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Abstract: Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 

and EO chain octylphenol dehydrogenase from Pseudomonas putida share common 

molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and 

comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) 

oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. 

Three-dimensional (3D) molecular modeling suggested that differences in the size, 

secondary structure and hydropathy in the active site caused differences in their substrate 

specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular 

modeling, site-directed mutagenesis was utilized to introduce mutations into potential 

catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild 

type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly 

involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD 

and His465 transfers the same proton from the reduced flavin to an electron acceptor.  
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1. Introduction 

The group of glucose-methanol-choline (GMC) flavoprotein oxidoreductases was first outlined by 

Cavener [1] and encompasses a wide variety of enzymes from prokaryotic and eukaryotic organisms. 

The founding enzymes of this class include glucose oxidase (GOX) from Aspergillus niger, glucose 

dehydrogenase from Drosophila melanogaster, methanol oxidase from Hansenula polymorpha and 

choline dehydrogenase from Escherichia coli. Although the sequence similarities of this family are not 

high and its members catalyze diverse reactions, this family of flavoenzymes contains a conserved 

ADP-binding motif (an approximately 30 amino acid region) in its N-terminus and the signature 1 and 2 

consensus sequences [1]. All proteins of this family possess three FAD-binding domains and a 

substrate-binding domain in a contiguous sequence region [2]. Interestingly, four flavoenzymes  

p-hydroxybenzoate hydroxylase (PHBH), D-amino acid oxidase, cholesterol oxidase and GOX contain 

a PHBH-like fold [3], suggesting that the versatility of this folding topology leads to diverse functions. 

Surprisingly, a plant hydroxynitrile lyase demonstrated the characteristic topology of this family and 

was added to the GMC family [4]. The most probable unrooted phylogenetic tree obtained from 52 

selected GMC members revealed five principal evolutionary clades, among which polyethylene glycol 

dehydogenase (PEG-DH) is a member of the largest clade, which includes alcohol oxidase, GOX, 

choline and sorbose dehydrogenases [5]. 

From the elucidation of the reduced flavin product of D- and L-amino acid oxidases with 

borohydride [6,7], the reduced flavin form created by enzymatic dehydrogenation was suggested to be 

1,5-dihydroflavin. Dihydroflavin is an effective reductant and reacts readily with molecular oxygen  

to be re-oxidized [8]. The GOX reaction proceeds through a ping-pong mechanism [9]. Recent 

structural studies of several GMC oxidoreductases, in particular GOXs from A. niger and Penicillium 

amagasakiense have led to a thorough understanding of the catalytic mechanism. Specifically, in the 

reductive half-reaction, the enzyme catalyzes a two-electron oxidation of β-D-glucose to δ-gluconolactone, 

which is non-enzymatically hydrolyzed to gluconic acid. The flavin ring of GOX is reduced to FADH2, 

in which His559/563 acts as a catalytic residue to withdraw protons from the substrate and transfer 

them to FAD [10,11]. In the oxidative half-reaction, the same two protons and two electrons are 

transferred from the reduced enzyme to molecular oxygen by His516 in A. niger GOX [12,13] and 

His520 in P. amagasakiensis GOX [11], yielding H2O2 and the re-oxidized FAD. Gadda’s group has 

studied the catalytic mechanism of choline oxidase (COX) from the Arthrobacter globiformis strain 

ATCC 8010 [14–16]. They suggested that His466 (corresponding to His516 of GOX) near the flavin 

N(1) locus is involved in the oxidation of the alcohol substrate, but not in the reduction of oxygen. 

Ohta et al. [17] found that His467 and Asn511 of PEG-DH from Sphingopyxis terrae correspond to 

His516 and His559 of GOX from A. niger. The Asn511His mutant was generated for comparison with 

His516 of GOX, but almost all activity was lost. This suggests that the asparagine at position 511 is 

indispensable in PEG-DH. 
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Tasaki et al. [18] cloned an alcohol dehydrogenase gene from octylphenol polyethoxylate-degrading 

Pseudomonas putida S-5 that has characteristics of the GMC flavoprotein alcohol dehydrogenases 

including PEG-DH (Here we designate this enzyme as ethoxy (EO) chain octylphenol dehydrogenase 

OPEO-DH). The recombinant enzyme recognized EO chains linked to bulky hydrophobic groups, but 

not free EO chains (PEG). We cloned a gene for a short EO chain nonylphenol dehydrogenase (NPEO-DH) 

from Ensifer sp. strain AS08, which catalyzes the initial dehydrogenation of an EO chain nonylphenol [19]. 

The gene encoding NPEO-DH consisted of 1659 bp, corresponding to 553 amino acid residues. The 

presence of an ADP-binding motif and the GMC oxidoreductase signature motifs strongly suggested 

that the enzyme belonged to GMC oxidoreductase family. The recombinant enzyme exhibited 

homology (40%–45% identity) with several PEG-DHs. 

Amongst GMC oxidoreductases, GOX has been crystallized and is well characterized, and is  

often used as a model structure of this group, especially for the alcohol/glucose/choline/sorbose 

oxidoreductases clade. PEG-DH from S. terrae has a hybrid gene structure that resembles the oxidases 

and dehydrogenases of this family [20]. This enzyme has only 30.5% sequence identity with GOX, but 

3D molecular modeling suggested that the secondary structures and sequence motifs were conserved in 

both enzymes [17]. In this paper, we compare the 3D structures and sequence motifs of NPEO-DH, 

OPEO-DH and PEG-DHs, and investigate the functions of catalytic amino acid residues in the 

dehydrogenation of PEG residues and the reduction of FAD. 

2. Results  

2.1. Comparison of Sequence Motifs and 3D Structure Models for NPEO-DH, OPEO-DH and PEG-DH  

The amino acid sequence of NPEO-DH was aligned with those of PEG-DHs from S. terrae [17] and 

Mesorhizobium loti [21], and OPEO-DH from P. putida [18]. The sequence alignment revealed that 

these enzymes share common features of the GMC flavoprotein family, as shown in Figure 1. The 

probable active site residues for all of the enzymes were histidine and asparagine, which are different 

from the two histidines in the active sites of GOX [10] and COX [15]. The phylogenetic tree of these 

enzymes was constructed by the maximum parsimony method using the bootstrap resampling method 

with 1000 replicates. Phylogenetic and molecular evolutionary analyses were performed using MEGA 

Version 5.05 [22]. The phylogenetic tree suggested that the distance between NPEO-DH and PEG-DH 

was larger than that between OPEO-DH and PEG-DH (Figure 2), although OPEO-DH does not act on 

free PEGs. NPEO-DH is much closer to GOX than to OPEO-DH and PEG-DH.  

3D structure models for the three enzymes were constructed, based on GOX from A. niger (Figure 3 

and Figure S1–3). The active site cavity sizes for NPEO-DH and PEG-DH were calculated as being 

approximately the same (ca. 10Å), based on the size of glucose (the diameter is 1 nm [23]), but 

different from that of OPEO-DH (ca. 6Å). The cavity size of OPEO-DH was approximately the same 

as that of GOX [17]. The secondary structure of the opposite region to the flavin in the substrate 

binding domain in NPEO-DH consisted of two β-strands and that in OPEO-DH consisted of one β-strand 

and a loop, but that in PEG-DH consisted of two loops, as shown in Figure S1–3. In addition, the 

hydropathies of these regions were different, as summarized in Table 1. These subtle differences must 
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cause the different substrate specificities, although they share the protein structure similar to each 

other. The propriety of 3D-modeling was confirmed by Verify 3D [24]. 

Figure 1. Alignment of the deduced amino acid sequence of nonylphenol dehydrogenase 

(NPEO-DH) with octylphenol dehydrogenase (OPEO-DH) and polyethylene glycol 

dehydrogenases (PEG-DHs). Gaps were introduced into the sequences to maximize 

homology and are indicated by dashes. The black boxes indicate the FAD-binding motifs [2] 

the double line indicates the glycine box (GXGXXG) [18,25]; the gray boxes indicate the 

glucose-methanol-choline (GMC) oxidoreductase signatures [1]; the white box indicates 

the quione-binding motif of OPEO-DH and PEG-DH; the asterisk line delineates the 

probable quinone-binding motif of NPEO-DH; the two-headed arrow indicates the 

substrate binding domain; the single line and dotted line indicate the membrane-anchoring 

motifs of NPEO-DH and OPEO-DH, and PEG-DH, respectively; and the arrows indicate 

His and Asn in the active site. Identical amino acids and similar amino acids are shown 

with a dark-gray background and gray background, respectively.  

 

NPEODH     1 MSSYDYIIIGAGSAGCVLATRLSEDANVSVLLIEAGGG-KSLFVDMPAGIRILYTSDRYNWRFWTEPQRH   69

OPEODH     1 –MEFDYLIVGAGSAGCVLANRLSADPSVTVCLLEAGPEDRSPLIHTPLGLAAILPTRHVNWAFKTTPQPG   69

PEGDH      1 MHKFDFVVVGAGSAGCTVASRLSENGKYQVALLEAGGSHNNPLISIPFNFAFTVPKGPHNWSFETVPQEG   70

 

 

NPEODH    70 LDNRRIYIPRGRVIGGSSSINSMIAIRCNPWDYDSWASRGMPKWSFSAMLPYLRRIEDASLVVQPDNGTR  139

OPEODH    70 LGGRVGYQPRGKVLGGSSSINGMIYIRGHQDDFNDWQALGNEGWGFDDVLPYFRKSEMHHGGSSEYHGGD  139

PEGDH     71 LNGRRGYQPRGKVLGGSSSINAMVYIRGAKEDYEHWAALGNEGWSYEEVLPFFKKAQNRVKGANEYHAQG  140

 

 

NPEODH   140 GHSGPIKLSFGPRRSTTQAFVDSLVAAGLPENNGFNGSSQIGAGFYELTIAHGKRS-GAFKYLERAKGRP  208

OPEODH   140 GELYVSPAN---RHAASEAFVESALRAGHSYNPDFNGATQEGAGYYDVTIRDGRRWSTATAFLKPVRHRS  206

PEGDH    141 GPLTVSPPRS--PNPLNDMFIKAGMDCQLPYNEDFNGETQEGIGYYELTQDRGKRCSAALAYVTPAEKRK  208

                                                             ********* 

 

NPEODH   209 NLTILPNCHVRRINVEGGSASGVIVVQNGRERTINCDREVLLTAGAIGSPQLLMLSGIGPADHMRSLGIK  278

OPEODH   207 NLTVLTHTHVESIVLLGKQATGVQALIKGSRVHLRARKEVILSAGAFGSPHLLMLSGIGSAAELEPQGIA  276

PEGDH    209 NLTIFKQAFVEKVLVENGQATGVMVKLNGNLQLIKARREVILSCGAFQSPQLLLLSGIGAKDKLDPHKIK  278

                             

 

NPEODH   279 PVHHLPGVGENLQDHLDCAVRFEASQPTTLTPYMG-LLKGGMAGARYILKGDGPAASQAVEAGAFWGPDR  347

OPEODH   277 PRHELPGVGQNLQDHADVVLCYKSNDTSLLGFSLSGGVKMGKAMFDYARHRNGPVASNCAEAGAFLKTDP  346

PEGDH    279 VVHELPGVGENLYDHVDFCLMYQSDSEHVLGKNARSVFRVAWNQFKYFAGRRGILTTNFNESGAFYFTNP  348

 

 

NPEODH   348 SSPLPEWQAHFANVLRNPP-PGERIAHGFAVRVCQLRPQSRGTVRLRSGDPAIPPAIDPRLGSEHADLAS  416

OPEODH   347 GLERPDIQLHSVIGTVDDHNRKLHWGHGFSCHVCVLRPKSIGSVGLASPDPRKAPRIDPNFLAHDDDVAT  416

PEGDH    349 DERSPDIQLHFAFTLVDQHGLKRHGRGGFSCHVCVLRPKSHGNLTLADANPATPPLIDPAFLKDERDVAT  418

 

 

NPEODH   417 LRDGVRDMCDMMMCGPLKNFVKRPIDAEAFGNLSSLETFVRARAETVYHPVGTCKMG--ADDASVVDPSM  484

OPEODH   417 LLKGYRITRDIIAQTPMASFGLRDMYSAGLHNDEQLIELLRKRTDTIYHPIGTCKMG--QDEMAVVDSQL  484

PEGDH    419 LLAGVKRAQQILQAPAFDEIRGKPVYATASNNDDELIEDIRNRADTIYHPVGTCKMGPDSDPMAVVDSSL  488

 

 

NPEODH   485 KVRGLDGLRVVDGSVMPTLLSGNTNLPIMAMAEKIADELIHGESFSPEYPIAGQMLAHDAHGRRPPSS    552

OPEODH   485 RVHGIEGLRVVDASIMPTLVGGNTNAAAIMIAERAAEWIAHG--------------------------    526

PEGDH    489 RVRGIRNLRVIDASIMPSIVSGNTNAPTIMIGEKGAQMILDEAESYT---------------------    535
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Figure 2. Phylogenic tree of PEG-DH and the divergent enzymes, GOX and choline 

dehydrogenase. Phylogenic trees are displayed based on a distance matrix analysis of 

protein sequences. Numbers at the nodes indicate the percentages of bootstrap sampling. 

StePEGDH, PEG-DH from Sphingopyxis terrae (AB239603); MloPEGDH, PEG-DH from 

Mesorhizobium loti (BA00012); Ppu OPEODH, OPEO-DH from P. putida (AB10375); 

PolADH, alcohol dehydrogenase from P. oleovorans (Q00593); RmeCDH, choline 

dehydrogenase from Rhizobium meliloti (U39940); EnsNPEODH, NPEO-DH from Ensifer 

sp. strain AS08 (DQ368396); RpaGMC, GMC oxidoreductase from Rhodopseudomonas 

palustris DX-1 (YP_004106956); AniGOX, GOX from A. niger (X16061); and PamGOX, 

GOX from P. amagasakiense (P81156). 

 

Figure 3. Comparison of the active site cavity of NPEO-DH, OPERO-DH and PEG-DH by 

homology modeling. The entire structures of them are shown in Figure S1–3. FAD is 

shown in yellow. Active His is shown in green. Active Asn is shown in blue. Dotted circles 

show the active site cavities. Numbers in the circles indicate the size of cavities, which 

were calculated, based on the size of glucose (1 nm). Amino acids located at the entrance 

of the cavity and interacted with substrates are shown in red.  
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Table 1. Comparison of the secondary structure and hydropathy of the opposite region to 

the flavin in the active site that is related to the substrate-docking. Numbers indicate the 

positions of amino acids. Hydropathy of amino acids is shown in grey for hydrophobic 

amino acid and in black for hydrophilic amino acid.  

 NPEODH OPEODH PEGDH 

First Sequence 

365–370 

β-strand 

PPPGER 

PPPGER 

(hydrophilic) 

355–360 

β-strand 

LHSVIG 

LHSVIG 

(hydrophobic) 

368–373 

loop 

GLKRHG 

GLKRHG 

(hydrophilic) 

Secnod Sequence 

375–380 

β-strand 

FAVRVC 

FAVRVC 

(hydrophobic) 

375–380 

loop 

FSCHVC 

FSCHVC 

(hydrophobic) 

377–382 

loop 

FSCHVC 

FSCHVC 

(hydrophobic) 

2.2. Mutation of NPEO-DH and Expression of Wild Type and Mutant NPEO-DHs  

The sequence identity between NPEO-DH and GOX is not very high, but the sequences aligned 

throughout almost all of their length. The characteristic motifs of GMC oxidoreductases are conserved 

in both enzymes [19]. The PHBH-like folding topology [3] was also found in NPEO-DH and  

PEG-DH. Based on the 3D model of NPEO-DH, Asn90, His465, Asn507 and Asn509 were identified 

as being in the vicinity of the isoalloxazine ring of FAD and possibly being involved in catalysis 

(Figure 4). His465 and Asn507 correspond to His467 and Asn511 in PEG-DH from S. terrae [17,19]. 

Mutations at these amino acid residues were introduced. The mutant NPEO-DHs were successfully 

expressed in E. coli and purified by Ni-NTA affinity chromatography. SDS-PAGE showed that the 

molecular weights of the mutant proteins were identical to that of the wild-type NPEO-DH. The 

expression levels of the mutant NPEO-DH proteins were confirmed by Western blot analysis, revealing 

that the expression levels of mutant NPEO-DHs and the mobilities of mutants on SDS-PAGE were 

similar to those of the wild type protein. These results showed that all of the molecules were stable and 

the mutations did not change the higher order structure of the protein. The purified yield for each  

NPEO-DH was above 90%. 

Figure 4. Amino acid residues in the active site of NPEO-DH and GOX. 
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2.3. Roles of Asn507 and His465 in the Catalysis  

To examine the effect of the mutations on enzyme kinetics, the apparent steady-state kinetic 

parameters were determined (Table 2). As NPEOav2.0 and its components are water-insoluble and 

NPEO-DH had reasonable activity on PEG 1000 (520%) and NPEOav10 (93%) compared with activity 

on NPEOav2.0 (100%) [19], PEG 1000 and NPEOav10 were used in this study. Asn507Ala and 

His465Ala/Asn507Ala completely lost activity. His465Ala showed no significant change in affinity 

toward substrates, but the apparent kcat values decreased to approximately 1/20 of the apparent kcat 

value of wild type. This was similar to the results with His520Ala(Val) in P. amagsakiense GOX [11]. 

Asn509Ala and Asn90Ala showed the less kcat values toward NPEOav10 than toward PEG 1,000. This 

would suggest that Asn90 and Asn509 are probably involved in positioning the isoalloxazine ring, 

affecting the activity on the difference molecular sizes of PEG 1000 and NPEOav10. Hence, we 

concluded that Asn507 is required for dehydrogenation and His465 plays an important role in activity. 

Apparent Km and kcat values of Asn90Ala and Asn509Ala showed only slight differences compared to 

those of the wild type, suggesting that they do not play significant roles in catalysis, although these 

residues are well conserved in the GMC oxidoreductase family.  

To confirm the role of these residues in dehydrogenation, the velocities of the initial step in the 

enzymatic reaction (flavin reduction rate) in wild type and mutant enzymes were compared.  

A stopped-flow experiment was performed, monitoring the absorption change of flavin at 450 nm 

and DCIP at 600 nm (0 to 300 milliseconds) (Figure 5A,B), respectively. The wild type protein and 

Asn90Ala and Asn509Ala mutants showed approximately the same reduction pattern, while a higher 

reduction rate was obtained for the His465Ala mutant. In contrast, no reduction was found for 

Asn507Ala. These data suggest that the transfer of protons and electrons from a substrate to FAD is 

mediated by Asn507, but not by Asn90 and Asn509. The elevated reduction in His465Ala is  

well-explained by the re-oxidation of the flavin by His465 proceeding in the wild type (decrease of the 

reduced FAD), but stopping in His465Ala, resulting in accumulation of the reduced FAD. Low  

DCIP-coupled activity (approximately 5% that of wild type) was found for the His465Ala mutant 

(Table 2), which must be due to non-enzymatic reduction of DCIP by the reduced FAD, since the 

reduced FAD was readily re-oxidized with molecular oxygen [8]. To elucidate the role of His465 in 

the catalysis, another stopped-flow experiment was performed with the reduced form of enzyme 

(reduced flavin) and a minimal concentration of DCIP (Figure 5B). In contrast to wild-type NPEO-DH, 

no re-oxidation of FAD was found with His465Ala. His465 appears to mediate the proton transfer 

from reduced FAD to an electron acceptor. 

Table 2. Kinetic properties of the purified wild type and mutant NPEO-DHs Activity was 

measured by DCIP reduction, as described in the text. All data are shown as averaged 

values of three independent experiments. 

Mutant 

PEG1,000 NPEOav10 

Vmax 

(units/mg) 

Km 

mM 

kcat 

s−1 

kcat/Km 

s−1 mM−1 

Vmax 

(units/mg) 

Km 

mM 

kcat 

s−1 

kcat/Km 

s−1 mM−1 

Wild type 3.9 3.3 12 3.6 3.6 2.1 11 5.2 

Asn90Ala 2.8 4.5 8.4 1.9 1.8 4.1 5.5 1.3 

His465Ala 0.21 2.5 0.63 0.24 0.43 2.4 1.3 0.54 
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Table 2. Cont. 

Mutant 

PEG 1000 NPEOav10 

Vmax 

(units/mg) 

Km 

mM 

kcat 

s−1 

kcat/Km 

s−1 mM−1 

Vmax 

(units/mg) 

Km 

mM 

kcat 

s−1 

kcat/Km 

s−1 mM−1 

Asn507Ala n.a. a - - - - - - - 

Asn90Ala 1.6 2.8 9.1 3.3 1.2 1.7 3.6 2.1 

His465Ala–Asn507Ala n.a. - - - - - - - 
a n.a.: no activity. 

Figure 5. Transient stopped-flow kinetic traces of the reductive and oxidative half 

reactions of wild type and mutant NPEO-DHs. (A) Reduction of FAD by wild type and 

mutant NPEO-DHs with PEG 1000. The reaction was monitored by the reduction of FAD 

at 450 nm; (B) Re-oxidation of FAD by wild type and His465Ala with DCIP. The reaction 

was monitored by the absorbance of DCIP at 600 nm. All data are shown as the averaged 

values from three independent experiments. 

 

 

3. Experimental Section 

3.1. Materials, Bacterial Strains and Bacterial Cultivation  

PEG-mono-4-nonylphenyl ether (NPEOav10, averaging 10 EO units) was a product of Tokyo Kasei 

Kogyo Co., Ltd., Tokyo, Japan. Restriction enzymes and Ex Taq DNA polymerase were purchased 
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from Takara Bio, Kyoto, Japan. The primers used for site-directed mutagenesis are listed in Table 3. 

All other chemicals used in this study were of the highest grade available.  

The bacterial strains used in this study are derivatives of E. coli and were grown at 37 °C 

(subcloning) or 15 °C (expression) in yeast extract-tryptone medium (Ohta et al. [17] or Luria-Bertani 

medium supplemented with ampicilin at 50 μg/mL and isopropyl-β-D-thiogalactopyranoside (IPTG) at 

0.5 mM, when necessary. Their relevant genotypes and plasmids are listed in Table 3. 

Table 3. Strains and plasmids used in this study. Sequences introduced for site-directed 

mutagenesis are underlined.  

Strain or Plasmid Genotype and Description Source or Reference 

Strains   

E. coli BL21(DE3)(pLysS)  Takara Bio 

E. coli DH5 α  Takara Bio 

Plasmids and primers   

pCold I DNA 4407 bp; Amp r; His.Tag; TEE; cspA Promotor Takara Bio 

pCold-npeA 1659 bp complete ORF of NPEO-DH ligated with pCold vector [19] 

pCold-npeA-N90A 
N90A-F1 5'-CATCAATCGCTTCGATGATCGCGAT-3' 

N90A-R1 5'-ATCATCGAAGCGATTGATGACGACC-3' 
This study 

pCold-npeA-H465A 
H465A-F1 5'-CGGTATATGCTCCCGTTGGGACCTG-3' 

H465A-R1 5'-ATCATCGAAGCGATTGATGACGACC-3' 
This study 

pCold-npeA-N507A 
N507A-F1 5'-TAAGCGGCGCTACAAACCTGCCCAT-3' 

N507A-R1 5'-AGGTTTGTAGCGCCGCTTAGAAGCG-3' 
This study 

Cold-npeA-N509A 
N509A-F1 5'-GCAATACAGCTCTGCCCATTATGGC-3' 

N509A-R1 5'-ATGGGCAGAGCTGTATTGCCGCTTA-3' 
This study 

Cold-npeA-H465A-N509A 
npeA double mutant in H465A (CAT→GCT) and N507A  

(AAT→GCT) 
This study 

3.2. 3D Structure Modeling  

There are two structurally defined homologues of NPEO-DH, OPEO-DH and PEGDH: GOX  

(EC 1.1.3.4) from A. niger (Protein Data Base (PDB) code: 1cf3, 25% identity with NPEO-DH) and 

GOX (EC 1.1.3.4) from P. amagasakiense (PDB code: 1gpe, 26% identity with NPEO-DH) [3]. 

MODELLER Release 9v7 (developed by Sali and Blundell [26]) was used for modeling. We chose 

1cf3 as the structure template because it yielded fewer gaps than when 1gpe was used as the template. 

As MODELLER does not have energy parameters for FAD, an FAD molecule was modeled using the 

“block” residue option, under the restraint that it conformed to the template structure. Ohta et al. [17] 

reported the validity of GOX as a template for 3D structure modeling. PSI-BLAST [27] was used to 

align NPEO-DH (DQ368396) with OPEO-DH (AB100375) and PEG-DH (AB050784). 

3.3. Mutagenesis  

Four amino acids (Asn90, His465, Asn507 and Asn509) adjacent to the FAD isoalloxazine ring in 

NPEO-DH were replaced with alanine by site-directed mutagenesis, which was performed using a 

QuikChange II XL Site-Directed Mutagenesis Kit (Funakoshi, Tokyo, Japan). The wild type NPEO-DH 

gene, subcloned in a pCold I vector, was used as a template for mutagenesis [19]. The mutant DNA 
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sequences were confirmed using an ABI PRISM 3100 Avant Genetic Analyzer (Applied Biosystems, 

Foster City, CA, USA). Expression of NPEO-DH mutants was confirmed by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) followed by Western blotting [28] using a polyclonal antibody raised 

against NPEO-DH that was purified from E. coli DH5α (pCold-npeA) [19]. 

3.4. Expression and Purification of Recombinant Proteins  

E. coli BL21 (DE3) pLysS was used as the host for expression. The expression and purification 

were performed by methods described previously [19]. Approximately 5 mg of the wild type or mutant 

NPEO-DHs were obtained from 4 g (wet weight) cells cultivated in 800 mL medium. The purified 

yield for each NPEO-DH was above 90%, evaluated by SDS-PAGE patterns and the specific activity 

of the purified NPEO-DH [19]. 

3.5. Enzyme Assay 

NPEO-DH activity was examined by measuring the reduction of 2,6-dichloroindophenol (DCIP;  

ε = 19,000) at 600 nm with a UV-1600 spectrophotometer (Shimadzu, Kyoto, Japan). PEG1000 and 

NPEOav10 were used as substrates. A 1-mL reaction mixture included an appropriate amount of a 

purified recombinant wild-type and mutant NPEO-DHs, 0.1 mM DCIP, 0.1 mM phenazine 

methosulfate (PMS) and 5 mM substrate in 0.1 M Tris-HCl buffer (pH 8.0). As a control, a reaction 

mixture containing no substrate was used. One unit of enzymatic activity was defined as the amount of 

enzyme that catalyzed the reduction of 1 μmole of DCIP per minute under the standard assay 

conditions. The specific activity was defined as the units of enzyme contained per mg of protein. The 

protein concentration was determined using the Protein Assay Kit (Bio-Rad Laboratories, Hercules, 

CA, USA) with bovine serum albumin as a standard. Apparent Km values were estimated based on 

Lineweaver-Burk plots. The data are shown as average values of two or three independent 

experiments, each performed in triplicate. Stopped-flow analysis was carried out with a UV-3000 

Shimadzu spectrophotometer equipped with a rapid mixing attachment (Model RMA-1A). The 

precision of absorbance was 0.0001. For measuring FAD reduction, the reactions were initiated by 

rapid mixing of 100 µL of each of two solutions, one containing about 32 µM purified enzyme and the 

other containing 10 mM PEG 1000 in 0.1 M Tris-HCl (pH 8.0). For measuring FAD re-oxidation,  

0.01 mM DCIP in 0.1 M Tris-HCl (pH 8.0) and the reduced form of enzyme were used. To produce the 

reduced form of the enzyme, the purified enzyme was incubated with PEG 1000 at 25 °C for 30 min in 

50 mM Tris-HCl (pH 8.0), followed by the removal of the substrate with an Amicon Ultra-15 

centrifugal filter (Millipore). The absorption change of FAD at 450 nm was monitored for  

300 milliseconds at 30 °C with a 1 cm path-length quartz cell. All data are shown as the averaged 

values from three independent experiments.  

4. Discussion  

The phylogenic tree and alignment of amino acid sequences of NPEO-DH, OPEO-DH and PEG-DH 

suggested that they share common features of the GMC oxidoreductases family and belong to the same 

clade that includes GOX, alcohol oxidase, glucose dehydrogenase and choline dehydrogenase in the 
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family [5]. As NPEO-DH appears to be a type of PEG-DH that acts on free PEGs [19], while OPEO-DH 

does not, we expected the closer relationship between NPEO-DH and PEG-DH than between OPEO-DH 

and PEG-DH. In fact, the opposite result was obtained, although OPEO-DH did not act on free PEG 

(the reaction is a dehydrogenation of the terminal hydroxyl group in an EO chain). Therefore, we 

compared the 3D structures of the three enzymes and found that the 3D structure around the active site 

cavity in OPEO-DH is distinctly different from that of the other two enzymes. First, the size of the 

active cavity in OPEO-DH is smaller than that of the other two enzymes (Figure 3). Second, OPEO-DH 

has hydrophobic β-strand and loop in the entrance of the active site opposite to the flavin (Figures 3 and 

S1–S3 and Table 1), which would not accommodate PEG molecules. PEG is considered to be a 

random coil in water, binding approximately 2–4 waters per EO unit to make the polymer-hydrate and 

become completely hydrophilic. The resultant PEG-water complex loosely aggregates to become far 

bigger in size than the molecular mass of PEG itself [29]. Short EO chain alkylphenols probably form 

different structures from free PEG. Hydrophobic strand and loop would recognize and bind to a 

hydrophobic alkyl phenol residue, but repel a hydrophilic PEG-water complex. NPEO-DH has a 

hydrophilic strand as well as a hydrophobic strand, which could explain its activity on NPEO and  

PEG [19]. The two loops of PEG-DH would cause substrate size flexibility in the active site cavity, 

i.e., accommodation of an oligomeric EO chain to PEG 20000 [30]. Differences in active site cavity 

sizes, the secondary structures of the substrate-binding regions, and hydropathy seemed to explain the 

differences in substrate specificities of the enzymes against EO chain alkyl phenols and PEGs. 

His465 and Asn507 in the active site cavity of NPEO-DH are well conserved among the three 

enzymes and other PEG-DHs [19]. Comparison of wild type and mutant NPEO-DHs revealed that 

Asn507 mediates the transfer of proton from a substrate to FAD and His465 mediates the transfer of 

proton from reduced FAD to an electron acceptor. These results are in accord with the roles of His559 

and His516 in GOX of A. niger [12,13]. As histidine does not work at high pH [12] and the optimal 

pHs of NPEO-DH and PEG-DH are both 8.0 [17,19], His559 in the GOX protein of A. niger must 

have been replaced with asparagines in both dehydrogenases. On the other hand, Ghanem and  

Gadda [14] showed that, in COX from A. globiformis, the positive charge brought by His466 near the 

FAD N(1) locus is necessary for catalytic activity and suggested the involvement of His466 in the 

reductive half-reaction at pH 6, although the enzyme had another active site Asn510, instead of His559 

in the GOX [10]. Histidines and histidine/asparagine are two combinations of important catalytic 

residues in the GMC oxidoreductase family, but their roles in the reductive and oxidative half reactions 

might be different in oxidases and dehydrogenases. As asparagine gives a positive charge at high pH; 

thus, replacement of histidine with asparagine in PEG-DH and NPEO-DH is considered reasonable.  

Taking together, in the reductive half-reaction, NPEO-DH catalyses a two-electron oxidation of a 

substrate to a corresponding aldehyde; the flavin ring of NPEO-DH is reduced to FADH2, which 

should be assisted by Asn507 as the potential proton acceptor. In the oxidative half-reaction, the same 

two protons and two electrons are transferred by His465 from FADH2 to an electron acceptor coupled 

to a respiratory chain, yielding a reduced electron acceptor and regenerating the oxidized flavin 

(Figure 6). The presence of quinone-binding motif (Figure 1) and activity of PEG-DH on Coenzyme 

Q10 strongly indicated that an electron acceptor is most probably Coenzyme Q. The typical  

quinone-binding motif CxxC is located on the second sequence of OPEO-DH and PEG-DH, which is 

related to the substrate-docking (Table 1) and close to the membrane-anchoring motif (Figure S1–3). 
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NPEO-DH does not have the typical quinone-binding motif on the second sequence, but its second 

sequence is analogous to others, which might act as a quinone-binding site even in NPEO-DH. It is 

reasonable to assume that electrons released from FADH2 by His465 are transferred to a ubiquinone in 

which the isoprene chain is located on the cytoplasmic membrane, but the benzoquinone ring is bound 

to the second sequence and acts as an actual electron acceptor. In NPEO-DH, another probable 

quinone-binding motif is shown in Figures 1 and S1, where the motif is closer to Asn507 than the 

second sequence. Asn507 in NPEO-DH corresponds to Asn511 in PEG-DH and Asn508 in OPEO-DH. 

The fact that Asn511 is indispensable in PEG-DH [17] supports the crucial role of the active Asn in  

a PEG-DH group. The reaction mechanisms in dehydrogenases and oxidases of the GMC 

oxidoreductases family might be different, an idea, which would be elucidated by further experiments. 

Figure 6. The scheme of reductive and oxidative half reactions of the flavin mediated by 

Asn507 and His465. E. Acceptor: Electron acceptor. Probably Coenzyme Q in a respiratory chain. 

 

5. Conclusions  

NPEO-DH, OPEO-DH and PEG-DH comprise a PEG-DH subgroup in the GMC oxidoreductase 

family, but the active site residues are histidine and asparagine, which are different from the two 

histidines of GOX and COX in the same clade of the family. Differences in the size, secondary 

structure and hydropathy in the active site cause differences in their substrate specificities toward EO 

chain alkylphenols and free PEGs. Mutation analysis of active His465 and Asn507 in NPEO-DH 

concluded that Asn507 mediates the transfer of proton from a substrate to FAD and His465  

transfers the same proton from the reduced flavin to an electron acceptor in a respiratory chain,  

probably Coenzyme Q.  

Acknowledgments 

This work is partly supported by a Grant-in-aid (No. 14560068) for scientific research from the 

Ministry of Education, Culture, Sports, Science, and Technology of Japan. 
  



Int. J. Mol. Sci. 2013, 14 1230 

 

Conflict of Interest 

The authors declare no conflict of interest. 

References  

1. Cavener, D.R. GMC oxidoreductases. J. Mol. Biol. 1992, 223, 811–814.  

2. Kiess, M.; Hecht, H.J.; Kalisz, H.M. Glucose oxidase from Penicillium amagasakiense.  

Eur. J. Biochem. 1998, 252, 90–99. 

3. Mattevi, A. The PHBH fold: Not only flavoenzymes. Biophys. Chem. 1998, 70, 217–222. 

4. Dreveny, L.; Gruber, K.; Glieder, A.; Thompson, A.; Kratky, C. The hydroxynitrile lyase from 

almond: A lyase that looks like an oxidoreductase. Structure 2001, 9, 803–815. 

5. Zámocky, M.; Hallberg, M.; Ludwig, R.; Divne, C.; Haltrich, D. Ancestal gene fusion in 

cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene 

2004, 338, 1–14. 

6. Massey, V.; Curti, B.; Muller, F.; Mayhew, S.G. On the reaction of borohydride with D- and L-

amino acid oxidases. J. Biol. Chem. 1968, 243, 1329–1330. 

7. Muller, F.; Massey, V.; Heizmann, C.; Hemmerich, P.; Lhoste, J.M.; Gould, D.C. The reduction 

of flavins by borohydride: 3,4-dihydroflavin. Eur. J. Biochem. 1969, 9, 392–401.  

8. Fitzpatrick, P.F. Substrate dehydrogenation by flavoproteins. Acc. Chem. Res. 2001, 34, 299–307.  

9. Gibson, Q.H.; Swoboda, B.E.P.; Massey, V. Kinetics and mechanism of action of glucose 

oxidase. J. Biol. Chem. 1964, 239, 3927–3934. 

10. Wohlfahrt, G.; Witt, S.; Hendle, J.; Schomburg, D.; Kalisz, H.M.; Hecht, H.J. 1.8 and 1.9 Å 

resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as 

a basis for modeling substrate complexes. Acta Crystallogr. 1999, D55, 969–977. 

11. Witt, S.; Wohlfahrt, G.; Schomburg, D.; Hecht, H.-J.; Kalisz, H.M. Conserved arginine-516 of 

Penicillium amagasakiense glucose oxidase is essential for the efficient binding of β-D-glucose. 

Biochem. J. 2000, 47, 553–559. 

12. Su, Q.; Klinman, J.P. Nature of oxygen activation in glucose oxidase from Aspergillus niger: The 

importance of electrostatic stabilization in superoxide formation. Biochemistry 1999, 38, 8572–

8581. 

13. Roth, J.P.; Klinman, J.P. Catalysis of electron transfer during activation of O2 by the flavoproein 

glucose oxidase. Proc. Natl. Acad. Sci. USA 2003, 100, 62–67. 

14. Ghanem, M.; Gadda, G. Effects of reversing the protein positive charge in the proximity of the 

flavin N(1) locus of choline oxidase. Biochemistry 2006, 45, 3437–3447.  

15. Fan, F.; Gadda, G. On the catalytic mechanism of choline oxidase. J. Am. Chem. Soc. 2005, 127, 

2067–2074.  

16. Ghanem, M.; Gadda, G. On the catalytic role of the conserved active site residue His466 of 

choline oxidase. Biochemistry 2005, 44, 893–904. 
  



Int. J. Mol. Sci. 2013, 14 1231 

 

17. Ohta, T.; Kawabata, T.; Nishikawa, K.; Tani, A.; Kimbara, K.; Kawai, F. Analysis of amino acid 

residues involved in catalysis of polyethylene glycol dehydrogenase from Sphingopyxis terrae, 

using three-dimensional molecular modeling-based kinetic characterization of mutants.  

Appl. Environ. Microbiol. 2006, 72, 4388–4396. 

18. Tasaki, Y.; Yoshikawa, H.; Tamura, H. Isolation and characterization of an alcohol 

dehydrogenase gene from the octylphenol polyethoxylate degrader Pseudomonas utida S-5. 

Biosci. Biotechnol. Biochem. 2006, 70, 1855–1863. 

19. Liu, X.; Tani, A.; Kimbara, K.; Kawai, F. Xenoestrogenic short ethoxy chain nonylphenol is 

oxidized by a flavoprotein alcohol dehydrogenase from Ensifer sp. strain AS08. Appl. Microbiol. 

Biotechnol. 2007, 73, 1414–1422. 

20. Sugimoto, M.; Tanabe, M.; Hataya, M.; Enokibara, S.; Duine, J.A.; Kawai, F. The first step in 

polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol 

dehydrogenase containing flavin adenine dinucleotide. J. Bacteriol. 2001, 183, 6694–6698. 

21. Kaneko, T.; Nakamura, Y.; Sato, S.; Asamizu, E.; Kato, T.; Sasamoto, S.; Watanabe A.; Idesama, K.; 

Ishikawa, A.; Kawashima, K.; et al. Complete genome structure of the nitrogen-fixing symbiotic 

bacterium Meshorhizobium loti. DNA Res. 2000, 7, 331–338.  

22. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular 

evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum 

parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739.  

23. A sense of scale. Available online: http://www.falstad.com/scale/ (accessed on 9 January 2013). 

24. Bowie, J.U.; Lüthy, R.; Eisenberg, D. A method to identify protein sequences that fold into a 

known three-dimensional structure. Science 1991, 253, 164–170. 

25. Wierenga, R.K.; Terpstra, P.; Hol, W.G.J. Prediction of the occurrence of the ADP-binding βαβ-

fold in proteins, using an amino acid sequence finger-print. J. Mol. Biol. 1986, 187, 101–107.  

26. Sali, A.; Blundell, T.L. Comparative protein modeling by satisfaction of spatial restraints.  

J. Mol. Biol. 1993, 234, 779–815. 

27. Altchul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. 

Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.  

Nucleic Acids Res. 1997, 25, 3389–3402. 

28. Matsudaira, P. Sequence form picomole quantities of proteins electroblotted onto polyvinylidene 

difluoride membranes. J. Biol. Chem. 1987, 262, 10035–10038. 

29. Antonsen, K.P.; Hoffman, A.S. Poly (Ethylene Glycol) Chemistry; Harris, J.M., Ed.; Plenum 

Press: New York, NY, USA, 1992; p. 15.  

30. Kawai, F.; Kimura, T.; Tani, Y.; Yamada, H.; Kurachi, M. Purification and characterization of 

polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. 

Appl. Environ. Microbiol. 1980, 40, 701–705. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


