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Abstract

Background: RNA editing is a widespread co-/post-transcriptional mechanism that
alters primary RNA sequences through the modification of specific nucleotides and it
can increase both the transcriptome and proteome diversity. The automatic detection
of RNA-editing from RNA-seq data is computational intensive and limited to small data
sets, thus preventing a reliable genome-wide characterisation of such process.

Results: In this work we introduce HPC-REDItools, an upgraded tool for accurate
RNA-editing events discovery from large dataset repositories. Availability: https://
github.com/BioinfoUNIBA/REDItools2.

Conclusions: HPC-REDItools is dramatically faster than the previous version, REDItools,
enabling big-data analysis by means of a MPI-based implementation and scaling
almost linearly with the number of available cores.

Keywords: RNA-editing, High Performance Computing, REDItools, Next Generation
Sequencing, Sequence Analysis, Bioinformatics pipeline

Background

Advances in next generation sequencing (NGS) technologies have led to the production of
an unprecedented amount of omic data (including genomes, transcriptomes, epigenomes
from cells, tissues and organisms) changing science and medicine in ways never seen
before and entering the “big data” era. The scale and efficiency of NGS poses the rele-
vant challenges of sharing, archiving, integrating and analyzing these vast collections of
omic data. Although tools and algorithms to handle and analyse large NGS datasets are
now appearing, widespread software for common NGS analyses are yet multi-threaded or
serial and not ready for the “big data” era revolution. As a consequence, the investigation
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of specific and important biological phenomena in large NGS datasets from interna-
tional projects - such as The Cancer Genome Atlas (TCGA) [1]! or The Genotype-Tissue
Expression project (GTEx) [2]? - is somehow precluded and, thus, a thorough redesign
of algorithms and efficient implementations on High Performance Computing (HPC)
infrastructures are mandatory [3]. Hereafter, we introduce and describe HPC-REDItools,
a HPC tool for accurate detection of RNA-editing events from large data repositories.

RNA editing is a widespread post-transcriptional mechanism that alters primary RNA
sequences through specific base modifications and increases the transcriptome complex-
ity of eukaryotic organisms. In humans, RNA editing affects nuclear and cytoplasmic
transcripts mainly by the deamination of adenosine (A) to inosine (I) through the ADAR
family of enzymes [4] that acts on double RNA strands. Since I is commonly interpreted
as guanosine by translation and splicing machineries (other than sequencing enzymes),
A-to-I modifications can alter codon identity or base-pairing interactions within higher-
order RNA structures [5]. As a result, A-to-I RNA editing can increase proteome diversity
or regulate gene expression at the RNA level [5]. Moreover, editing within pre-mRNAs
can generate or destroy splice sites, modulate alternative splicing and influence the
dynamics of constitutive splice sites. A-to-I RNA editing is prominent in non-coding
regions containing repetitive elements (mainly SINEs belonging to the Alu family) and
rare in protein coding portions of genes [6, 7].

RNA editing has relevant and serious biological and physiological implications. Indeed,
its deregulation has been linked to several nervous and neurodegenerative diseases such
as epilepsy, schizophrenia, major depression, Alzheimer and amyotrophic lateral sclerosis
[8]. In addition, the functional importance of this mechanism was established by showing
that mice lacking ADARs die in utero or soon after weaning. Recently, editing alterations
have also been associated with a variety of human cancers [9, 10].

Despite its importance in modulating gene expression and maintaining a correct cel-
lular homeostasis, the A-to-I landscape in human is still incomplete and main biological
roles are yet elusive. Indeed, the de novo detection of RNA editing in humans has been
performed in a limited number of samples, tissues and experimental conditions.

Thanks to international consortia, thousands of transcriptome experiments (RNA-seq)
have been performed and publically released through specialised web archives such as
dbGAP (the database of Genotypes and Phenotypes [11]) or SRA (the Sequence Read
Archive [12]). The Genotype-Tissue Expression (GTEx) consortium, for instance, pro-
vides the largest collection of RNA-seq experiments from 55 human healthy body sites of
more than 900 individuals. RNA-seq collections like GTEx represent precious resources
to investigate RNA editing in a multiplicity of human tissues.

In order to detect RNA editing sites in RNA-seq data, we developed the REDItools pack-
age [13, 14], a bioinformatics resource implemented in the portable Python programming
language. Although one of the most accurate software for this purpose [15] and mem-
ory efficient (from 2 to 4 GB are generally sufficient), it is computationally intensive and
time-consuming. In order to investigate the RNA editing landscape in very large cohort
of RNA-seq datasets, we re-designed the main algorithm, optimizing its implementation
for HPC infrastructures. The novel algorithm is on average 8-10 times faster than the pre-
vious version on a single core, while the HPC implementation scales almost linearly with
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the number of available cores. Our software, HPC-REDItools, represents the first HPC
resource specifically devoted to RNA-editing detection, allowing the analysis of individ-
ual RNA-seq samples in a few minutes. The software is available at https://github.com/
BioinfoUNIBA/REDItools2.

Implementation

RNA-editing events detected by REDItools are represented in a machine-readable tabular
format as reported, for example, in Fig. 1 in which each row is an editing site char-
acterised by the chromosome name (column Region) and genomic coordinate (column
Position). In addition, each editing position includes additional attributes, such as the ref-
erence nucleotide (column Reference), the list of observed substitutions (column AllSubs),
the RNA editing frequency (column Frequency) (representing the editing level per site),
the number and base count of reads supporting the position (columns Coverage-g25 and
BaseCount[A,C,G,T], where q25 refers to the minimum quality score of a base), the strand
(column Strand where 1 indicates strand plus, 0 strand minus and 2 strand not defined)
and the mean quality of supporting nucleotides (column MeanQ).

The identification of RNA editing events in a classical RNA-seq experiment (including
at least 50-60 million reads) through the first implementation of REDItools [13] can take
up to 300 hours on a standard machine with a single core and 2GB of RAM. Consequently,
REDItools are not suitable to analyse large datasets from public repositories (e.g. GTEx or
TCGA). To overcome this issue, we have completely redesigned the main algorithm and
adapted it to HPC infrastructures to benefit from multiple parallel cores.

Our novel software, called HPC-REDItools, introduce at least three big novelties over

the previous implementation:

1 Dataloading optimization: the new code has been fully rewritten to optimise
data loading and improve computational speed when launched in serial mode;

2 Dynamic Interval Analysis: we have implemented a novel algorithm, called
Dynamic Interval Analysis (DIA), to solve the problem of high-density genomic
regions that improves the software in terms of workload balance;

3 Parallelization: the current code is HPC-aware supporting the parallel analysis on
thousands HPC nodes.

Below we describe in detail algorithmic novelties illustrating speed improvements over
the original REDItools implementation.

Region Position Reference Strand Coverage-q25 MeanQ BaseCount[A,C,G,T] AllSubs Frequency
chr2l 15412990 A 1 18 3722 [3,0,15,0] AG 0.83
chr2l 15415901 A 1 13 37.15 [2,0,11,0] AG 0.85
chr2l 15423330 A 1 11 38.27 [4,0,7,0] AG 0.64
chr2l 15425640 A 1 8 36.12 [0,0,8,0] AG 1.00
chr2l 15456434 T 1 90 3496 [0,6,1,83] TCTG  0.07
chr2l 15461406 A 1 83 37.27 [73, 0, 10, 0] AG 0.12
chr2l 15461417 A 1 90 36.26  [72,0,18,0] AG 0.20
chr2l 15461444 A 1 64 37.22 [26, 0, 38, 0] AG 0.59
chr2l 15461479 A 1 70 36.96  [66,0, 4, 0] AG 0.06
chr2l 15461486 A 1 68 37.06 [61,0,7,0] AG 0.10
chr2l 15461503 A 1 76 37.26  [69,0,7,0] AG 0.09
chr2l 15461511 A 1 81 37.68 [55, 0, 26, 0] AG 0.32
Fig. 1 Example of the machine-readable tabular format used by REDItools to represent RNA-editing events



https://github.com/BioinfoUNIBA/REDItools2
https://github.com/BioinfoUNIBA/REDItools2

Flati et al. BMC Bioinformatics 2020, 21(Suppl 10):353 Page 4 of 12

HPC-aware implementation

Original REDItools software is written in Python (version 2.7) and for its biological pur-
pose (RNA editing detection) employs the pysam module, a wrapper of the widespread
SAMtools package for reading and manipulating large raw BAM files [16] containing mul-
tiple alignments of transcriptome reads onto a reference genome (composed by several
sequences corresponding to chromosomes). REDItools can speed up the identification
of editing events using multi-threading in which each thread (available core) analyses
independently a complete chromosome or part of it. Such pseudo-parallelism is strongly
limited because REDItools run on single machines and, thus, the number of useful pro-
cesses and analyses is restricted to the number of available cores (typically in a range from
2 to 30 on modern CPUs). In addition, REDItools do not take into account the density of
reads per chromosome and some processes may be more computationally stressed than
others. HPC-REDItools, instead, have been designed to be highly-parallel in order to run
on HPC infrastructures, as they are becoming more and more accessible to researchers
worldwide, and take advantage of multiple computing nodes. HPC-REDItools are again
written in Python (to increase portability and for continuity with the previous version)
and makes use of mpidpy library [17] (version 2.0.0) that is the binding of the Message
Passing Interface (MPI) standard library for the Python programming language. Such
library enables the power of multi-node computing and gives access to point-to-point
and collective communication primitives (e.g., send/receive, scatter/gather and son on)
directly from native Python code. The general architecture of HPC-REDItools follows
a simple master/slave template. As shown in Fig. 2, the MPI program (yellow rectan-
gle) takes in input the BAM file (see Fig. 2a). A master process M splits the input whole
genome into a set of genomic intervals D and, then, dispatches each interval to n free
parallel slave processes by sending a COMPUTE message and until all processes are kept
busy. Each slave process S (Fig. 2d) performs the analysis on the assigned interval and pro-
duces an intermediate temporary file with candidate RNA-editing events (see Fig. 2¢). To
promote process recycling, whenever a slave process S completes its analysis, it notifies
the master process M by sending a DONE message which in turn assigns a new interval
to S (if any). When all intervals have been analysed, the master process M sends a FIN-
ISH message to each slave process S notifying the end of the computation so that they
can gracefully exit. A final procedure (Fig. 2f) is implemented to collect all intermediate
results (temporary files) and creates a single, unified output file with all potential RNA-
editing events (Fig. 2g). HPC-REDItools accept personalised intervals for an advanced
and fine-grained control over the computation. However, we have implemented the DIA
Algorithm (see Algorithm 1 in “Dynamic interval analysis” section) which exploits the
point-wise coverage of a given BAM file to return an optimal set of intervals and guarantee
a more balanced workload across processes.

Data loading optimization

A relevant novelty of HPC-REDItools consists in the optimization of the data loading
which represented a bottleneck of the previous REDItools version. Such optimization
improves the global speed per genomic interval and has a positive impact on parallelism.
As explained above, the original REDItools implementation relies on the well-known
Python module Pysam [16] (version 0.13) to extract and manipulate aligned reads in
SAM/BAM format. To look at RNA editing events, REDItools inspect the entire genome
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Fig. 2 Layout of HPC-REDItools parallel implementation

position by position iteratively by invoking the mpileup function of Pysam to calcu-
late statistics about transcriptome reads supporting each position. During the traversal,
the mpileup function loads scanned reads as many times as their length, causing / disk
accesses per read (where [ is the read length) (see Fig. 3, left). To overcome this limita-
tion, individual genomic positions could be simply explored by traversing aligned reads
sequentially with no need to use the mpileup function. Indeed, HPC-REDItools access
the disk only once for each read: as a new genomic position is encountered, it dynami-
cally loads from the disk all the novel mapping reads present in the input BAM file which
start at the given position, caching the information as needed for future reuse (see Fig. 3,
right). Note that as soon as a read does not intersect the position currently under analysis,
it is discarded and the corresponding memory freed, thus also contributing to a minimal
memory footprint. Furthermore, the rate of disk accesses is decreased by a factor equal to
n and the overall analysis time is dramatically reduced.
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Fig. 3 Data loading improvement. The figure shows the BAM traversal strategy in the original serial version of
REDItools (left) and in HPC-REDItools (right). While in the previous version each read was loaded n times, in

HPC-REDItools each read is loaded just once, thus reducing the overall bottleneck introduced by useless
accesses to disk

Dynamic interval analysis

The parallelism of the original REDItools version consists in splitting the genome into n
equal-sized intervals, where 7 is the number of processes specified at the program invoca-
tion. Genomic intervals of RNA-seq experiments are characterised by an extreme uneven
coverage (density of mapped reads) and when treated equally result in an unbalanced
workload across processes with sub-optimal performances (cfr. Fig. 4a and b). In addition,
splitting highly-variable coverage data into equal-sized intervals causes computational
time bottlenecks with fast processes for low coverage intervals and very slow processes for
high-density intervals. In the worst case, a unique process might monopolise the entire
time slice allocated to the whole job because of an interval with an extremely high num-
ber of supporting reads. However, many biological data produced by high throughput
sequencing technologies are characterised by a highly-variable coverage and, thus, ad-hoc
solutions are needed.

HPC-REDItools introduce a novel strategy called Dynamic Interval Analysis (DIA).
Such strategy aims at finding an optimal interval division, which is able to guarantee
a balanced processing time across processes while maintaining the number of intervals
comparable to that of processes. Formally, the goal is to find a set D of n intervals (# fixed)
such that the processing time T'(I) of each interval I is approximately the same, that is:

D={L|TU)=TU) = -~TU}

This is equivalent to say that T'(/;) =~ ¢,, meaning that the time to process a given inter-
val is constant (equal to T(G)/n, where T(G) is the total time required to analyse the
whole genome G in a serial fashion). Since the function T is not known, it is necessary to
find the best estimate T of T which is able to predict the execution time over an interval.
First, we define the time needed to analyse an interval / as the sum of the single contri-
butions over each position i in the interval, thus reducing the problem of estimating the
processing time over single positions:

Ty =) t0)
iel
where £(i) is a function that estimates the processing time of the i-th position. For sim-
plicity, we assume that the processing time to compute a certain position depends only
on the number of reads supporting such position (i.e., known as coverage).

As shown in Algorithm 1, we first initialise the set D of dynamic intervals and then

calculate the processing-time estimate GC for the whole genome (lines 3-6). We then
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Fig. 4 Unbalanced vs. balanced workload. Examples of the impact of different intelligent interval divisions on
a system’s workload balance: when a naive interval division is employed, the system potentially suffers from
unbalanced workload (a) which is instead overcome by our Dynamic Interval Analysis thanks to which the
workload skyline becomes more homogeneous and all processes gain in fairness (b)

calculate AC as the average coverage time of the ideal interval (line 7); this is the ideal
constant processing time for an interval. Since intervals cannot overlap and are sets of
contiguous positions, the algorithm starts at the first position of the genome and then
proceeds by expanding the partial interval until a stop condition is reached. There are
three possible stop conditions:

Cl. max-weight: the weight of the interval under analysis exceeds the constant AC (to
preserve workload balance);

C2. max-width: the width of the interval exceeds the desired threshold max (to
encourage process recycling);

C3. single-chromosome-span: the end of a chromosome has been reached (since an
interval cannot span across chromosomes).

Finding time estimate. To find the best estimate for ¢, we selected a random sample of
1,000 equal-size intervals uniformly distributed across all human chromosomes, in order
to take into account also short sequences (such as the mitochondrial genome, barely
16,571 base pairs in length). We analysed each interval with HPC-REDItools in serial
mode (i.e., one single core) and calculated its average coverage. Figure 5 shows a log-log
plot, where each (x,y) point represents an interval with average coverage ¢* which has
taken €’ seconds to be completed. As shown, the plot reveals two main clouds, the first
representing intervals whose log average coverage is between 4 and 12 and the second
which includes higher-coverage intervals. This plot is meaningful in the sense that it gives
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Fig.5 Correlation between coverage and processing time for a sample of 1,000 equal-size random intervals

a pragmatic indication of the correlation between an interval coverage and the process-
ing time it requires to analyse it. Since the analytical continuous function ¢ is not known
a priori, we tested several ¢, including constant, linear and polynomial functions. How-
ever, the plot suggests that the average time to elaborate a given interval correlates in a
cubic manner with its mean coverage and the light-blue line in the figure represents the
function which best fits the given discrete point distribution.

Algorithm 1 Dynamic Interval Analysis algorithm.

Require: G:a genome
Require: n > 0: number of processes
Require: max > 0: threshold for maximum interval width
1: procedure DYNAMIC_INTERVAL_ANALYSIS(G, 1, max)
D < () #set of final intervals

GC < 0 #time estimate for the whole genome

for i € chrom do
GC < GC+t()

7: AC <« GC / M # average interval time estimate

2
3
4 for chrom € chromosomes(G) do
5
6

start <— O # start of the next interval

9: C < 0 #time estimate of the interval being calculated

10: for chrom € chromosomes(G) do

11: for i € chrom do

12: C<—CH+1t@)

13: if C > AC or i — start > max or i > end(chrom) then
14 D < DU Gyt #add the interval to D

15: start <— i+ 1 #resetstart

16: C < 0 #resetC

17: return D
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Fig. 6 Comparison between REDItools and HPC-REDItools in terms of elapsed computing times when
analysing 10 random samples downloaded from the GTEx repository. Comparison tests were performed on
the same machine

Results

Data loading optimization

To experimentally test the speed improvement between HPC-REDItools and REDItools,
we created a dataset consisting of 10 RNA-seq samples randomly selected from the GTEx
project. Both programs were launched on the same computer machine in order to predict
RNA editing events occurring in the chromosome 21. In Fig. 6 we report elapsed times
for REDItools (in red) and HPC-REDItools (in blue). As shown, HPC-REDItools are on
average 8 times faster than REDItools. This finding is quite interesting because enables
the use of HPC-REDItools also to users with no access to HPC infrastructures and greatly
speeds up the genome wide RNA editing detection.

Scaling analysis

To formally assess the scalability of HPC-REDItools on a High Performance Computing
architecture, we generated a dataset comprising 200 averaged-sized samples from the
GTEx repository and then we performed 7 experiments involving the analysis of 1, 2, 10,
20, 50, 100 and 200 samples, respectively. For each experiment we ran HPC-REDItools
with a number of nodes equal to the number of selected samples (for example, for 10
samples we required 10 HPC nodes). All computations were executed on the Knight-
Landing (KNL) partition of Marconi, a Tier-0 cluster available at CINECA, the Italian
biggest non-profit organization offering support to national and international research
projects as well as one the most powerful calculus infrastructures in Europe®. Results
are shown in Fig. 7 (left). The x-axis reports the number of requested nodes while the
y-axis indicates the achieved speed-up, defined as S(n) = % that is the fraction
of the time required to perform some work W using 1 core over the time required to
perform the same amount of work using # cores; for example, S(6800) = 2% ~ 1.78.

118
The optimal speed-up is s = 1, corresponding to the implementation that achieves the

3Nodes in the KNL partition of Marconi mount 68-core Intel(R) Knights Landing @ 1.40GHz processors.

Page 9 of 12



Flati et al. BMC Bioinformatics 2020, 21(Suppl 10):353 Page 10 of 12

. 1400

° 1200 S
1000 \\

800 —_—

YA

Number of samples and nodes (1 node per sample) Number of cores.

Speed up

Time elapsed (minutes)

—

8 17 34 68

Fig. 7 Scaling behaviour of HPC-REDItools: speedup (left) and comparison between the two versions of
REDItools (right)

maximum parallelism possible. As shown in the figure, in which blue line corresponds to
HPC-REDItools timings and red line to the optimal speed-up, HPC-REDItools achieves a
very good scaling, demonstrating the ability to optimally exploit the computational power
offered by a HPC infrastructure.

We then compared the scalability of REDItools and HPC-REDItools on an individual
sample of 2.7 GB by varying the number of requested cores (x = 8,17, 34, 68) on a single
KNL node (see Fig. 7, right). As a result, HPC-REDItools appeared about 8 times faster
than the previous version enabling the RNA-editing detection in less than 1 hour. In con-
trast, REDItools reached a plateau at x = 17, due to the fact that it barely splits the whole
genome into chromosome-wide regions, assigning each region to a different thread, thus
wasting all the computational power coming from the additional cores.

Conclusions

RNA editing is a co-/post-transcriptional phenomenon occurring in many organisms
including animals and plants and has relevant biological implications. It can be detected
employing RNA-seq data generated by high throughput sequencing technologies. How-
ever, as data volume increases, more powerful tools are required to analyse large number
of samples in a time affordable way. In the present work we described HPC-REDItools,
a HPC-aware tool for efficiently detect high-quality RNA-editing events from big data
repositories on a HPC cluster. HPC-REDItools introduce at least three main algorithmic
improvements over the previous version: i) high parallelism to employ the computational
power available at High Performance Computing infrastructures; ii) optimised data load-
ing that dramatically reduces computing time per genomic interval; iii) Dynamic Interval
Analysis approach to improve workload balance across parallel processes. Our results
indicate that HPC-REDItools are ready to analyse RNA editing in a variety of samples.
Indeed, we plan to apply our software to explore the RNA editing landscape in large NGS
datasets, thus providing a more reliable overview of the role of RNA editing in eukaryotic

organisms.

Availability and requirements
¢ Project name: HPC-REDItools
e Project home page: https://github.com/BioinfoUNIBA/REDItools2
e Operating system(s): Platform independent
e DProgramming language: Python >2.7
e Other requirements: None
® License: GPL-3.0
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