of synapses, such as granule
cells, we assigned the calculation for each neuron to each thread.
This might be a trivial parallelization. On the other hand, for
neurons that are a few and have a large number of synapses,
such as Purkinje cells, we used a bunch of threads to calculate
synaptic inputs for each cell, and repeated the same calculation
to enumerate all cells. Specifically, we used a tree-based approach
called “parallel reduction” (Harris, 2011), which reduces product-
sum operations recursively (Figure 3). We issued 8,192 threads
to perform reduction of 29,196 PF synapses on 1 PC For
other neurons, we took an intermediate approach, which was
to use a few threads for each cell. More detailed explanation on
which parallelization is used for each neuron type is available in
Supplementary Material.

In addition to the above GPU-specific techniques, we also used
a pthread library in a host code to asynchronously perform data
transfer from device to host and file I/O to record spikes of all
neurons for each krecord time step.

To usemultiple GPUs, we split an entire network intomultiple
smaller subnetworks in one dimension along the transversal axis,
and allocate each subnetwork to each GPU. Then, we executed
the same kernel on all GPUs as in a manner of single instruction,
multiple threads (SIMT) over multiple GPUs, although it is
possible to execute different kernels on different GPUs. Spikes
calculated on each GPUwere transferred to its neighboring GPUs
for further calculations. We used OpenMP to execute a kernel on
multiple GPUs in parallel.

Under multi-GPU setting, DCN neurons must receive inputs
from PCs on different GPUs. Because all spike information
including spikes emitted by PCs are transferred from GPUs to
the host for each 50 ms to generate the output data, we calculated
DCN neurons on a host.

2.4. Reproducibility of Simulation Results
To examine whether our simulation code reproduces the
same results with sufficient accuracy, we conducted the same
simulation as in Casali et al. (2019). Briefly, we fed Poisson spikes
of 1Hz tonically to all MFs for 1,000 ms as background noise.
We also fed phasic Poisson spikes of 150 Hz, starting from 300
ms of the stimulation onset for 50 ms, to MFs at the center of the
granular layer within the radius of 140µm. During the simulation,
spike trains of all neurons were obtained for these three periods.
For each period, we calculated the mean firing rates of all neuron
types and their standard deviations, and compared the values
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FIGURE 2 | A flowchart of the calculations. Processes in gray rectangle, which manage file I/O and simulation of DCN neurons, are performed in parallel with the rest

of the numerical calculations by using pthread library and streams on CUDA. Execution time means the time spent in the area between the dashed lines.

with those obtained by the original model. For averaging, we
repeated the stimulation 10 times.

2.5. Weak and Strong Scaling Properties
Weak scaling and strong scaling are two important
measurements for parallel computing applications. In weak
scaling, we measure computational time of a simulation while
increasing the size of a model and the number of GPUs
simultaneously, where the computational load for a computer
node is kept the same. Good weak scaling suggests that the
size of a model can be increased arbitrarily as long as enough
computational resources are available. On the other hand, in
strong scaling, we measure computational time while increasing
the number of GPUs with a fixed model size. Good strong scaling
suggests that the computer simulation can be accelerated when
more computer nodes are available.

To examine the scaling, we first prepared three cerebellar
scaffold models with the size of 200×800×900, 400×800×900,
and 800×800×900 µm3, respectively. For weak scaling, we used
1, 2, and 4 GPUs to simulate the three models, respectively. For
strong scaling, we performed simulation of the largest model with
1, 2, and 4 GPUs. In the simulation, spontaneous activity with
1 Hz MF spikes were fed as background noise for 10 s of the
biological time. The same simulation was repeated 10 times to
calculate the mean of the simulation time.

2.6. Real-Time Simulation in a More
Realistic Scenario
Furthermore, we carried out simulation in a more realistic
scenario, which is gain adaptation of eye movements known as
optokinetic response (OKR) (Ito, 1984). OKR is an eyemovement
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FIGURE 3 | Schematic of parallel reduction. Circles represent values to be

added (a1–a8) and squares represent add operations (+) assigned to threads.

Each thread adds two values in parallel, and the additions are repeated

recursively.

reflex by which the eyes rotate to the same direction with the
visual world’s movement so as to reduce the image slip on the
retina. If eye movement is too small against the visual movement,
an image slip occurs on the retina. The slip generates an error
signal fed to PCs via CFs, which in turn induces long-term
depression (LTD) at PF-PC synapses. The LTD leads to larger eye
movement gain, and further image slips are prevented. This is
called gain adaptation of OKR.

To simulate the gain adaptation OKR, we added an inferior
olive (IO) to the cerebellar scaffold model and bidirectional
plasticity (LTD and long-term potentiation, LTP) at PF-PC
synapses as follows:

wPCi ,PFj (t + 1) = wPCi ,PFj (t)+ 0.001
(

winit − wPCi ,PFj (t)
)

−0.01wPCi ,PFj (t)
∑50

1t=0 CF(t)PFj(t − 1t)(3)

where PFj(t) and CF(t) take 1 if PFj or CF elicited a spike at
time t, and 0 otherwise. The 2nd term on the RHS simulates LTP
that occurred by firing of a presynaptic PF only (Sakurai, 1987).
The 3rd term simulates LTD by conjunctive activation of a CF
and a PF (Ito, 2001), that are active 0–50 ms earlier than the CF
activation. The winit is a constant value representing the initial
synaptic weight and was set at 1.0. A synaptic weight for each
pair of a PF and a PC is assigned to a thread and updated by the
thread independently with every 1 ms.

In the simulation, we fed Poisson spikes that the firing rate
modulates from 0 to 30 Hz sinusoidally in 2 s to MFs and that

from 0 to 3 Hz to the IO to simulate the visual world movements
and the retinal slip errors according to electrophysiological
findings (Nagao, 1988). We repeatedly fed these spikes 300
times, and recorded the changes of the firing rates of PCs and
DCN cells. Parameters were adjusted according to our previous
OKR adaptation study (Yamazaki and Nagao, 2012), since the
parameters were different from Casali et al. (2019). We did not
include nucleo-olivery inhibitory connections.

3. RESULTS

3.1. Reimplementation of the Cerebellar
Scaffold Model
We have successfully reimplemented the cerebellar scaffold
model. Specifically, we implemented the simulation module of
the scaffold model on GPUs, whereas the other modules were left
unchanged.

First, we compared the basic dynamics of the previous
and present models by presenting the same MF stimuli.
The stimulation setting was identical to that in the original
paper (Casali et al., 2019) described in section 2.4. Specifically, we
plotted spike activities for GrC, GoC, BC, SC, PC, andDCNof the
previous (Casali et al., 2019) and present versions, respectively, in
response to the MF stimuli (Figure 4A). These raster plots look
similar. Then, to quantify the similarity, we calculated the mean
firing rates for each neuron type and their standard deviations
(Figure 4B). We found that the mean firing rates in one model
fall within the range of the standard deviation of the other Here,
it should be emphasized that the scaffolding approach intends not
to reproduce statistically non-significant results. We will discuss
this issue further in section 4. These results suggest that the
present model was able to reproduce the network activity of the
previous model.

3.2. Computational Time
Next, we compared computational speeds of the previous and
present models. To do so, we fed the same MF stimuli as
in the previous section, followed by an additional 9 s of the
background noise at 1 Hz, and measured the computational
time for the simulation (Figure 5). The previous study reported
that a simulation spent 570 s on a single computer node of a
supercomputer, which was accelerated to 278 s on 4 nodes on the
same computer. On the other hand, our model on a single GPU
spent only 2.62 ± 0.15s, resulting in ∼217 and 106 times faster
speeds, respectively. These results indicate that our model runs
four times faster than real time.

3.3. Weak and Strong Scaling Properties
We then examined weak and strong scaling properties up to
4 GPUs. In both weak and strong scaling, we obtained good
scaling properties (Figures 6A,B), respectively. However, the
good scaling properties depend on how we split the network into
multiple smaller networks to be assigned to different GPUs. We
will discuss this issue in section 4.
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FIGURE 4 | Comparison of simulated neuronal activity between the PyNEST version of the previous study (Casali et al., 2019) and the present study. (A) Raster plots

of neuron populations in response to MF stimuli (50 ms at 150 Hz on 2,932 MFs) superimposed on 1-Hz background noise. (B) Comparison of mean firing rates (Hz)

during the input stimulation. The plots compare mean firing rate during the input stimulation for the different neuron populations of the present study with those

reported by the previous study (Casali et al., 2019). Dashed line shows identity. Error bars show the standard deviations.

3.4. Faster-Than-Real-Time Simulation of
OKR Gain Adaptation
Finally, we conducted computer simulation of OKR gain
adaptation. To simulate synaptic plasticity at PF-PC synapses,
we added an IO cell. In response to sinusoidal MF signal, PCs
exhibited a sinusoidal activity pattern with the opposite phase,
whereas DCNs were activated in phase. Furthermore, during
300 trials, PCs decreased the firing rate, where the minimal
firing rate changed from 60 to 24 Hz (Figure 7A). On the
other hand, DCNs increased the firing rate from 105 to 124
Hz (Figure 7B), which could correspond to gain increase in
OKR (Nagao, 1988). Furthermore, a simulation of a 2 s trial was
completed within 750 ms, suggesting that faster-than-real-time
simulation was achieved.

4. DISCUSSION

4.1. Proof of Concept of the Scaffolding
Approach
The scaffolding approach aims to make neuron models,
placements, connectivity, and numerical methods replaceable
without affecting the others. Our study is a proof of concept
of this approach. In fact, we were able to replace the original
simulation module with our version written from scratch
that worked efficiently on GPUs. We were able to accelerate
simulations faster than real time, while reproducing the same
simulation results with the previous study, and further obtain
good scaling. Real-time simulation is considered a milestone
for simulation speed. Faster than real-time simulation will allow
further elaboration of the present model while still keeping

FIGURE 5 | Execution time comparison of 10 s simulation between the

previous model (Casali et al., 2019) and ours. The horizontal axis represents

four different settings of computers with 1–4 nodes used in the previous study,

and our V100 GPU. The vertical axis represents mean simulation time.

real time simulation. These results suggest that the scaffolding
approach is useful as a compromise between flexibility of
modeling and efficiency of simulation.

4.2. Better Decomposition of a Network for
Better Scaling
To obtain good parallel computing performance and scaling, it
is crucial to consider how to decompose a large network into
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FIGURE 6 | Weak and strong properties. (A) Weak scaling. Each GPU simulates the 10 s spontaneous activity of the cerebellar network in 200× 800× 900µm3

volume. The horizontal axis is the number of GPUs, and vertical axis is the computational time. (B) Strong scaling. A network of the size 800× 800 µm3 volume was

decomposed into 1, 2, and 4 subnetworks for 1, 2, and 4 GPUs, respectively. Conventions as in (A).

FIGURE 7 | Simulation of OKR adaptation. (A,B) Learned change of the mean firing rates of PCs (A) and DCNs (B) at the 1st, 100th, 200th, and 300th trials of MF

signal oscillation (blue, orange, green, and purple, respectively). Dots represent firing rates every 100ms, whereas lines show the data fitted with cosine functions. The

horizontal axis represents time for 1 trial, and vertical axis represents firing rate in Hz.

a set of smaller subnetworks. In neural network simulation,
three types of decomposition have been used: random, 2-D,
and 1-D. In random decomposition, a network is split into
multiple subnetworks that contain almost the same numbers of
neurons and synapses for load balancing. This method is usable
for any type of neural network, even a network that does not
have spatial structures. The NEST simulator has been using this
method (Jordan et al., 2018). In 2-D decomposition, a network
with spatial cellular and synaptic placements is split into multiple
smaller 2-D tiles. This method is useful when a network has
spatially regular connections spanning in 2-D or 3-D, and the
connections are rather short. The MONET simulator uses this
method (Igarashi et al., 2019; Yamaura et al., 2020). In this study,
we used 1-D decomposition. We split our network model along
the transversal axis. This was efficient for cerebellar networks,

because in the cerebellar cortex, PFs run several mm along
transversal direction in parallel (Eccles et al., 1967), suggesting
that splitting the network in the perpendicular direction (i.e.,
sagittal direction) result in a large number of communications
for spike propagation. However, when we are able to simulate a
sufficient size of a network that is larger than a few cm on a GPU,
2-D decomposition will be better than 1-D, because PF spikes do
not propagate longer than 1 cm.

4.3. Comparison With Other Models
Various computational models of the cerebellar microcircuit
have been proposed. Medina et al. (2000) was the first large-
scale spiking network model with 10,000 neurons for delay
eyeblink conditioning, which was later reimplemented on a single
GPU with 1 million neurons (Li et al., 2013). Yamazaki and
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Tanaka (2007) and Yamazaki and Nagao (2012) built another
spiking network model with 100,000 neurons that integrates
gain and timing learning mechanisms. These models were also
reimplemented on a single GPU (Yamazaki and Igarashi, 2013),
multi GPUs (Gosui and Yamazaki, 2016), and a supercomputer
with 1,024 PEZY-SC processors (Yamazaki et al., 2019).

All these GPU versions ran in real time as did the present
study. The last one was composed of 0.1 billion neurons while
retaining real-time simulation. That is roughly the same size as
a cat’s entire cerebellum. The simulation codes of these models
were written by the authors specially from scratch without using
general-purpose simulators. Writing special codes enables us to
harness the maximal performance of computers while giving
up flexibility and reusability of the codes. On the other hand,
by using general-purpose simulators, scientists can focus on
modeling while ignoring all the other issues which are not
related to neuroscience, such as writing programs, debugging,
numerical methods, accuracy, and stability. Yamaura et al. (2020)
used a general-purpose simulator MONET and built a human-
scale network model composed of 68 billion spiking neurons
on the K computer, which was the previous Japanese flagship
supercomputer, although the computer simulation was about
600 times slower than real time. A drawback of using general-
purpose simulators is much lower performance compared with
special-purpose programs.

The scaffolding approach, which was originally proposed by
Casali et al. (2019) and augmented in the present study, is an
intermediate approach. In this approach, simulation codes are
decomposed into a few functional modules which are almost
independent but loosely connected. Each module can be either
written from scratch as in the present study or implemented
using existing simulators as in Casali et al. (2019). In fact, our
simulation module is reusable for other types of networks that
are generated by a connectivity module. A similar approach
has been demonstrated by Brian2GeNN (Stimberg et al., 2020),
which generates a custom C++ code with GPU support from a
script written for Brian simulator (Goodman and Brette, 2008).
While the scaffolding approach separates cell placement and
connectivity into different modules, Brian integrates them. In
this sense, the scaffolding approach might be more flexible.
Meanwhile, Brian2GeNN supports only a single GPU at the time
of writing. In this way, the scaffolding approach provides a good
compromise between flexibility and performance.

Furthermore, the scaffolding approach may allow us to
elaborate a model gradually as easily as general simulators,
while realizing efficient simulation comparable to custom-
code simulators. For example, single-compartment models
with more realistic internal parameters have already been
integrated in a scaffold model (Geminiani et al., 2019).
Moreover, multi-compartment neuron models, such as a PC
model (De Schutter and Bower, 1994a,b; Masoli et al., 2015;
Masoli and D’Angelo, 2017), a GoC model (Solinas et al.,
2007a,b), a GrC model (Diwakar et al., 2009; Dover et al.,
2016; Masoli et al., 2020), and IO models (Schweighofer et al.,
1999; De Gruijl et al., 2012), will be integrated. Integrating
these elaborated models would allow us investigate more detailed
network dynamics including synaptic plasticity (Casali et al.,
2020) as well as intracellular dynamics simultaneously.

4.4. Limitations
Several limitations exist on our simulation module and the
scaffolding approach itself.

Our simulation module so far implements only conductance-
based LIF model for neurons, conductance-based exponential
decay synapses, and Euler methods for numerical integration
so as to simulate the cerebellar model implemented in Casali
et al. (2019). Such simple implementation helped to achieve real-
time simulation. On the contrary, if we implement nonlinear
models such as Hodgkin-Huxley type models and more
precise numerical methods such as a 4th-order Runge-Kutta
method, they may slow down numerical simulation than real
time. However, currently 95% of execution time is occupied
by product-sum operations for synaptic inputs. Therefore,
incorporating more elaborated neuron/synapse models and
precise numerical methods will not affect the simulation time
significantly. Furthermore, our simulationmodule includes some
model-specific optimizations for the cerebellar model such as
parallel reduction, 1-D decomposition, and DCNs’ simulation
at host. Applying these optimizations to other types of network
models would cause a slow down.

On the other hand, when a network model employs
randomness in the simulation such as input noise, the scaffolding
approach does not guarantee individual spike timing-level
reproducibility across different simulation modules, because
randomness is managed by individual simulation modules. The
scaffolding approach intends not to provide completely identical
results across multiple simulation modules, but to only provide
statistically non-significant results.

4.5. Future Directions
We are now able to simulate in real time a cerebellar circuit
with multiple functional modules, at as large a scale as we have a
sufficient number of GPUs, owing to the weak-scaling property.
The model will be able to run efficiently on supercomputers
with multiple GPUs, such as JUWELS (Forschungszentrum
Jülich, 2019) and JURECA (Krause and Thörnig, 2016) in
Julich supercomputing center, and Germany managed under the
Human Brain Project.

Because themodel will consist of multiple functional modules,
which could learn internal models independently, the model
will provide a means to investigate how multiple internal
models work together synergistically to perform a complex task,
which has been postulated by MOSAIC models (Wolpert and
Kawato, 1998; Haruno et al., 2001). Contrary to the modular
computing approach, Michikawa et al. (2020) recently reported
that an ultra wide-field Ca2+ imaging procedure over the entire
cerebellar cortex revealed that all microzones are always activated
simultaneously, suggesting that all cerebellar modules function
in a holistic manner. This study implies that many rather than
a small subset of microcomplexes share functions for a given
task, but how? To address these questions computationally, our
cerebellar model would be a useful tool. Moreover, we could even
replace neuron models with more elaborated versions, which
would be important for studying how intracellular Ca2+ signals
spread over the entire cerebellar cortex.

Furthermore, real-time computing capability will also allow
us to adopt the cerebellar model as a controller of hardware
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robots, as in the previous studies (Garrido et al., 2013; Yamazaki
and Igarashi, 2013; Naveros et al., 2014; Casellato et al., 2015;
Pinzon-Morales and Hirata, 2015; Xu et al., 2018). An advantage
of the present model over the previous models is that although
the previous models could control only one parameter, because
they have only one output channel, the present model can control
multiple parameters. This will enable us to control complex
robots that havemany degrees of freedom. Furthermore, learning
capability of the present model would enable such robots to learn
appropriate behaviors autonomously. Although traditionally the
cerebellum is considered a supervised learning machine that
requires an external teacher, a recent study proposes that the
cerebellum is a reinforcement learning machine (Yamazaki
and Lennon, 2019) that does not require such teachers. The
cerebellum as a reinforcement learning machine will be a
promising candidate for such autonomous robot learning. Along
with the development of spiking neural networks acting as
learning machines, development of hardware for emulating such
spiking neural networks has been advanced rapidly (Monroe,
2014). Such hardware called “neuromorphic processors” aim
to emulate spiking neural networks in real time with ultra
low power for mainly edge computing (Furber et al., 2014;
Merolla et al., 2014; Friedmann et al., 2017; Davies et al., 2018;
DeBole et al., 2019). Machine learning study and computational
neuroscience study would be integrated more tightly for real
world applications.

5. CONCLUSION

The present cerebellar model is flexible and extendable, owing to
the scaffolding approach. It is also efficient, owing to the parallel
computing capability of GPUs. The model will provide a means
to further investigate the role of the cerebellum in motor or
non-motor learning computationally. Finally, the source code is
available at the author’s GitHub1.

1https://github.com/Rkuriyama/Cerebellar-Scaffold-Model-Simulation-on-

GPU/
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